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ABSTRACT

Southern River Terrapin, Batagur affinis, is a freshwater turtle listed as critically
endangered on the IUCN Red List since 2000. Many studies suggest that faecal DNA
metabarcoding can shield light on the host-associated microbial communities that play
important roles in host health. Thus, this study aimed to characterise and compare the
faecal bacterial community between captive and wild B. affinis using metabarcoding
approaches. A total of seven faeces samples were collected from captive (N = 5) and
wild (N = 2) adult B. affinis aseptically, crossing the East and West coast of peninsular
Malaysia. The DNA was extracted from the faeces samples, and the 16S rRNA gene (V3—
V4 region) was amplified using polymerase chain reaction (PCR). The amplicon was
further analysed using SILVA and DADA?2 pipelines. In total, 297 bacterial communities
taxonomic profile (phylum to genus) were determined. Three phyla were found in high
abundance in all faeces samples, namely Firmicutes (38.69%), Bacteroidetes (24.52%),
and Fusobacteria (6.95%). Proteobacteria were detected in all faeces samples (39.63%),
except the wild sample, KBW3. Under genus level, Cefobacteriumwas found as the
most abundant genus (67.79%), followed by Bacteroides (24.56%) and Parabacteroides
(21.78%). The uncultured genus had the highest abundance (88.51%) even though not
detected in the BK31 and KBW2 samples. The potential probiotic genera (75.00%) were
discovered to be more dominant in B. affinis faeces samples. Results demonstrated that
the captive B. affinis faeces samples have a greater bacterial variety and richness than
wild B. affinis faeces samples. This study has established a starting point for future
investigation of the gut microbiota of B. affinis.
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INTRODUCTION

As part of their ecological role, freshwater turtles maintain the health of enormous river
grass beds. Their habitats support aquatic life, aid in maintaining healthy food webs in the
water, and promote the transfer of nutrients from the river to terrestrial ecosystems (Bodie,
20015 Turtle Conservation Fund, 2002). Thus, they are regarded as important indicators
of aquatic ecosystem health (Burke ¢, 1995; Browne ¢ Hecnar, 2007). Unfortunately, as
a result of human activities (Chen, 2017) (such as habitat destruction, river pollution,
poaching, and fishing) (Chen, 2017) as well as climate change, the population of freshwater
turtles has plummeted (Pike, 2013). As a result, the International Union for Conservation
of Nature (IUCN) has classified 25 freshwater turtles as endangered (Stanford et al., 2020).
Among them, the Southern River Terrapin, Batagur affinis, has been listed as critically
endangered on the TUCN Red List since 2000 (IUCN, 2001).

With advancements in molecular microbial community identification techniques
(such as metabarcoding and metagenomics), the microbial community patterns and their
potential roles related to the host’s health and disease can be determined. For instance,
it has been found that the human gut microbial communities help facilitate metabolic
and absorptive processes and stimulate immunity (Fujimura et al., 2010). Moreover, it
has been suggested that symbiotic microbes in the frog, Atelopus sp., produce neurotoxin,
tetrodotoxin, which protects the host from predators (Chau et al., 2011). In addition,
microbial community studies in faeces samples using DNA metabarcoding technique have
been reported as a non-invasive, accurate, and time-and cost-effective tool to determine
host-associated microbial communities that play important roles in hosts’ health (Ando
et al., 2020). Thus, due to the advances in molecular microbial community identification
techniques, the exploration of the captive and wild B. affinis (Fig. 1) faeces samples in terms
of bacterial community could enhance the understanding of gut microbiome patterns as
their potential roles in B. affinis.

To date, scarcely any examinations have inspected freshwater turtle microbiomes,
especially in B. affinis. Most investigations focus on sea turtles’ microbiomes (Ahasan et al.,
2019; Biagi et al., 2019; Arizza et al., 2019). However, a plethora of research has suggested
that faecal DNA metabarcoding can be an appealing way to deal with microbial communities
(Ducotterd et al., 2021; Pompanon et al., 2012; Valentini, Pompanon ¢ Taberlet, 2009). Also,
this technique has been commonly used to study the diets of various animals (Ingala et al.,
2021; Goldberg et al., 2020). One possible contributing factor of faecal DNA metabarcoding
is in light of the symbiotic bacterial community patterns that might be useful for long-term
conservation purposes of B. afiinis. Given the advantages of faecal DNA metabarcoding
further investigation into the B. affinis gut microbiome is warranted.

The present study aimed to characterise and compare the faecal bacterial community
between captive and wild B. affinis using metabarcoding approaches. The DNA was
extracted from the faeces samples, and the 16S rRNA gene (V3-V4 region) was amplified
using polymerase chain reaction (PCR). The obtained data were further analysed using
SILVA and DADA2 pipelines. As the first study on the faecal DNA metabarcoding of captive
and wild B. affinis, this is the starting point to investigate the gut microbial community
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Figure 1 The subject matter in this study is the Southern River Terrapins (Batagur affinis) of
Malaysia.
Full-size & DOI: 10.7717/peer;j.12970/fig-1

patterns as well as their potential roles in B. affinis’ health and disease developments. It
is hypothesised that the current conservation status of B. affinis (critically endangered)

might potentially be caused by some putative gut microbiomes which directly cause the
population decline drastically. Thus, the outcome of this study will help us in the future
conservation management and husbandry B. affinis towards sustainability. Furthermore,
this project could provide valuable insights into the microbial community of the species.
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MATERIALS & METHODS

Sample collections

The faecal microbial community structure from both a captive and wild population of
adult B. affinis from the east and west coasts of peninsular Malaysia were characterised and
compared (Fig. 2). The microbial community in the faeces sample was sorted and identified
using standard taxonomic keys (Zemb, Achard & Hamelin, 2020). Briefly, samples were
collected and transferred using a sterile spatula into a sterile 50-ml Falcon tube and stored
on ice during transportation to the laboratory. The faeces samples of captive adult B.
affinis (N = 5) were collected from a population at the Bota Kanan head-starting facility
(BK), Perak (4.3489°N, 100.8802°E) in 2020. Meanwhile, the faeces samples of wild adult
B. affinis (N = 2) were collected from a population in the Terengganu River, at Bukit
Paloh, Kuala Berang (KB), Terengganu (5.0939°N, 102.7821°E) in 2021. The research and
field permit approval number is B-00335-16-20, rewarded by the Department of Wildlife
and Parks, peninsular Malaysia. Before DNA extraction, all faecal samples were stored at
—20 °C. The 16S rRNA amplicon analysis of all faeces samples were sent to First BASE
Laboratories-Apical Scientific (Malaysia).

DNA extraction

The NucleoSpin® Soil Kit (Macherey-Nagel, Germany) is commonly used to extract DNA
from the soil. However, in this study, it was used to extract DNA from the faeces samples.
Briefly, from the 300 mg input volume of the faeces samples, a final extraction volume
of 50 1 of DNA sample was achieved and further stored at —20 °C. Purified DNA was
checked for integrity on a 1% (w/v) agarose gel electrophoresis. The DNA concentration
was measured using a spectrophotometer (Implen NanoPhotometer® N60/N50, Germany)
and fluorometric quantification using an iQuant™ Broad Range dsDNA Quantification
Kit (GeneCopoeia, Inc., USA).

16S lllumina library and sequencing

The V3-V4 region of the 16S rRNA gene was amplified with PCR, and the primer pair
16S V3-V4 forward (5'-CCTACGGGNGGCWGCAG-3') and 16S V3-V4 reverse (5'-
GACTACHVGGGTATCTAATCC-3') (Zhang et al., 2018). Each 50 pl of PCR mixture
contained 25 pl of REDiant 2X PCR Master Mix (FirstBASE, Malaysia), 100 ng of DNA
template (2.5 1), 0.5 w M of each primer (5 ul), and 12.5 pl of nuclease-free water. The
amplification condition was as follows: an initial denaturation cycle at 95 °C for 3 min
followed by 25 cycles at 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 5 min. The final
extension cycle at 72 °C for 10 min was also included. The 16S rRNA gene amplicons were
visualised on a 1% (w/v) agarose gel electrophoresis and further purified using AMPure
XP beads (BECKMAN COULTER-Life Sciences, USA) according to the manufacturer’s
protocol.

The 16S rRNA gene amplicons were prepared for the Illumina MiSeq System following
the 2-stage PCR protocol recommended in the [llumina 16S metagenomic library prepara-
tion instruction. With overhang adapters, the 16S rRNA gene of the targeted areas (V3-V4
region) was amplified in the first stage PCR utilising locus-specific sequence primers
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Figure 2 Sampling area of B. affinis. The faeces samples were collected from Bota Kanan, Perak (captive
samples of B. affinis) and Bukit Paloh, Kuala Berang, Terengganu (wild samples of B. affinis edwardmolli).
Full-size & DOI: 10.7717/peerj.12970/fig-2

and overhang adapters. Forward overhang (5'-TCGTCGGCAGCGTCAGATGTGTATAA
GACAG-3') and reverse overhang (5'-GTCTCGTGGGCTCGGAGATGTGTATAAGACAG-
3') were used. All the PCR reactions were carried out with KOD-Multi & Epi® (Toyobo,
Japan). In the second stage of the PCR, dual guides were applied to the amplicon PCR
using the [llumina Nextera XT Index Kit V2 (Illumina, USA), following the manufacturer’s
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instructions. The quality of the libraries was measured using the Agilent Bioanalyzer
2100 System (Agilent Technologies, San Diego, CA, USA) by the Agilent DNA 1000 Kit
(Agilent Technologies, San Diego, CA, USA) and fluorometric quantification by Helixyte
Green™ Quantifying Reagent (AAT Bioquest®, Inc., USA). According to the Illumina
protocol, the libraries were normalised and pooled regarding the procedure Illumina
specified and then sequenced on the MiSeq platform using 300 paired-end (PE).

16S rRNA metabarcoding data analysis

The area of 16S rRNA was sequenced using the PE Illumina MiSeq platform, which
provides raw reads of approximately 300 bp. The forward and reverse reads were combined
using QIIME2 (Caporaso et al., 2010; Lawley ¢ Tannock, 2017). BBDuk version 39.92
has been used to remove sequence adapters, and low-quality reads from the raw reads
(Bushnell, 2018). Meanwhile, QIIME2 version 2019.10 was used to align and integrate the
raw readings (Bolyen et al., 2019). Finally, the Divisive Amplicon Denoising Algorithm 2
(DADAZ2) pipeline version 1.14 (Callahan et al., 2016; Callahan et al., 2019) was used to
denoise in an attempt to remove and/or correct incorrect reads, low-quality areas, and
chimeric errors to provide amplicon sequence variant (ASV) data (Nearing et al., 2018).
The obtained ASV data was then employed in the subsequent steps.

The taxonomic classification was generated using the scikit-learn (Pedregosa et al., 2011)
and Naive Bayes classifier (Langley, Iba ¢ Thompson, 1992; Wang et al., 2007) against the
SILVA version 132 database (Quast et al., 2013) to make individual taxonomic assignments
(Callahan et al., 2019). The SILVA database was used to examine sequence similarity within
ASV reads with recommended parameters at a 97% similarity level (Xue, Kable ¢~ Marco,
2018). Statistical analyses were conducted for alpha and beta diversities.

Statistical analyses were carried out in R Studio 3.6.2 using the packages phyloseq
(McMurdie & Holmes, 2013), vegan (Oksanen et al., 2020), ggplot2 (Hadley, Winston ¢
Lionel, 2019), ggrare (Kandlikar et al., 2018), and VennDiagram (Chen & Boutros, 2011;
VIB-UGent, 2016). The phyloseq package tool was used to import, store, analyse, and
diagrammatically show advanced phyletic sequencing information that has already
been clustered into ASVs, particularly once there’s associated sample data, phylogenetic
tree, and/or taxonomical assignment of the ASVs. This package leverages several tools
accessible in R for ecology and phylogenetic analysis (vegan), whereas ggrare conjointly
victimisation advanced/flexible graphic systems (ggplot2) to simply turn out rarefaction
curve and publication-quality graphics of complex phylogenetic data. A Venn diagram is
an illustration that uses circles to indicate the relationships among things or finite teams
of things. Circles that overlap have a commonality, whereas circles that don’t overlap do
not share those traits. Venn diagrams facilitate representing the similarities and variations
between two concepts visually (McMurdie ¢» Holmes, 2013).

A phylogenetic tree was built by combining Multiple Alignment using Fast Fourier
Transform (MAFFT) (Katoh & Standley, 2013) and FastTree practises (Price, Dehal ¢
Arkin, 2010). First, the MAFFT algorithms were used to create a multiple sequence
alignment (MSA). The obtained MSA was then fed to FastTree to construct a phylogenetic
tree based on maximum-likelihood nearest-neighbour interchanges (NNIs).
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Figure 3 Distribution of the number of sequence tags obtained from B. affinis faeces samples using
DADA2 pipeline. QIIME2 software version 2019.10 was used to create the bar graph for all seven sam-

ples.
Full-size & DOI: 10.7717/peer;j.12970/fig-3

All sequences obtained were deposited at National Centre for Biotechnology Information
(NCBI) Sequences Read Archive (SRA) databases with the BioProject accession number:
PRINA767629 (Runs: SAMN21919713 to SAMN21919722).

RESULTS

Sequencing results of 16S rRNA Region

A total of 420,000 bacterial 16S rRNA gene sequences were generated from seven B.
affinis faeces samples with 60,000 each (Fig. 3). Additionally, 279,323 numbers of filtered
sequences, 261,977 numbers of denoised sequences, 191,420 merged sequences, and 74,976
numbers of non-chimeric sequences tags were also analysed.

Bacterial communities diversity

Alpha diversity

The estimated ASV richness measured by the Chaol and Shannon diversity indices varied
between samples (Fig. 4). Chaol indicated that the faeces sample, BK31, originated from
captive B. affinis, had the highest diversity with Chaol at 284. Conversly, the lowest was
recorded from the faeces sample, KBW2, which originated from wild B. affinis with Chaol
at 102. The same was found for the Shannon diversity index, in which the BK31 sample
showed the highest values at 5.124, whereas the lowest was for the KBW2 sample, which
was determined at 3.498. To further compare the sequencing depth between captive and
wild B. affinis faeces samples, the rarefaction curve was generated (Fig. 5A). Again, captive
B. affinis faeces samples showed the highest sequencing depth compared to the wild B.
affinis faeces samples.
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Figure 4 The alpha diversity analyses were inferred from 16S rRNA gene amplicon sequences for the
B. affinis. The alpha diversity analyses were measured using Chaol and Shannon.
Full-size & DOI: 10.7717/peerj.12970/fig-4

The taxonomic distribution of the faeces microbiota was consistent between individual
samples, although it differed significantly between captive and wild B. affinis faeces samples
(Fig. 5B). In the analysed samples, a Venn diagram depicts the frequent and distinctive
ASVs. Overall, captive B. affinis faeces samples comprised 74.9% ASVs, and wild B. affinis
faeces samples comprised 27.7% ASVs. In captive B. affinis faeces samples, 72.3% of
unique ASVs were found, whereas 25.1% of unique ASVs were found in wild B. affinis
faeces samples. The overlapping portion in a Venn diagram (2.6%) represents the similar
ASVs between captive and wild B. affinis faeces samples.

Beta diversity

Beta diversity was quantified using the Principal Coordinate Analysis (PCoA) analysis
that quantifies the dissimilarity of ASVs (presence/absence) between captive and wild B.
affinis faeces samples. As a result of this segmentation, PCoA analysis using the unweighted
UniFrac dissimilarity index revealed that captive and wild B. affinis faeces samples were
divided along the axis (Fig. 6A). It was feasible to observe sample clustering (28% and 32%,
respectively). The wild B. affinis faeces samples constituted a distinct group along axes one.
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Figure 5 Alpha diversity analyses of bacterial communities’ determination in captive and wild
B. affinis faeces samples. (A) Rarefaction curves showed species richness of the microbial communities in
both captive and wild B. affinis faeces samples. (B) a Venn diagram of shared amplicon sequence variants
(ASVs) between captive B. affinis faeces samples (blue) and wild B. affinis faeces samples (red). The ASVs
was found 2.6% sequence similar between captive and wild B. affinis faeces samples.

Full-size & DOI: 10.7717/peerj.12970/fig-5

All samples from captive B. affinis, namely BK27, BK28, BK29, and BK30, were found to
overlap on the two axes, except for the BK31 sample.

The beta diversity measurements are depicted in the heatmap (Fig. 6B). The numbers
in the grid represent the coefficient difference between all the samples. The smaller the
number of coefficient differences, the narrower the difference between the samples in terms
of ASV. Overall, weighted-UniFrac distances between samples ranged between 0.00 to 0.27.

Bacterial taxonomic profiles
The bacterial species distribution in both captive and wild B. affinis faeces samples was
determined at the bacterial phylum and genus level (Fig. 7). The abundance of bacterial
communities increases from phylum to genus in the hierarchy. It has been determined
that the taxonomic makeup of 297 bacterial populations. Overall, the faeces of B. affinis
contained 20 phyla, 28 classes, 39 orders, 70 families, and 140 bacterial genera.

In captive B. affinis faeces samples, three main phyla, namely Firmicutes (36.52%),
Bacteroidetes (28.48%), and Proteobacteria (17.83%), were found in high abundance
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(Fig. 7A). Fusobacteria were found in high abundance in four captive B. affinis faeces
samples, namely BK27 (12.58%), BK28 (14.32%), BK29 (13.35%), and BK30 (15.02%),
meanwhile, low abundance in BK31(1.04%) sample. Moreover, the BK31 sample was found
to be diversely distributed with various types of bacterial phyla. Nine bacterial phyla, namely
Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Verrucomicrobia, Synergistetes,
Spirochaetes, Kiritimatiellaeota, and Epsilonbacteraeota, were found in the BK31 sample.
Variation was found in wild B. affinis faeces samples between KBW2 and KBW3 samples.
In the KBW2 sample, three main phyla were found in high abundance: Verrucomicrobia
(46.82%), Firmicutes (16.77%), and Proteobacteria (16.72%). In the KBW3 sample,
Firmicutes (70.96%) were found in high abundance, followed by Bacteroidetes (20.04%)
and Fusobacteria (3.77%). Thus, in wild B. affinis, three phyla were highly abundant,
namely Firmicutes (44.06%), Verrucomicrobia (23.74%) and Bacteroidetes (14.70%).
Overall, in all B. affinis faeces samples, three main phyla, namely Firmicutes (38.69%),
Bacteroidetes (24.52%), and Fusobacteria (6.95%) were found in high abundance.
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Meanwhile, Proteobacteria (39.63%) were also detected in all samples, except for the
KBW3 sample.

At the genus level, it has been found that in four captive B. affinis faeces samples, namely
BK27 (20.06%), BK28 (30.03%), BK29 (27.25%), and BK30 (23.36%), Cetobacterium was
found as the most abundant genus present (Fig. 7B). Furthermore, an uncultured bacterial
genus was abundant in BK27, BK28, BK29, and BK30 samples. On the other hand, Sarcina
(28.38%) and Clostridium (26.17%) were the most abundant genera in the BK31 sample.
Similar to the phylum level, a variation in the bacterial genus was also found between
KBW?2 and KBW3 samples. In the KBW2 sample, only four bacteria genera were identified:
Akkermansia (75.90%), Cetobacterium (15.04%), Bacteroides (7.75%), and Parabacteroides
(1.31%). On the other hand, Clostridium (43.59%), Sarcina (23.65%), and Cetobacterium
(8.41%) were found in high abundance in the KBW3 sample. Therefore, in captive B. affinis
faeces samples, three highly abundant genera were Cetobacterium (20.87%), Parabacteroides
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Figure 8 Phylogenetic relationship of bacterial community present in captive and wild B. affinis faeces
samples. Top 30 (A) phyla and (B) genera and their abundances.
Full-size G4l DOI: 10.7717/peerj.12970/fig-8

(8.14%) and Bacteroides (7.34%). Meanwhile, in wild B. affinis, Akkermansia (38.49%),
Clostridium (21.80%) and Sarcina (11.82%) were the three highly abundant genera.

Overall, three main genera were identified in all the faeces samples. Cetobacterium
(67.79%) was found to be the most abundant genus, followed by Bacteroides (24.56%)
and Parabacteroides (21.78%). The uncultured bacterial genus (88.51%) had the highest
abundance even though not presented in BK31 and KBW2 samples. Two genera, namely
Clostridium (35.65%) and Sarcina (21.48%), were found in abundance in all samples,
except in the KBW2 sample.

It has been found that the majority of bacterial genera present in B. affinis faeces samples
belong to the probiotic (75%) group, which includes Cellulosilyticum, Flavobacterium,
Sarcina, Akkermansia, Cetobacterium, and Bacteriodes. In addition, potential pathogenic
(25%) genera including Parabacteroides and Clostridium were also detected in the B. affinis
faeces samples (Fig. 7C).

Phylogenetic relationship

To show newly discovered phyla and genera, a phylogenetic tree has been constructed
using maximum-likelihood NNIs that link the recognised phyla and genera as well as
their abundances (Fig. 8). The results have suggested that the phylum tree depicts the
links between the phyla present (Fig. 8A). The phylum Euryarchaeota appeared to be an
outgroup. The majority of phyla displayed relationships and connections. Fusobacteria
were found to be the most prevalent phylum of bacteria present in both captive and wild
B. affinis faeces samples, followed by Bacteroidetes, Firmicutes, and Proteobacteria.
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On the other hand, the genera tree depicts the four bacterial clusterings (Fig. 8B). Most
of the bacterial genera in cluster 2 were found in high abundance in all faeces samples,
followed by clusters 4, 3, and 1. Cetobacterium and Clostridium were highly distributed in
several samples, followed by Macellibacteroides, Parabacteroides, and Sarcina.

DISCUSSION

This study used the metabarcoding approaches to analyse the bacterial population in
captive and wild B. affinis faeces. Significant differences in bacterial populations between
captive and wild groups were discovered. The results showed that the captive B. affinis faeces
samples have a greater bacterial variety and richness than the wild B. affinis faeces samples.
Furthermore, it was determined that most captive B. affinis faeces samples showed similar
bacterial communities present. In contrast, wild B. affini s faeces samples have different
bacterial communities with more significant intra-group variance. Ahasan et al. (2017)
suggested that the herbivores have various microbiological requirements for accessing
complex carbohydrates in the plant material they ingested as a primary food source. It is
noteworthy that wild B. affinis are frequently regulated to a natural diet (such as molluscs
and mangrove fruit) (Ahasan et al., 2017). In addition, their poor health stated by Ahasan
et al. (2017) promotes the colonisation and growth of opportunistic bacteria compared to
captive B. affinis. Hence, this might reduce the number of bacteria present in the wild B.
affinis.

Based on the results, Firmicutes were found to dominate in all the B. affinis faeces
samples. Bacteria from the phylum Firmicutes have been commonly found in reptiles
(Hong, Wheeler ¢ Cann, 2011) and mammals (Tsukinowa, Karita ¢ Asano, 2008; Nelson,
Apprill & Mann, 2015; Merson, Ouwerkerk ¢ Gulino, 2014). It has been suggested that
the bacteria from the phylum Firmicutes invertebrates play an essential role in helping
the host gain energy and nutrients by assisting with food digestion (Wang, Cao ¢ Li,
2016). Therefore, the frequency of Firmicutes might reflect the normal condition of the
gastrointestinal tract of B. affinis. Furthermore, proteobacteria were also found in most
of the faeces samples, except in the KBW3 sample. It is noteworthy that proteobacteria
are commonly found associated with many animals, including the stranded Loggerhead
sea turtles (Caretta caretta) (Abdelrhman, Bacci ¢ Mancusi, 2016), as well as the Green
sea turtles (Chelonia mydas) (Ahasan et al., 2018). Tt has been suggested that the high
abundance of Proteobacteria in the gastrointestinal tract is a known characteristic of
dysbiosis and an indicator of disease in animals (Shin, Whon & Bae, 2015). However, as a
physiologically and metabolically varied group, Proteobacteria can also play a crucial role
in preparing the juvenile gut for subsequent colonisation by strict anaerobes by absorbing
oxygen, modifying the gut pH, as well as creating carbon dioxide and nutrients (Wilson,
2005; Chow & Lee, 2006).

In this study, the phylum Bacteroidetes was found in all the captive and wild B. affinis
faeces samples. Bacteria belonging to the phylum Bacteroidetes are a common element
of the gut microbiota of many vertebrates and turtles (Abdelrhman, Bacci ¢ Mancusi,
20165 Nelson, Rogers ¢» Brown, 2013; Wang, Cao ¢ Li, 2016). It has been suggested that
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most bacteria belonging to the phylum Bacteroidetes carry many sets of genes encoding
carbohydrate-active chemicals that help to improve the balance of the gut microbiota
(Thomas, 2011; Xu et al., 2007). In humans, a high protein diet has been reported to
increase the Bacteroidetes population in the gastrointestinal tract (Wu et al., 2011). As the
wild B. affinis primarily consumes a high-protein diet such as molluscs (Moll, 1980), the
results of this study showed that Bacteroidetes are highly abundant in the wild B. affinis
samples, suggesting that the host diet directly influences the host microbiome.

Fusobacteria was another bacterial phylum abundantly discovered in captive and wild
B. affinis faeces samples. A greater abundance of Fusobacteria has also been reported
in captive seals that primarily feed on fish (Nelson, Rogers ¢ Brown, 2013; Numberger,
Herlemann & Jurgens, 2016). The typical diet in captivity on B. affinis is a marine fish
(Rastrelliger sp.). Meanwhile, the wild B. affinis commonly consumes fish and small
invertebrates that are detected to hold a high concentration of Fusobacteria (Garrity,
Bell & Lilburn, 2005; Vega et I., 2009), suggesting that the prevalence of Fusobacteria in B.
affinis faeces was influenced by the host diet. Moreover, bacteria belonging to the phyla
Actinobacteria, Verrucomicrobia, and Lentisphaerae were also found in the faeces samples
of captive and wild B. affinis. Similarly, these bacterial phyla have also been found in several
animals such as loggerhead sea turtles, iguanas, dugongs, and seals (Abdelrhman, Bacci
& Mancusi, 2016; Tsukinowa, Karita & Asano, 2008; Hong, Wheeler ¢ Cann, 2011; Nelson,
Rogers & Brown, 2013; Numberger, Herlemann & Jurgens, 2016).

Meanwhile, many uncultured genera have been detected in all B. affinis faeces samples.
Microbiome analysis studies have proven the presence of many uncultured genera
in freshwater fish, such as Oreochromis niloticus (Tsuchiya, Sakata ¢ Sugita, 2008) and
Cyprinus carpio (Van Kessel et al., 2011). It has also been abundantly found in the human
gut (Lagier et al., 2012). It is expected that approximately 80% of the bacteria detected
with molecular implements are uncultured (Turnbaugh et al., 2007; Bilen et al., 2019).
Therefore, it is expected that this study will show the highest density of uncultured genera
due to present taxonomical constraints (Almeida et al., 2019).

Noteworthy, the potential probiotic bacterial genera, namely Cetobacterium, Bacteroides,
Akkermansia, Sarcina, Flavobacterium, and Cellulosilyticum were identified from the B.
affinis faeces samples. Cetobacterium was the most abundant bacterial genus found in
both captive and wild B. affinis faeces samples, followed by Bacteroides. Furthermore,
both Cetobacterium and Bacteroides have been identified as frequent occupants in the
guts of various aquatic mammals and fishes (Larsen, 2014; Nelson, Rogers ¢ Brown, 2013;
Roeselers, Mittge ¢~ Stephens, 2011). Interestingly, these bacterial genera have been suggested
to contribute to the production of vitamin B-12 in the fish gut. For instance, high vitamin
B-12 levels have been detected in the intestines of carp and tilapia (free dietary vitamin
B-12) colonised with Cetobacterium and Bacteroides (Sugita, Miyajima & Deguchi, 1991).

Besides, bacteria belonging to the genus Akkermansia have been suggested to
contribute to the stimulation and manipulation of gut immune responses (Chen
et al., 2019; Cekanaviciute et al., 2017; Rothhammer, Borucki & Tjon, 2018; Rojas et al.,
2019). Moreover, Sarcina, Flavobacterium, and Cellulosilyticum have all been suggested
to contributing to host food digestion. Due to their ability to secrete a variety of
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extracellular hydrolytic enzymes and to breakdown complex carbohydrates such as
cellulose, hemicellulose, and lignocellulose (Ahasan et al., 2018; Ilker & Ogram, 2006;
McKnight et al., 2020; Cai & Dong, 2010; Li et al., 2011).

In this study, the presence of potentially pathogenic bacterial genera has also been
detected. Clostridium was found in all B. affinis faeces samples except the KBW2 sample.
Bacterial species from the genus Clostridium, such as Clostridium botulinum, have been
reported as pathogens due to their ability to produce botulinum. This neurotoxin causes
botulism in both animals and humans (Cherington, 2004). Moreover, another potential
pathogenic bacterial genus, namely Parabacteroides, has also been identified. Although
Parabacteroides is commonly associated with the gastrointestinal tract of animals,
Parabacteroides have also been suggested as commensal bacteria (Sakamoto & Benno,
20065 Allsop & Stickler, 1985; Ezeji et al., 2021). However, some studies have reported that
Parabacteroides can be identified as pathogens (Kverka et al., 2011; Rodriguez-Palacios et al.,
2020). In this study, Parabacteroides has been found in both captive and wild B. affinis faeces
samples. The presentation suggests a host-pathogen interaction that could be studied.

CONCLUSIONS

In summary, this study described the faecal bacterial populations of captive and wild
critically endangered Southern River Terrapins, B. affinis. Our results indicated that the
captive B. affinis faeces samples have a greater bacterial variety and richness than wild B.
affinis faeces samples. Therefore, we propose the application of some pharmaceuticals for
disease treatments and combat any potential opportunistic bacterial related infections,
for routine conservation management of B. affinis. However, the approach cannot be
considered a substitute for the ever-important practice of animal husbandry of the captive
population. In addition, daily observation and good record keeping of B. affinis behaviour
and feeding activity enables early discovery of abnormalities, allowing for a diagnosis to be
made before the majority of the captive population gets ill. If treatment is recommended,
it will be most effective if started early in the disease while the B. affinis are still in good
health.

As currently there is limited information on the gut microbiota of B. affinis, the faecal
bacterial populations are hoped to provide a basis for further studies of B. affinis’ gut
microbiota. A research gap that is still required would be on the knowledge gap on harmful
microorganisms such as viruses, bacteria, parasites, and fungus that has not yet been
investigated on the subject matter, which has the potential to spread among or between
hosts. Aside from that, future research could look into the impact of the dominant phylum
(Proteobacteria) and genus (Cetobacterium). Thus, the presence of potentially pathogenic
genera (Clostridium and Parabacteroides) on the health and productivity of B. affinis,
assisting us in developing a long-term management and conservation strategy for B. affinis
towards sustainability.
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