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ABSTRACT
The females and males of dioecious plants have evolved sex-specific characteristics in
terms of their morphological and physiological properties. However, the
differentiation of phyllosphere microorganism of dioecious plants between parents
and hybrid offspring remain largely unexplored. Here, the phyllosphere bacterial and
fungal community diversity and composition of female (Populus nigra ‘DH5’
(PNDH5)), male (P. simonii ‘DH4’ (PSDH4)), and the hybrid offspring (P. simonii ×
P. nigra ‘DH1’ (PSPNDH1), P. simonii × P. nigra ‘DH2’ (PSPNDH2), P. simonii ×
P. nigra ‘DH3’ (PSPNDH3)) were investigated using 16S rDNA/ITS rDNA
gene-based Illumina NovaSeq 6000 sequencing. There was considerable variation of
plant height, diameter at breast height, leaf area, length of petioles, leaf moisture
content, and starch among different samples, and PSDH2 owned the highest plant
height, diameter at breast height, and length of petioles. No distinct differences of
phyllosphere bacterial community diversity were observed among PSDH4, PNDH5,
PSPNDH1, PSPNDH2, and PSPNDH3; while, PSPNDH2 owned the highest fungal
Pielou_e index, Shannon index, and Simpson index. Firmicutes and Ascomycota
were the predominant phyllosphere bacterial and fungal community at the phylum
level, respectively. Bacilli and Gammaproteobacteria were the two most dominant
bacterial classes regardless of parent and the hybrid offspring. The predominant
phyllosphere fungal community was Dothideomycetes at the class level. The NMDS
demonstrated that phyllosphere microbial community obviously differed between
parents and offspring, while the phyllosphere microbial community presented some
similarities under different hybrid progeny. Also, leaf characteristics contributed to
the differentiation of phyllosphere bacterial and fungal communities between parents
and hybrid offspring. These results highlighted the discrimination of phyllosphere
microorganisms on parent and hybrid offspring, which provided clues to potential
host-related species in the phyllosphere environment.
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INTRODUCTION
Poplar is an important forest tree species in temperate regions of the world, with strong
adaptability and wide geographical distribution (Hou, 2021), which is often chosen as
artificial forestation in our country (Zhang, Li & He, 2006). Due to its rapid growth rate,
good wood quality, and excellent disease resistance, poplar plays an important role in
wood production, forest construction, landscaping, and ecological protection (Aylott et al.,
2010). So far, the genetically improved poplar varieties used and popularized in forestry
production in China are mainly cultivated through artificial hybridization (Zhang, Li &
He, 2006). In comparison with their parents, interspecific hybrids have stronger fecundity,
growth vigor, superior adaptability, stress resistance and other functional traits, which
achieved outstanding economic benefits (Xu et al., 2019). For example, Populus
euramericana (P. deltoides × P. nigra) produces large quantities of industrial wood and
performs strong heterosis in Asia, Europe and America (Zhang & Li, 2003; Stettler et al.,
1996). P. simonii × P. nigra is widely planted for timber forest construction and shelter in
cold and dry regions due to its high cold tolerance (FAO, 2014). At present, the formation
mechanism of poplar heterosis has been extensively explored from the perspective of
growth traits (Ren et al., 2020; Li et al., 2013; Zhang et al., 2011), photosynthetic capacity
(Dong et al., 2016), water use efficiency, hormone contents, physiology variation (Kanaga
et al., 2008;Wang et al., 2011b), genetic relationship between hybrid offspring and parents
(Jiang et al., 2004; Zanewich, Pearce & Rood, 2018; Su, Ding & Ma, 2010), as well as
abiotic stresses (Wang et al., 2009). Recently, the differences between parents and
hybrids have become a rather interesting topic. P. simonii is characterized by small
diamond-shaped oval leaves, which are resistant to cold, drought and barrenness and are
widely used in the construction of shelterbelt and timber forest in barren land, arid and
cold regions of northern China (Cheng et al., 2019). P. nigra is an important economic
species in the alluvial plain area of Europe, which is characterized by large and triangular
leaves, rapid growth growing, and high-yield production (Storme et al., 2004). Therefore,
the hybridized combinations of excellent clones of P. simonii and P. nigra show
excellent wood performance, fast growth, strong cold resistance, and drought tolerance
(Zhou et al., 2019), which are generally distributed in the northern region of China.
The early research on P. simonii × P. nigra mainly focused on the introduction and
cultivation of germplasm resources (Ren et al., 2006). In recent years, the studies have
mainly focused on the use of transgenic technology to enhance growth and photosynthetic
characteristics (Zhao et al., 2015), salt tolerance (Bai et al., 2006), disease resistance (Wang,
2007), insect resistance (Lin et al., 2006), and genomic information, as well as molecular
characterization of stress tolerance and breeding (Wang et al., 2011a). However, the
differences of phyllosphere microbes between parents and hybrids have received relatively
less attention. Moreover, whether the differences of plant functional traits could drive the
divergence of phyllosphere bacterial and fungal communities, particularly in parents and
their hybrid offspring, is still unclear.

The phyllosphere, as the interface between the aboveground parts of plants and air (Berg
et al., 2016), harbors more than 1026 microorganisms (Vorholt, 2012), such as bacteria,
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fungi, and archaea (Delmotte et al., 2009), which are called phyllosphere microbes
(Lindow & Leveau, 2002). Phyllosphere microbiota has been found to be in symbiosis with
hosts and affects the growth and ecological function of the host in many ways, such as
influencing the fitness and development through production of growth-promoting
nutrients (Bulgarelli et al., 2013) and phytohormones (Sha et al., 2017), increasing plants
stress tolerance (Kaczmarczyk et al., 2011), and protection of hosts against pathogen
(Carrion et al., 2019; Innerebner, Knief & Vorholt, 2011). Therefore, it is of great ecological
significance to understand the diversity and composition of phyllosphere microbial
communities. However, systematic comparisons on phyllosphere microorganisms of
parent and the hybrid offspring are still lacking.

Plant species are the main factors affecting the composition of phyllosphere microbial
communities (Redford & Fierer, 2009; Whipps et al., 2008; Bodenhausen, Horton &
Bergelson, 2013), and different plants were colonized by different microorganisms. The leaf
characteristics, including leaf moisture, leaf thickness, mesophyll thickness, phosphorus
content, carbohydrates, amino acids, phenolic, and organic acids secreted mainly by leaves,
are limiting factors during microbe colonization in the phyllosphere (Rastogi et al., 2012;
Muller & Ruppel, 2014). Hunter et al. (2010) revealed that plant morphology and
soluble carbohydrate content significantly influenced the diversity of the phyllosphere
bacterial community, while the effects of plant functional traits on phyllosphere microbial
community need to be further addressed. Hence, further investigation of the response of
phyllosphere microbial communities to parent and the hybrid offspring could provide
valuable leads for how crossbreeding shapes the phyllosphere microbial communities.

P. simonii × P. nigra is a major cultivated variety which has been generalized in a broad
region of northeast China due to its outstanding stress resistance and environmental
adaptability under desertification conditions and with the improvement of the ecological
environment. In this study, with the aim of obtaining a high growth rate and highly
resistant offspring, P. simonii ‘DH4’ (female) and P. nigra ‘DH5’ (male) were selected as
parents, and P. simonii × P. nigra ‘DH2’, P. simonii × P. nigra ‘DH3’, P. simonii × P. nigra
‘DH1’ were chosen as three hybrid offsprings. This work addressed two key questions:
(і) whether there were differences in the phyllosphere bacterial and fungal communities
under different hybrid offspring as well as their parent, (ii) do leaf characteristics
contribute to the differentiation of phyllosphere bacterial and fungal communities between
parents and hybrid offspring.

MATERIALS AND METHODS
Experimental site and experimental materials
The experimental field site was located in Baituliang Forest Farm, Dalat Banner,
Erdos City, Inner Mongolia Autonomous Region (37�35′24″∼407�35′247�N,
106�42′40″∼111�35′247�E), which is classified as temperate continental monsoon climate.
The annual average temperature is 6.8 �C with a minimum of −22 �C in winter and a
maximum of 37 �C in summer. The annual precipitation and annual average frost-free
period are 300 mm and 150 days, respectively.
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In the spring of 2015, F1 progeny seeds of P. simonii × P. nigra ‘DH1’ (PSPNDH1),
P. simonii × P. nigra ‘DH2’ (PSPNDH2), and P. simonii × P. nigra ‘DH3’ (PSPNDH3) were
obtained from the hybridizations between female clone of P. simonii ‘DH4’ and male clone
of P. nigra ‘DH5’ and planted in the greenhouse of CAF (Chinese Academy of Forestry),
Beijing, China. In the spring of 2016, cutting seedlings of F1 progeny and their parents
were planted with the density of 30 cm × 50 cm at Baituliang Forest Farm, Dalat Baner,
Inner Mongolia Autonomous Region. In the spring of 2018, 16 plants for each genotype
of F1 progenies and each clone of parents were grown in a plot with a spacing of 10 ×
15 m. A total of 25 plots were designed and five replicates were randomly distributed
(Fig. S1). Plants were planted in each plot with the density of 2 m × 3 m.

The determination of plant functional traits
The height was measured with an altimeter. The diameter at breast height was measured
using a breast diameter ruler to measure the diameter of the tree trunk 1.3 m above the
ground. The relative moisture content of leaf was weighed by the drying method.
The length of petiole was measured with a ruler. Leaf area was calculated using Image J and
leaves were scanned with a CanonScan LiDE 210 (Canon Inc., Tokyo, Japan). The contents
of soluble sugar and starch were determined by anthrone colorimetry.

Sample collection
A total of 15–20 leaves from the tip of the shoots in the middle of the canopy from three
directions, including 120� around the tree, were collected, and leaves from ten trees at each
plot were mixed as one replicate. A total of 25 leaf samples (5 clones × 5 replicates)
were collected. To analyze the phyllosphere microbial community on the leaves, 10 g of
leaves from each replicate were cut into pieces and submerged in phosphate-buffered
solution (20 mL, PBS, 0.01 M, pH 7.4) (leaf weight/volume TE buffer = 1:20). After
vigorous shaking on a shaker at 200 r/min for 30 min at room temperature, leaves were
removed, and the suspension containing phyllosphere microorganism was retained.
The suspension was filtered through sterile vacuum filtration, and phyllosphere microbes
from the oscillating liquid were collected on a 0.22 µm filter membrane and then placed
into 2 ml sterile centrifuge tubes. The samples were stored at −80 �C prior to DNA
extraction and high-throughput sequencing.

High-throughput sequencing
According to the manufacturer’s instructions, we used the FastDNA SPIN Kit for soil
(MP Biomedical, Santa Ana, CA, USA) to extract Genomic DNA from the filter. The
NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA)
was used to measure the DNA concentration (Deng et al., 2021). The primer pairs 338F
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCT
AAT-3′) with barcode sequence were used to amplify the V3–V4 regions of bacterial
16S rDNA gene (Deng et al., 2021). The primer pairs ITS1F (5’-CTTGGTCATAGGAA
GAAGTAA-3’) and ITS2 (5’-GCTGCGTTCTTCAGATGC-3’) with barcode sequence
were used to amplify the ITS1 region of the fungal ITS rDNA gene. All the PCR reactions
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were performed with 25 ml mixture, including DNA Template (40–50 ng) 2 ml, 0.25 ml
(5 U/ml) of Q5 High-Fidelity DNA Polymerase, 2 ml of dNTPs (2.5 mM), 1 ml (10 uM) of
forward and reverse primer, severally; 5 ml of Q5 High-Fidelity GC buffer (5×), 8.75 ml
of ddH2O, 5 ml of Q5 reaction buffer (5×). The PCR thermal cycling condition was
consistent with the study from Deng et al. (2020). Agencourt AMPure Beads (Beckman
Coulter, Indianapolis, IN, USA) was used to purify the PCR amplicons, and PicoGreen
dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA) was used to further quantify the PCR
amplicons (Deng et al., 2020). PCR products for sequencing were carried out by an
Illumina NovaSeq 6000 sequencing platform at Shanghai Personal Biotechnology Co., Ltd.,
Shanghai, China. The high-throughput sequencing raw data of phyllosphere bacteria and
fungi were uploaded in the NCBI database with the SRA accession number PRJNA736812.

Statistical analysis
The high-quality sequences were finally obtained after removing primers, quality filter,
denoise, joint and removal of chimeras (Callahan et al., 2016). And sequences with ≥97%
similarity were assigned to the same OUT (Edgar, 2010). Then, the qiime feature-table
rarefy function was used for OTU leveling, and the leveling depth was set as 95% of the
minimum sample sequence quantity (Kemp & Aller, 2004). Multiple-sample comparisons
using one-way analysis with Kruskal–Wallis tests were used to explore the differences
of phyllosphere microbial community diversity. Venn diagrams were constructed to show
the shared and unique OTUs using RStudio with vegan package (Chen & Boutros, 2011).
Linear discriminant analysis effect size (LEfSe) with the Kruskall–Wallis test was employed
to identify the bacterial and fungal taxonomic from the phylum to genus levels responsible
for the community differentiation between treatments (Segata et al., 2011). The threshold
on the logarithmic LDA score for discriminative features was set at 2. For β-diversity,
non-metric multidimensional scaling (NMDS) analysis was performed to reveal the
differences phyllosphere bacterial (based on weighted-unifrac) and fungal (based on bray
distance) community compositions among different samples using RStudio with vegan
package (Anderson, 2001). Spearman’s rank correlation was used to analyze the
relationships between plant functional traits and phyllosphere microbial community
diversity and composition using IBM SPSS (Clarke, 2010).

RESULTS
Plant functional traits analysis
There was considerable variations of plant height (F = 46.57, P < 0.01), diameter at breast
height (F = 53.98, P < 0.01), leaf area (F = 35.83, P < 0.01), length of petioles (F = 287.89,
P < 0.01), leaf moisture content (F = 8.24, P < 0.01), and starch (F = 3.09, P = 0.04)
among different samples, and PSDH2 owned the highest plant height, diameter at breast
height, and length of petioles with 6.38 m, 5.92 cm, 4.81 cm, respectively. PSDH1 owned
the highest starch content with 129.54 mg/g, followed by PSDH2, PSDH3, PSDH4, and
PSDH5 (Table 1), while no obvious differences were obtained among different samples
(F = 1.77, P = 0.18) (Table 1).
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Phyllosphere microbial community diversity
A total of 2,147,073 high quality bacterial sequences were obtained with average sequences
of 85,882, which were clustered into 10,031 OTUs. The number of OTUs under
PSPNDH2, PSPNDH3, PSPNDH1, PSDH4, and PNDH5 was 2,701, 2,197, 2,735, 2,981,
and 2,695, respectively, and the number of unique OTUs of PSPNDH2, PSPNDH3,
PSPNDH1, PSDH4, and PNDH5 was 1,730, 1,214, 1,606, 1,931, and 1,735, individually.
The number of shared OTUs among PSPNDH2, PSPNDH3, PSPNDH1, PSDH4, and
PNDH5 was172 (Fig. 1A). As for fungi, 3,519,792 high quality sequences were obtained
with average sequences of 140,791, which were incorporated into 1,732 OTUs. PSPNDH2,
PSPNDH3, PSPNDH1, PSDH4, and PNDH5 hold 605, 571, 502, 690, and 654 OTUs
respectively, with unique OUTs of 233, 206, 171, 294, and 276, individually, and the shared
OUTs of 159. In our research, the depth of sample sequencing increased, but the curve no
longer increased significantly (Fig. S2). We believe that the amount of sequencing was
sufficient, that is, the sample alpha diversity index has stabilized.

No distinct differences of phyllosphere bacterial Chao1 index (P = 0.67),
Goods_coverage (P = 0.60), Observed_species (P = 0.79), Pielou_e index (P = 0.21),
Shannon index (P = 0.46), and Simpson index (P = 0.23) were observed among PSPNDH2,
PSPNDH3, PSPNDH1, PSDH4, and PNDH5 (Fig. 2A). While, phyllosphere fungal Chao1
index (P = 0.028), Goods_coverage (P = 0.046), Observed_species (P = 0.025), Pielou_e
index (P = 0.036), Shannon index (P = 0.024), and Simpson index (P = 0.044) observably
differed among PSPNDH2, PSPNDH3, PSPNDH1, PSDH4, and PNDH5. PSDH4 hold the
highest Chao 1 index of 275.15 and Observed_species of 259.22. PSPNDH2 owned the
highest Pielou_e index, Shannon index, and Simpson index with 0.41, 3.21, and 0.74,
respectively. Compared to PSPNDH2 and PSPNDH3, PSPNDH1 had the lowest Chao 1
index, Observed_species, Pielou_e index, Shannon index, and Simpson index with 200.26,
187.46, 0.29, 2.19, and 0.51, respectively (Fig. 2B).

Phyllosphere microbial community composition
In total, 35 bacterial phyla were detected across all 25 samples. The groups with average
relative abundance more than 0.05% were Firmicutes, Proteobacteria, Actinobacteria,

Table 1 Plant functional traits among different samples.

PSPNDH1 PSPNDH2 PSPNDH3 PSDH4 PNDH5 F P

Plant height (m) 5.88 ± 0.25bA 6.38 ± 0.56aA 5.86 ± 0.37bA 3.98 ± 0.19cB 3.88 ± 0.56cB 46.57 <0.01

Diameter at breast height (cm) 4.80 ± 0.68bB 5.92 ± 0.72aA 5.27 ± 0.34bAB 3.45 ± 0.36cC 1.85 ± 0.25dD 53.98 <0.01

Leaf area (mm2) 3,806.83 ± 569.79 4,444.29 ± 470.36 4,508.43 ± 469.00 2,964.89 ± 326.61 2,520.19 ± 336.00 35.83 <0.01

Length of petioles (cm) 4.44 ± 0.24bB 4.81 ± 0.20aA 4.76 ± 0.18aA 1.55 ± 0.18dD 3.59 ± 0.35cC 287.89 <0.01

Leaf moisture content (%) 84.59 ± 0.33bABC 87.65 ± 0.13aA 85.59 ± 0.27abAB 83.40 ± 1.60bcBC 81.28 ± 2.75cC 8.24 <0.01

Soluble sugar (mg/g) 134.98 ± 7.34abA 148.86 ± 13.33aA 139.12 ± 12.95abA 145.93 ± 9.81abA 131.72 ± 15.52bA 1.77 0.18

Starch (mg/g) 129.54 ± 45.69aA 104.27 ± 20.47abAB 94.86 ± 17.42bAB 89.32 ± 12.60bAB 78.56 ± 6.58bB 3.09 0.04

Notes:
PSPNDH1: P. simonii × P. nigra cv. ‘DH1’, PSPNDH2, P. simonii × P. nigra cv. ‘DH2’, PSPNDH3: P. simonii × P. nigra cv. ‘DH3’, PSDH4: P. simonii ‘DH4’, PNDH5:
Populus nigra ‘DH5’. Average value ± standard deviation (5).
Different lowercase letters and capital letters in each row represent significant difference at p < 0.05 and p < 0.01, respectively.
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Figure 1 Venn diagram of the phyllosphere bacterial (A) and fungal (B) shared and unique OTUs.
PSPNDH1: P. simonii × P. nigra cv. ‘DH1’, PSPNDH2, P. simonii × P. nigra cv. ‘DH2’, PSPNDH3:
P. simonii × P. nigra cv. ‘DH3’. Full-size DOI: 10.7717/peerj.12915/fig-1
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Figure 2 Phyllosphere bacterial (A) and fungal (B) community diversity. PSPNDH1: P. simonii × P. nigra cv. ‘ DH1’, PSPNDH2, P. simonii ×
P. nigra cv. ‘DH2’, PSPNDH3: P. simonii × P. nigra cv. ‘DH3’, PSDH4: P. simonii ‘DH4’, PNDH5: Populus nigra ‘DH5’.

Full-size DOI: 10.7717/peerj.12915/fig-2

Ding et al. (2022), PeerJ, DOI 10.7717/peerj.12915 8/22

http://dx.doi.org/10.7717/peerj.12915/fig-2
http://dx.doi.org/10.7717/peerj.12915
https://peerj.com/


Bacteroidetes, Chloroflexi, Acidobacteria, Gemmatimonadetes, and Deinococcus-
Thermus, accounting for 99.85%. The predominant groups were Firmicutes and
Proteobacteria (Fig. 3A). At the class level, Bacilli and Gammaproteobacteria were two
most dominant bacterial groups regardless of parent and the hybrid offspring (Fig. S3A).
The relative abundance of Bacilli was relatively higher in PSDH4 (78.06%) compared to the
other samples (37.04–63.55%). While, the relative abundance of Gammaproteobacteria
showed the opposite trend, which was lower in PSDH4 (10.28%) than in the other samples

Figure 3 Phyllosphere bacterial (A) and fungal (B) community composition at the phylum level.
PSPNDH1: P. simonii × P. nigra cv. ‘DH1’, PSPNDH2, P. simonii × P. nigra cv. ‘DH2’, PSPNDH3:
P. simonii × P. nigra cv. ‘DH3’, PSDH4: P. simonii ‘DH4’, PNDH5: Populus nigra ‘DH5’.

Full-size DOI: 10.7717/peerj.12915/fig-3
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(15.10–35.59%). At the genus level, 1,071 bacterial genera were obtained, and the bacterial
groups with the average relative abundance more than 1% were Exiguobacterium,
Planomicrobium, Pseudomonas, Bacillus, Massilia, Frigoribacterium, Lysinibacillus,
Planococcus, Pantoea, Curtobacterium, and Arthrobacter, accounting for 71.26%.

In total, 9 fungal phyla, including Ascomycota, Basidiomycota, Mortierellomycota,
Mucoromycota, Olpidiomycota, Aphelidiomycota, Blastocladiomycota, Chytridiomycota,
and Rozellomycota were detected across all 25 samples (Fig. 3B). The predominant groups
were Ascomycota, and Basidiomycota, accounting for 99.04%. At the class level, the
phyllosphere fungal communities were dominated by Dothideomycetes (69.15–86.18%),
Sordariomycetes (5.41–17.66%), Tremellomycetes (2.26–9.49%), and
Agaricostilbomycetes (0.92–2.97%) (Fig. S3B). At the genus level, a total of 448 fungal
genera were detected, and Alternaria, Phialemoniopsis, Didymella, Filobasidium,
Mycosphaerella, and Kondoa were the dominant fungal communities, accounting for
90.10% (Fig. S3B).

The NMDS demonstrated that the phyllosphere microbial community composition
obviously differed between PSDH4 and PNDH5, while, the phyllosphere microbial
community composition presented some similarities under PSPNDH2, PSPNDH3,
PSPNDH1, PSDH4, and PNDH5 (Fig. 4). In addition, PSPNDH2 enrichedOceanobacillus,
Lachnoclostridium, Escherichia_Shigella, Selenophoma, Selenophoma_mahoniae,
Dothideales, Piloderma and Nigrospora. PSPNDH3 enriched Pseudomonadaceae,
Pseudomonas. PSPNDH1 enriched Hymenobacteraceae, Hymenobacter, Massilia and
Didymella. PNDH5 enriched Alteromonadales, Paracaedibacterales, Aliihoeflea,
Cystobacter, Rahnella, Saccharomycetes, Massarinaceae, Stagonospora, Wilcoxina, and
Simplicillium. PSDH4 enriched Planomicrobium, Allobaculum, Enterobacter, Erysiphales,
Lentitheciaceae, Phaeosphaeria, Alternaria, and Phyllactinia (Fig. 5).

The relationships between leaf characteristics and phyllosphere
microbial community
Phyllosphere bacterial Chao1 index (r = 0.63, p = 0.01; r = 0.64, p = 0.01) and
Observed_species (r = 0.66, p = 0.01; r = 0.62, p = 0.02) had significantly positive
correlation with soluble sugar and starch. Phyllosphere bacterial Pielou_e index (r = 0.55,
p = 0.01), Shannon index (r = 0.62, p = 0.003), Simpson index (r = 0.49, p = 0.03)
remarkably increased with the increase of soluble sugar content (Table 2). With regard to
phyllosphere fungi, phyllosphere fungal Chao 1 index (r = 0.48, p = 0.01),
Observed_species (r = 0.49, p = 0.01), and Shannon index (r = 0.39, p = 0.03) existed
distinctly positive relation to soluble sugar (Table 2).

The relative abundance of Firmicutes decreased with the increase of starch (r = −0.41,
p < 0.05). While, the relative abundance of Actinobacteria (r = 0.55, p < 0.05), Bacteroidetes
(r = 0.51, p < 0.05), Chloroflexi (r = 0.40, p < 0.05), Deinococcus-Thermus (r = 0.42,
p < 0.05) increased with the increase of starch content (Table 3). The relative abundance of
Basidiomycota hold significant positive correlation with starch (r = 0.40, p < 0.05)
(Table 3).
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DISCUSSION
Variation of plant functional traits of the parental clones and different
hybrid progeny
Heterosis refers to the phenomenon that the F1 generation plants produced by crossing
two parents with different genetic compositions are superior to the parents in one or more
traits. The utilization of heterosis in modern breeding has achieved remarkable results in
crops and trees, and most of the previous research results showed that the photosynthetic
capacity of hybrid was significantly higher than that of their parents (Khan et al., 1998).
In our study, the height and diameter at breast height of PSPNDH1, PSPNDH2, and
PSPNDH3 existed higher than those of PSDH4, and PNDH5 (Table 1), which
demonstrated that PSPNDH1, PSPNDH2, and PSPNDH3 owned higher plant biomass

Figure 4 The NMDS of phyllosphere bacterial community (A) based on weighted-unifrac and fungal
(B) community based on bray distance. PSPNDH1: P. simonii × P. nigra cv. ‘DH1’, PSPNDH2,
P. simonii × P. nigra cv. ‘DH2’, PSPNDH3: P. simonii × P. nigra cv. ‘DH3’, PSDH4: P. simonii ‘DH4’,
PNDH5: Populus nigra ‘DH5’. Full-size DOI: 10.7717/peerj.12915/fig-4
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than those of PSDH4, and PNDH5. What’s more, leaf is one of the important vegetative
organs of plants, and the research on leaf characteristics has always been an important part
of poplar breeding research. A large number of studies have shown that there is a close
relationship between leaves and growth, especially leaf area and leaf area index, which are

Figure 5 The LEfse of phyllosphere bacterial community (A) and fungal (B) community. PSPNDH1:
P. simonii × P. nigra cv. ‘DH1’, PSPNDH2, P. simonii × P. nigra cv. ‘DH2’, PSPNDH3: P. simonii ×
P. nigra cv. ‘DH3’, PSDH4: P. simonii ‘DH4’, PNDH5: Populus nigra ‘DH5’.

Full-size DOI: 10.7717/peerj.12915/fig-5
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closely related to biomass (Gebauer et al., 2016). Leaf area is also an important parameter
to characterize the photosynthetic and transpiration capacity of plants and can be used
as an early selection index for tree growth traits (Du et al., 2014; Guet et al., 2015).
Therefore, it is very necessary to carry out the analysis of leaf-related traits in hybrid

Table 2 The relationships between phyllosphere microbial community diversity with leaf
characteristics.

Soluble sugar Starch

Bacteria

Chao1 index 0.64** 0.65**

Goods_coverage 0.01 −0.21

Observed_species 0.66** 0.62**

Pielou_e index 0.55** 0.24

Shannon index 0.62** 0.35

Simpson index 0.49* 0.28

Fungi

Chao1 index 0.48* −0.00

Goods_coverage −0.12 0.24

Observed_species 0.49* −0.018

Pielou_e index 0.32 0.295

Shannon index 0.39 0.295

Simpson index 0.26 0.288

Notes:
* P < 0.05.
** P < 0.01.

Table 3 The relationships between phyllosphere microbial community composition at phylum level
with leaf characteristics.

Soluble sugar Starch

Bacteria

Firmicutes −0.12 −0.41*

Proteobacteria −0.06 0.28

Actinobacteria 0.33 0.55**

Bacteroidetes 0.23 0.51**

Chloroflexi 0.28 0.40*

Acidobacteria 0.29 0.37

Gemmatimonadetes 0.15 0.36

Deinococcus-Thermus 0.29 0.42*

Fungi

Ascomycota −0.26 −0.37

Basidiomycota 0.25 0.40*

Mortierellomycota −0.03 0.32

Mucoromycota 0.23 0.39

Notes:
* P < 0.05.
** P < 0.01.
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breeding. In our study, the leaf area and leaf moisture in PSPNDH1, PSPNDH2, and
PSPNDH3 were significantly higher than those of PSDH4, and PSDH5 (Table 1), which
proved that PSPNDH1, PSPNDH2, and PSPNDH3 had higher plant biomass from
another perspective. In addition, PSDH1, PSDH2, and PSDH3 could increase the contents
of starch, compared to PSDH4, and PSDH5 (Table 1), and all these results collectively
demonstrated that the hybrid progeny had obvious heterosis.

Variation of phyllosphere microganism of the parental clones and
different hybrid progeny
As we all know, the leaf field of plants is a habitat characterized by a high degree of
microbial diversity, but it is also a dynamic microenvironment due to direct exposure to a
variety of abiotic and biological factors (Kinkel, 1997). In present study, we found that
overall alpha diversity of the phyllosphere bacterial community existed no distinct
differences among PSPNDH2, PSPNDH3, PSPNDH1, PSDH4, and PNDH5. While,
phyllosphere fungal Chao1 index, Goods_coverage, Observed_species, Pielou_e index,
Shannon index, and Simpson index observably differed among PSPNDH2, PSPNDH3,
PSPNDH1, PSDH4, and PNDH5. PSPNDH2 had the highest Pielou_e index, Shannon
index, and Simpson index. Our findings were not completely similar to the previous study
from Liu et al. (2021) demonstrated that phyllosphere microbial community diversity of
P. cathayana existed no distinct difference between male and female, which might be
related to the similar physical and chemical properties, as well as similar physiological
metabolism and traits of male and female leaves of P. cathayana, while male (PSDH4) and
female (PNDH5) were not the same species in our present study. In addition, plant species
and host plant genotype may be the main factor determining phyllosphere fungal
community composition at the same location (Leveau, 2019).

In addition, the phyllosphere microbial communities are characterized by a small
number of highly abundant taxa and a large number of relatively low abundance rare taxa
(Vacher et al., 2016). At the phylum level, the dominant position of Proteobacteria in
phyllosphere bacterial community has been confirmed by a large number of studies
(Kembel et al., 2014). In our study, high-throughput sequence analysis of the 16S rDNA
showed that Firmicutes, and Proteobacteria belonged to the predominant bacterial groups
(Fig. 3A). At the class level, Bacilli and Gammaproteobacteria were the two most dominant
bacterial classes regardless of parent and the hybrid offspring (Fig. S3A). The bacterial
groups Alphaproteobacteria and Gammaproteobacteria have higher abundance and are
typical representatives of Gram-negative bacteria in this habitat (Truchado et al., 2017;
Izhaki et al., 2013; Huang et al., 2010). At the genus level, Exiguobacterium,
Planomicrobium, Pseudomonas, Bacillus, Massilia, Frigoribacterium, Lysinibacillus,
Planococcus, Pantoea, Curtobacterium, Arthrobacter were the dominant microbial groups,
accounting for 71.26%. Most of studies indicated that Pseudomonas and Pantoea are
indigenous members of phyllosphere microbe (Ning et al., 2010), and they can produce a
signal molecule called N-acyl-homoserine (Lv et al., 2013; Poonguzhali, Madhaiyan & Sa,
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2007), that may help bacteria inhabit the harsh environment (Lv et al., 2013). Furthermore,
Pseudomonas are considered to be very competitive plant leaf colonizers, and their
extracellular polysaccharides and special pigments can protect them from ultraviolet
radiation and osmotic stress (Qin et al., 2019), which was also frequently reported to
benefit plant growth by means of its anti-phytopathogen ability (Alymanesh, Taheri &
Tarighi, 2016; Mikici�nski et al., 2016). The members of genus Arthrobacter can degrade a
variety of organic pollutants and persist in the phyllosphere by up-regulating several genes
known to contribute to epiphytic fitness (Scheublin et al., 2014). Collectively, these studies
explained the existence of these bacteria in phyllosphere.

With regard to phyllosphere fungi, the predominant groups were Ascomycota, and
Basidiomycota, accounting for 99.04%. At the class level, the dominant phyllosphere
fungal communities were Dothideomycetes, Sordariomycetes, Tremellomycetes, and
Agaricostilbomycetes (Fig. S3B). At the genus level, Alternaria, Phialemoniopsis,
Didymella, Filobasidium, Mycosphaerella, and Kondoa were the dominant fungal
communities. Interestingly, phyllosphere bacterial community and fungal community
significantly differed between parental clones and hybrid progeny, while the phyllosphere
microbial community presented some similarities under different hybrid progeny. This is
in accordance with the view obtained from Maignien et al. (2014) indicated that a high
variability of phyllosphere microbiomes across individual plants of the same species grown
in the same location.

The relationship between leaf characteristics and phyllosphere
microbial community
Our study first provided a detailed insight into the effects of parental clones and different
hybrid progeny on the above-ground microbial colonizers of plants. The host has greater
genetic control over the phyllosphere microganism than the rhizosphere microbiota
(Wagner et al., 2016). However, the rapidly fluctuating environmental conditions
aboveground also play an important role, and only a few microbial groups that can adapt
to harsh environments will flourish. The living environment of phyllosphere
microorganisms is unstable and greatly affected by environmental changes (Jia et al.,
2018), such as light, temperature and humidity (Verma, Ladha & Tripathi, 2001).
In addition, plant species, leaf structural, chemical composition and secretions are known
to influence phyllosphere microbial colonization (Leveau, 2019; Schlechter, Miebach &
Remus-Emsermann, 2019; Espenshade et al., 2019) and phyllosphere microbial community
diversity and composition (Hunter et al., 2010; Redford & Fierer, 2009; Kim et al., 2012).
Our findings showed similar results, namely, that phyllosphere bacterial and fungal
community diversity and composition had a significantly positive correlation with soluble
sugar and starch (Tables 2 and 3), which was consistent with previous findings
demonstrated that the phyllosphere fungal community structure was significantly affected
by plant carbon (Jia et al., 2018). Thus, all these findings collectively established that plant
traits are key factors that affect phyllosphere microbial community structure (Whipps
et al., 2008).
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CONCLUSIONS
In conclusion, there were considerable variations of plant height, diameter at breast height,
leaf area, length of petioles, leaf moisture content, and starch among different samples, and
PSDH2 owned the highest plant height, diameter at breast height, and length of petioles.
No distinct differences in phyllosphere bacterial community diversity were observed
among PSPNDH2, PSPNDH3, PSPNDH1, PSDH4, and PNDH5, while phyllosphere
fungal Chao1 index, Goods_coverage, Observed_species, Pielou_e index, Shannon index,
and Simpson index observably differed among PSPNDH2, PSPNDH3, PSPNDH1,
PSDH4, and PNDH5. PSPNDH2 had the highest fungal Pielou_e index, Shannon index,
and Simpson index, and leaf characteristics contributed to the differentiation of
phyllosphere bacterial and fungal communities between parents and hybrid offspring.
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