2	reduced walk functional capacity: A systematic review with meta-
3	analysis
4	
5	
6 7 8	Elio Carrasco-Vega ^{1,2} ; María Ruiz-Muñoz ^{1,2,*} ; Antonio I. Cuesta-Vargas ^{1,2} ; Rita Romero-Galisteo ^{1, 2} ; Manuel Gonzalez-Sanchez ^{1,2}
9 10	¹ Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
11	² Institute of Biomedicine of Málaga (IBIMA), 29010 Málaga, Spain
12 13 14	³ Department of Nursing and Podiatry, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
15	Corresponding Author:
16	Maria Ruiz-Muñoz, PhD
17	University of Málaga, Faculty of Health Sciences,
18	Arquitecto Francisco Peñalosa, 3, 29071 Málaga, Spain
19	Email address: marumu@uma.es
20 21	
22	Abstract
23 24	Background. The aim of the present study was to perform a systematic review and meta-
25	analysis comparing walking test performance and gait pattern between individuals with and
26	without fibromyalgia.
27	Methodology. This systematic review was registered in PROSPERO with the following
28	reference: CRD42018116200. The search for the scientific articles in this systematic review
29	was carried out using the MEDLINE, SCOPUS, PEDRO, CINHAL and WEB OF SCIENCE
30	databases. A combination of three conceptual groups of terms was used: (1) fibromyalgia;

(2) walk (performance) tests; and (3) gait analysis linked by the Boolean connectors "AND",

"OR" The obtained articles were analyzed for both functional and pattern of walking data of

patients with fibromyalgia. In order to provide a better estimate of the difference between

Individuals with fibromyalgia have a different gait pattern and a

31

32

33

Formatted: Strikethrough

Commented [GS(1]: No need in the abstract

Commented [GS(2]: included

Formatted: Strikethrough

individuals with and without FM on gait, a meta-analysis was performed on the 6MWT (6-minute walk test).

Results. Thirty-six studies were analyzed, with a total population of 4.078 participants

37 (β369) FM and 709 controls). From a functional point of view, the 6MWT distance covered by

the group of without FM was significantly greater than that of the individuals

39 with FM in all the analyzed studies. In addition, when comparing the results obtained in the

40 <mark>gait pattern analysis</mark>, it was observed that

41 individuals with FM walked slower. with a shorter stride

length, and lower cadence compare to individuals without FM

Conclusions. It is possible to affirm that individuals with FM perform walking tests

differently than individuals without FM. It has been observed that individuals with FM (walk

performing a cycle of shorter length and lower frequency, producing a slower gait that

results in a shorter distance traveled, in the same period of time, with respect to healthy

subjects.

34 35

38

42

43

44 45

46

47

48 49

50

51 52

53

55

56

57

58

59

61 62

63

Introduction

Fibromyalgia (FM) is a syndrome of unknown etiology[1], with a spectrum of symptoms that most commonly include the presence of generalized chronic pain, fatigue, sleep disturbance,

mood disturbance and impaired quality of life[2], causing a great impact on basic activities

of daily living [1]. After osteoarthritis, fibromyalgia is the second most common

rheumatic disorder[3], with 3-5% of the population suffering from FM[4], although,

depending on the diagnostic criteria, the prevalence can reach 8%[3]. Therefore, it can

become a great burden for patients, families, and society in general. In Spain, it has been

calculated that an individual with FM generates an average annual expense of over €5,000

compared to people without FM, of which 90% (i.e., $\ensuremath{\text{\fontfamily{0.5}}}$ 4,500) are due to a loss of

60 productivity[5].

Although it is not an inflammatory process, it is accompanied by abnormal sensory

responses[6], usually expressed as hyperalgesia and/or allodynia[7][8]. Thus, a central

Commented [GS(3]: 4,078

Commented [GS(4]: 3,369

Commented [GS(5]: 6MWT

Commented [GS(6]: Without FM

Commented [GS(8]: Walked slower

Commented [GS(9]: individuals without FM

Commented [GS(10]: very confusing sentence

sensitization mechanism has been described in FM[9], causing an amplification of the neural signal in the central nervous system[10], increasing the extension of the receptive field and unusually prolonging the pain even after the nociceptive stimulus disappears[11]. For this reason, one of the main goals of treating people with FM is to address central pain processing dysfunction[12]. Reduced physical performance capacity and levels of independence in basic activities of daily living should also be taken into account[13], thus improvement in physical capacity has become an equally basic aspect of recovery.

70

Different studies have shown that patients suffering from FM have a reduced performance in activities of daily living [14-16], which could be due to a decrease in physical capacities such as balance and postural control [17,18], flexibility [19] and/or an increase in fatigue, a loss of strength and muscular endurance or a lower cardiac capacity [20], which could determine a decrease in physical activity and a change towards a more sedentary lifestyle [20].

78

64

65 66

67

68

69

71 72

73

74

75

76

77

79

80

81

82

One of the basic concepts pursued by rehabilitation is function and movement [14]. The step or gait can be considered one of the locomotor gestures with greater clinical relevance [21], as it could be a very determining factor in the person's independence, since coordination, semi-static and dynamic balance, muscular strength, endurance and reaction capacity in the individual's relationship with the environment are integrated in the same gesture [14,20,22].

83 84 85

86

87

The walking analysis could be performed from two different points of view: Functional [23] and biomechanical [24]. The walking performance tests are aimed at evaluating the functional capacity of an individual in that specific task, while the gait pattern analysis breaks down the specific gesture into biomechanical components.

88 89 90

91

92

93

Traditionally, various gait analysis methods have been used from validated tests to analyze the gait function, such as the 6MWT[22,25], the Cooper KH physical running test[26] and the Timed Up and Go test[27], which provide standard information on the individual's ability to walk. Likewise, the implementation of some tests with instruments for kinematic

measurement, such as inertial sensors[28][29], depth cameras[30] and Smartphone inertial sensors[31], allow analyzing the gait pattern, In recent years, different systematic reviews have been carried out to analyze the efficacy of different types of interventions in individuals with fibromyalgia to improve their physical and psychological capacities, such as aerobic exercise [32], walking [33], aquatic [34] and resistance exercise [35]. However, to our knowledge, no systematic review has been published to date that collects and analyzes the impairment of gait, in both gait pattern and functional capacity, in the population with FM. **Objective** The aim of the present review was to perform a systematic review and meta-analysis comparing walking test performance and gait pattern between individuals with and without fibromyalgia. Methods Bibliographic search The present systematic review was conducted according to the guidelines and recommendations of the PRISMA statement on systematic reviews and meta-analyses[36]. The search was performed on August 15th, 2021. This systematic review was registered in PROSPERO with the following reference: CRD42018116200. The search for the scientific articles in this systematic review was carried out using the MEDLINE, SCOPUS, PEDRO, CINHAL and WEB OF SCIENCE databases. The keywords used to perform the search were "Fibromyalgia", "Exercise", "Gait", "Gait Analysis", "Kinematic", "Walk", "Walking" and "Walk test". There was a constant word in all the searches, i.e., "Fibromyalgia", which was combined by means of the Boolean AND/OR connectors with the rest of the conceptual groups of terms: "walk" and "gait analysis". The

same search sequence was carried out in all the mentioned databases.

94 95

96

97 98

99

100

101 102

103 104

105

106

107

108 109

110111

112

113

114115

116

117 118

119

120

121 122

123 124

Study selection

Commented [GS(12]: Very clear!

Commented [GS(11]: great clarification! 6

- The article selection was blindly conducted by two researchers (ECV and MRM) with more than ten years of experience. Any discrepancies in the selection of documents were resolved by a third researcher (MGS).
- The inclusion criteria for the selection of the studies were: 1) studies published since 2000;
- 129 2) studies carried out in patients diagnosed with fibromyalgia; 3) studies carried out in adult
- patients over 18 years of age; and 4) studies where at least one outcome variable analyzed
- the gait pattern and functional capacity.

132

- 133 The exclusion criteria were: 1) publications in a language other than English, Spanish,
- 134 French, Portuguese and Italian; 2) studies carried out in patients with a BMI greater than 35
- points; 3) articles in which BMI data are not mentioned; 4) studies carried out in subjects
- who had undergone surgery at least one year before the study; and 5) studies in which
- 137 women were pregnant.

138

141

139 <u>Data collection process</u>

- 140 In the same way as the selection of the articles, the data collection process was carried out
 - by two independent blinded investigators. We extracted data from each
- 142 study <u>related to</u> <mark>number of participants (% women), anthropometric data (age,</mark>
- 43 height, weight, and BMI) and outcome variables
- that analyzed the gait pattern and functional capacity (results on gait functional test and/or
 - that analyzed the gait pattern and functional capacity (results on gait functional
 - test and/or gait pattern variables: gait speed, stride length, cadence, swing, stance, single
- 147 support, and double support).

148 149

145

146

Quality Assessment

- 150 To evaluate the quality of the included studies, the Newcastle-Ottawa modified quality
- assessment scale (NOS) was used [37]. The NOS is a tool that evaluates eight aspects,
- 152 distributed in three different dimensions: selection (representativeness of the sample,
- 153 sample size, non-respondents, ascertainment of the exposure (risk factor)); comparability
- 154 and outcome (assessment of the outcome; statistical test). Two blinded researchers carried
- out the evaluation of the different components of the scale.

156 157 Synthesis of results 158 The <u>included</u> articles were analyzed for both gait pattern and functional capacity 159 individuals with FM) including any measurements from healthy control groups. 160 161 In the case of longitudinal articles, baseline measurements were used, treating the data as if 162 the articles were cross-sectional studies. In order to provide a better estimate of the effects of fibromyalgia on gait, a meta-analysis 163 was performed on the functional capacity variable that most frequently appeared in the 164 literature search, i.e., in this case, the total meters traveled after completing the 6MWT. A 165 166 total of 29 studies were integrated into the analysis. To analyze the heterogeneity of the data extracted from the included studies, the 95% prediction interval was calculated. In addition, 167 168 the effect size were calculated. 169 170 Results 171 Search and selection of studies After searching the different databases and eliminating duplicates, a total of (1,481) studies 172 173 were found, of which 374 were excluded (163 were not conducted in humans and 211 were beyond the established publication date limit), leaving a total of (1,107) articles for screening. 174 Subsequently, 888 were excluded after reading the title and the abstract, since their context 175 176 was not in accordance with the objectives of the research. The remaining 219 articles were 177 analyzed in full text, of which 184 were discarded. A total of 36 articles were included in the 178 final analysis. For more details about the selection of studies, please refer to Figure 1. 179 180 Figure 1 Here 181 182 Study characteristics All selected documents were evaluated using the NOS scale. In this sense, the mean score 183 was 7.9 points, with a range <u>from</u> 3 <u>to</u>10 (table 1). The included 184

studies assessed the gait pattern and functional capacity of movement through different gait

185

Commented [GS(13]: Be consistent with what you stated at the beginning of the text.

Commented [GS(14]: How did you perform the metaanalysis? It is missing the description of how this statistical analysis was performed. For example: "Did you used Hedges' g to calculate standardized mean difference (SMD) between individuals with and without FM using the means, standard deviations (SD) and sample sizes of both groups? If the full text did not contain SD, did you calculate SD from the reported standard error or confidence intervals (CI)? Did you use random-effects models with an inverse variance (IV) method to pool the SMD of included studies? Did you calculate the heterogeneity with I-squared (I2)? Did you estimate publication bias visually by via re-displayed funnel plots? Did you use Duval and Tweedie's Trim and Fill test to estimate the adjusted (or unbiased) pooled SMD? Figure 2 could depict a forest plot with the SMD between individuals with and without FM. You can use the software RevMan (Cochrane) to perform the meta-analysis and create the forest plot. Forest plot should show the SMD with 95% confidence

intervals of 6MWT as depicted in this example below:

Commented [GS(15]: 1,481

Commented [GS(16]: 1,107

186 analysis tests. Thirty-one studies were analyzed, with a total population of 4,078 participants 187 (3,369 FM and 709 controls). The vast majority of total participants were women (4,044 188

women vs 34 men). The highest mean age recorded in the individuals with FM was 56.6 (1.9)

Commented [GS(17]: 4,078

years and the lowest was 35.5 (9.9) years. Regarding the control group, the

190 highest mean was 54.1 (4.4) years, and the lowest was 38.7 (7.3) years.

191 The gait was analyzed both from its pattern and from the functional capacity point of view.

The six-minute walk test[38] and the 8-Foot Up and Go (8UG) test[39] were used for the

functional capacity analysis. Other authors analyzed the kinematic patterns by free-walking

through a walkway or walkways, and with electronic devices such as motion

sensors, accelerometers or depth cameras.

196 The population characteristics and results were grouped in 4 tables. Table 2 shows the

population characteristics of the studies that analyzed the gait pattern and the tests used to

obtain the data. The kinematic data and the system used for their preparation are

summarized in Table 3. The following tables present the population data of the studies that

analyzed the amount of walking and the results of the tests.

Analysis from the walk functional capacity point of view

The most used test among the analyzed studies was the 6MWT[38], which was used in a total of 29 studies. The number of participants ranged between 6[56] and 737[61], with an exclusively female sample in all cases, except in the studies of Carbonell-Baeza A et al[56], where the six participants were male, and Giannotti et al[63], where 6.25% of the sample were men. The mean age of the participants ranged from 33.3 (7.4)[50] to 55.9 (1.7) years[71]. The body mass index ranged between 23.4 (4.2)[63] and 29.7 (1.1)[71] in individuals with FM, while in the control group it ranged between 24.2 (3.8)[52] and 28.40

211 (3.89)[65].

212 Table 2 presents the characteristics and results of the studies that used the 6MWT as a walk

213 functional capacity test.

215 Table 2 Here

216

214

189

192

193

194

195

197 198

199

200

201 202 203

204

205

206

207

208

209

Of all the studies included in this SR, nine of them compared individuals with and without FM, observing significant differences in the total distance walked between both groups. For the FM group, the shortest distance traveled in the 6MWT test was 300.9 (52.3) meters [48], whereas for the control group it was 373.9 (50.5) meters [48]. Similarly, the greatest distance covered by the FM group was 570.7 (51.9)[765] meters and 656.9 (60.1) meters [62] by the control group. The effect size observed when the values of both groups are compared (individuals with versus without FM) was *Cohen's d:* -1.414 (*effect-size r:* -0.578).

Other studies were included, in which the analyzed sample consisted only of individuals with FM, who, in some cases, were grouped into different intervention subgroups. As was previously mentioned, only baseline measurements prior to any intervention were used. Figure 2 shows all mean values and their corresponding standard deviations.

Figure 2 Here

(The diagram shows that the results of the healthy subgroups are greater than the majority of the results of the FM subgroups. Only the study of Akkaya[48] obtained a significantly lower result in the healthy subgroup, although the result is significantly higher compared to the FM subgroup of the same study.)

Another test used to analyze the walk functional capacity was the "8 foot up and go test" [39], specifically in six of the analyzed studies (Table 3). Of these six studies, the only one that made a comparison between (individuals with and without FM) is the study of Aparicio V et al [50], with a total sample of 737 subjects (FM: 487/Control group: 250 people). Significant differences were obtained in the execution time of the 8UG Test (FM: 7.02 (2.34) seconds vs Control group: 5.27 (1.03) seconds) (Table 4). (in a complementary way, it was observed that the best score for the FM group was 6.8 (1.1) seconds [56], whereas the worst score was 8.35 (2.32) seconds [46]. A subgroup of FM participants in the study of Carbonell-Baeza A et al [44] obtained the worst recorded result, with 8.5 (0.4) seconds. The data are presented in detail in Table 3.

Commented [GS(18]: It is important to have all the information of the meta-analysis. See comments on the statistical analysis (methods) above

Commented [GS(19]: Very confusion sentence

Commented [GS(20]: Very confusion paragraph. This paragraph should summarized the results from the 6MWT meta-analysis (see comment on the statistical analysis (methods) above.

Commented [GS(21]: Please keep it consistent.

Commented [GS(22]: What are these FM sub-groups? What is the purpose of having these results here when you consider the objective of this systematic review?

Table 3 Here

Analysis from a gait pattern point of view

Of the 36 studies included in this SR, 7 studies assessed the gait pattern of individuals with fibromyalgia using specific tests and measurement instruments. The use of instruments such as inertial sensors has been validated with individuals with fibromyalgia as an effective reference value[40]. The characteristics of the gait pattern studies are summarized in Table 4.

Table 4 Here

Most of the studies obtained the kinematic data by means of a "Walking speed test" (authors determined a short distance to walk and then they calculated the speed) [41-45], whereas others obtained such data using the 6MWT[46]. In some studies, the distance was not established or described for the production of the kinematic parameters, using free walking while the individuals' walking patter s were analyzed. The maximum distance described for the kinematic analysis was 18.6 meters [42-44], whereas the minimum was 10 meters[47]. The results of the tests are summarized in Table 4.

As can be observed in all the results, the speed (m/s) was lower in the fibromyalgia group than in the control group. The highest speed obtained in the FM group was 1.94 (0.27) m/s[46], compared to 2.18 (0.34) m/s[46] for the control group. The lowest speed was 0.88 (0.2) m/s[45] for the FM group and 1.12 (0.3)[45] for the control group.

Discussion

The aim of the present study was to carry out a systematic review to verify the impairment in the gait of individuals with fibromyalgia, from a gait pattern and functional capacity point of view. The kinematic variables, as well as the results of the different gait tests analyzed, show that individuals with fibromyalgia have an altered gait pattern and walk less than individuals without FM.

Walk Functional capacity analysis

Commented [GS(23]: A meta-analysis may be possible when you have more than 2 studies with the same outcome (e. g. Stride Length (m); Cadence (step/min); Swing (%cycle); Stance (%cycle); Single support (%cycle); Double support (%cycle)) and using same (or similar) methods to evaluation (e.g. 18.6m walkway - GAITRite system).

 $Commented\ [GS(24]: \mbox{I}\ could not find the speed values in table 4.$

Commented [GS(25]: Keep it consistent

One of the most widely used tests to analyze the functional capacity was the six-minute walk test (6MWT), which measures the distance that a person walks for 6 minutes [38]. The use of the 6MWT has been recommended both in research and in the clinical setting to carry out a prior assessment or monitoring of the progression of the patient during a treatment on individuals with fibromyalgia [88]. Specifically, of the 29 studies included in this SR that used 6MWT, only 9 of them made a comparison between individuals with and without fibromyalgia [46] [48-50][59[62][65][74][76], observing that the distance covered by the control group was significantly greater than that of the FM group in all studies. In fact, it was observed that the effect size when comparing both groups was Cohen's d: -1.414 (effect-size r: -0.578). If the usual stratification on the effect size is considered (d = 0.2 small; 0.5 medium; 0.8 large [89]), it could be stated that the fibromyalgia condition affects the functional capacity of individuals with FM. Specifically, the differences observed between the control and FM groups after performing the 6MWT range between 68.23m[65] and 105.5m[62]. There could be several causes that justify the differences observed between the two groups. On the one hand, the gait speed of individuals with fibromyalgia is altered compared to a control group, as a consequence of a reduction in both the stride length and the frequency in the gait cycle[90]. On the other hand, the resistance observed in individuals with fibromyalgia when carrying out efforts of medium/long duration is decreased compared to individuals without FM[91]. Therefore, a lower walking speed, added to a lower resistance in moderate efforts, could be at the base of the differences observed between group_s possible explanation for the observed data can be found in the fact that the muscle recruitment pattern of individuals with fibromyalgia rather resembles the fast gait pattern (poorly economical and highly energy-consuming) of individuals without FM. This pattern is determined by greater activation of the hip flexors to the detriment of the plantar flexors of the foot/ankle [92]. However, this study identifies a gait pattern with similar characteristics between individuals with and without FM, which is not consistent with the results observed in the present study. In this sense, it would be interesting to design future studies that analyze whether a neuromotor re-education / retraining of individuals with fibromyalgia could improve the

280

281

282

283

284

285

286

287

288

289

290

291 292

293

294

295

296

297

298

299 300

301

302

303 804

305

306

307

308

309

310

Commented [GS(27]: This 9 studies can be included in the meta-analysis (see comment on statistical analysis (methods) above.

Commented [GS(28]: This is where you should use results from the meta-analysis and add more information from the studies that could not be included in the meta-analysis but contribute to the discussion around the 6MWT

walk functional capacity and reduce the differences observed in the present study.

Taking as a reference value the distance of 554.5m (53.29) for individuals without FM performing the 6MWT of the Enright PL study[38], the results obtained in the 29 studies (Figure 1) show that three control subgroups totally exceeded this mark, five control subgroups walked distances similar to Enright's mark, and the control subgroup of one study reached a significantly shorter distance. Regarding the FM subgroups, none exceeded this mark, and only one study shows a mean value slightly higher than this mark.

An improvement in the qualitative characteristics of the gait pattern (speed, frequency, and stride length) with a previously designed protocol could improve the functional capacity outcome variables, as has already been demonstrated in other population profiles. In the study of Kaleth A et al[93], the administration of an exercise protocol with 187 patients showed that, at the beginning of the study, the patients were able to walk, in the 6MWT, 482.9 (80.5) meters, after 12 weeks of intervention they could walk 510.8 (84.4) meters, and in 36 weeks they could walk 517.7 (80.9) meters, with a mean change of 34.4 (65.2) meters (P <0.001), which is very close to Enright's mark[38].

As was previously mentioned, future studies designed to improve the symptoms and functional capacities of individuals with fibromyalgia should take into account the aspects presented in this systematic review.

The 8 foot up and go test has also been frequently used to quantify the degree of involvement in individuals with fibromyalgia (Table 3). The results observed in this test are consistent with those obtained with the 6MWT. Once again, a walk functional capacity alteration was observed, which could be due to the alteration of the qualitative characteristics of the sample, showing in some studies that individuals with FM aged 50-60 years achieved results comparable to those observed in individuals without FM aged 80-90 years[39]. This pattern alteration is likely to be identified by different functional gait tests used with individuals with FM.

Gait pattern analysis

Regarding the gait pattern analysis, Table 4 shows lower results in all the comparisons of the kinematic variables for the individuals with FM compared to the control population. When

 $\begin{array}{ll} \textbf{Commented [GS(29]: Not sure about what this would } \\ \textbf{mean.} \end{array}$

comparing the results obtained in the gait pattern analysis between individuals with fibromyalgia and healthy subjects, it is observed that individuals with FM moved significantly more slowly, with a stride length and cadence lower than that of healthy subjects (Table 4). However, in other characteristics that are used for the gait pattern, such as the percentage of time used in monopodal and bipodal support or rocking, they do not present significant differences (Table 4). A possible explanation for these results can be found in the fact that patients suffering from fibromyalgia have less mobility in the subtalar joint, which affects the plantar/dorsal flexion of the foot, increasing the dynamic imbalance of the patient and the risk of falls in these patients [41][77]. This indicates that patients with fibromyalgia, before this self-perceived instability, preventively reduce the length and cadence of their gait in order to maintain the control of the movement. This reduction in the biomechanical characteristics of gait is similar to that observed in the elderly[39]. Góes S et al[78] showed that middle-aged women with fibromyalgia have a gait pattern similar to that of older women, characterized by reduced ROM of the lower extremities, stride length and speed gait, thus it could be affirmed that patients with fibromyalgia suffer an adaptation in biomechanics similar to that which occurs in aging[39]. Moreover, patients suffering from fibromyalgia could be conditioned by psychological factors that could be negatively affecting the cortical and sub-cortical mechanisms of gait control, by sharing the cognitive functions involved in chronic pain[79]. The most obvious result of this conditioned perception of pain is fear of movement or kinesiophobia, which has been correlated in previous studies with an alteration in normal functional movement patterns[80]. Despite the fact that a SR published in 2012 associated, in individuals with fibromyalgia, a perception of fatigue during the execution of the 6MWT with a reduction in the general state of health measured with SF-12[79], other studies have correlated kinesiophobia with walk functional capacity analysis in individuals with fibromyalgia. The importance of cognitive impairment in walking is reinforced in the study of Lundin-Olsson L[81], who analyzed how frail or cognitively disabled older people could not walk while performing a secondary task such as speaking, which is in line with the results obtained in patients with similar involvement[82].

342343

344

345

346

347

348

349 350

351

352

353 354

355

356

357

358

359

360

361

362 363

364

365 366

367

368

369

370

In parallel, a walking speed of ≤0.8 m/s has been associated with "low physical performance" [83] [84]. However, despite the fact that a decrease in gait pattern has been

observed in individuals with fibromyalgia, only the study published by Koca I et al. [45] presents a walking speed close to the indicated threshold. It may be necessary to redefine the concept of "low physical performance", since all the studies analyzed in the present SR show a biomechanical deficit during ambulation. The value of 0.8m/s has been used as a predictive factor of mortality in different population groups [85-87], although, based on the results observed in this SR, "low physical performances" can be identified in values above the aforementioned threshold. Nevertheless, it is important to clarify that this reference value is preferably used in older people, thus there is rather a decrease of functional capacity in individuals with FM, with a decrease in functional capacities, with respect to normality, being frequently associated with problems of different types. Only one study compares the gait pattern in similar population groups of different sex, i.e., the study of Heredia-Jimenez J et al. [43] which was conducted in men only (N = 26); the results of men with fibromyalgia (n=12) were slightly higher than the rest of the data obtained from the female population, with a speed of 1.16 (0.20) m/s for males with FM, which was also higher than that of the healthy male population, with 1.45 (0.19) m/s. In this sense, it would be necessary to design new studies to identify eventual differences in the gait pattern and / or walk functional capacity between sexes, so that they are taken into account when assessing and monitoring individuals with FM. Other studies have shown a decrease in functional capacities and an alteration in the correct execution of the gait pattern when individuals are forced to perform cognitive tasks during the execution of the gait [94,95]. The literature has identified that individuals with FM have a specific cognitive problem that could be at the base of a worse functional performance [96]. It would be interesting in the future to design studies comparing basic functional abilities, such as walking, between individuals with FM and healthy people carrying out dual tasks during the different tests, to analyze whether the results are comparable between both studies. In the same way, the affectation suffered by individuals with FM could be analyzed when they perform functional tasks such as walking, while simultaneously performing cognitive tasks. Furthermore, it is important to bear in mind that different studies have identified deficits in static and dynamic balance in individuals with FM [97,98], and this imbalance could be associated with a greater risk of falling [97,99]. These aspects could justify the alteration in

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389 390

391

392

393

394

395

396

397

398

399

400

401 402

the gait pattern that causes the individual with FM to perform a more conservative ambulation to minimize the risk of falling.

In addition, on those documents that include patients with a BMI greater than 30kg/m² but less than 35 (exclusion criterion), it should be considered that some alterations identified in the gait may be due to the BMI, thus it would be advisable to interpret these results

409 <mark>cautiously.</mark>

406

407

408

410

412

413

414

415

416

417

418

419

411 Strengths and weaknesses

Although this study is the first to analyze and integrate the gait pattern with functional gait abilities in individuals with FM, some weaknesses have been identified that should be taken into account when interpreting the results. (Although a bibliographic search was carried out in 5 different databases, there could be relevant documents published in other databases. In the same way, (although the documents published in 5 languages were selected, there could be documents published in other languages that were not included in the present study.) (Finally, it is important to consider that the score of the various selected studies, using the NOS scale, present a medium-high valuation, with few studies obtaining the maximum score and some studies showing a poor score.)

420 421 422

423

424

425

426

427

428

Conclusions

Individuals with fibromyalgia have lower functional gait performance and an altered gait pattern compared to healthy subjects. The different movement pattern could generate a lower functional efficiency; thus it would be necessary to investigate whether neuromotor re-education in individuals with FM would imply a recovery of the walk functional capacity, reaching the levels of healthy subjects.

429 430

431

432

Financing and Conflict of Interest

The authors declare that there are no conflicts of interest in this study.

433 434

435

Commented [GS(30]: If that is possible, why not include the possible one? Otherwise, I would not have this aspect as a limitation of the study.

Commented [GS(31]: Agree.

Commented [GS(32]: This is not a limitation of your systematic review; this is part of your findings. Be careful to not assume individual study limitation to the review's limitations. The quality assessment has the purpose of flags methodological flaws (if any) of the included studies)

Commented [GS(33]: Why only neuromotor reeducation? This can be one of a number of nonpharmacological interventions that could bring benefits to the walking performance of individuals with FM.

Commented [GS(34]: Conclusion should focus on the systematic review as a whole (considering results from meta-analysis; qualitative and descriptive analysis were performed; and quality assessment of the included studies. A conclusion example from a Cochrane review, in which all the above elements of the systematic review findings are used to draw these final considerations (https://www.cochranelibrary.com/cdsr/doi/10.1002/146 51858.CD013340/full): "Compared to control, moderatequality evidence indicates that mixed exercise probably improves HRQL, physical function, and fatigue, but this improvement may be small and clinically unimportant for some participants: physical function shows improvement in all participants. Withdrawal was similar across groups. Lowquality evidence suggests that mixed exercise may slightly improve stiffness. Very low-quality evidence indicates that we are 'uncertain' whether the long-term effects of mixed exercise are maintained for all outcomes; all-cause withdrawals and adverse events were not measured. Compared to other exercise or non-exercise interventions, we are uncertain about the effects of mixed exercise because we found only very low-quality evidence obtained from small, very heterogeneous trials. Although mixed exercise appears to be well tolerated (similar withdrawal rates across groups), evidence on adverse events is scarce, so we are uncertain about its safety. We downgraded the evidence from these trials due to imprecision (small trials), selection bias (e.g. allocation), blinding of participants and care providers or outcome assessors, and selective reporting."

436

438

437

References

- Harris R. Newer treatments for fibromyalgia syndrome. Therapeutics and Clinical Risk
 Management. 2008; Volume 4:1331-1342.
- 441 2. Sumpton J, Moulin D. Fibromyalgia. Handbook of Clinical Neurology. 2014;:513-527.
- 442 3. Clauw D. Fibromyalgia. JAMA. 2014;311(15):1547.
- 443 4. Okifuji A, Gao J, Bokat C, Hare B. Management of fibromyalgia syndrome in 2016. Pain Management. 2016;6(4):383-400.
- 5. Sicras A, Rejas J, Navarro R, Blanca M, Morcillo A, Larios R et al. Treating patients with
 fibromyalgia in primary care settings under routine medical practice: a claim database cost and
- burden of illness study. Arthritis Research & Therapy. 2009;11(2):R54.
- Williams D, Clauw D. Understanding Fibromyalgia: Lessons from the Broader Pain Research
 Community. The Journal of Pain. 2009;10(8):777-791.
- Jon Russell I. Advances in Fibromyalgia: Possible Role for Central Neurochemicals. The American
 Journal of the Medical Sciences. 1998;315(6):377-384.
- 452 8. Carville S, Choy E. Systematic Review of Discriminating Power of Outcome Measures Used in Clinical Trials of Fibromyalgia. The Journal of Rheumatology. 2008;35(11):2094-2105.
- Cuesta-Vargas A, Neblett R, Chiarotto A, Kregel J, Nijs J, van Wilgen C et al. Dimensionality and
 Reliability of the Central Sensitization Inventory in a Pooled Multicountry Sample. The Journal of
 Pain. 2018;19(3):317-329.
- 10. Yunus MB. Central sensitivity syndromes: A unified concept for fibromyalgia and other similar
 maladies. Journal of Indian Rheumatology Association. 2000; 8:27–33.
- 459 11. Mayer, T., Neblett, R., Cohen, H., Howard, K., Choi, Y., & Williams, M. et al. The Development and
 460 Psychometric Validation of the Central Sensitization Inventory. Pain Practice, 2011. 12(4), 276 461 285.
- 462 12. Sumpton J, Moulin D. Fibromyalgia. Handbook of Clinical Neurology. 2014;513-527.
- 463 13. García-Hermoso A, Saavedra J, Escalante Y. Effects of exercise on functional aerobic capacity in
 464 adults with fibromyalgia syndrome: A systematic review of randomized controlled trials. Journal
 465 of Back and Musculoskeletal Rehabilitation. 2015;28(4):609-619.
- Haravo C, Skjaerven LV, Sein-Echaluce LG, Catalan-Matamoros D. Effectiveness of movement and
 body awareness therapies in patients with fibromyalgia: a systematic review and meta-analysis.
 Eur J Phys Rehabil Med. 2019 Oct;55(5):646-657. doi: 10.23736/S1973-9087.19.05291-2.

- 469 15. Da Silva Costa I, Gamundí A, Vivas JG, Souza LG, Novaes C, Montoya P. Altered Functional
- Performance in Patients with Fibromyalgia. Front Hum Neurosci. 2017 Jan 26;11:14. doi:
- 471 10.3389/fnhum.2017.00014.
- 472 16. Rasouli O, Stensdotter AK, Van der Meer ALH. TauG-guidance of dynamic balance control during
- 473 gait initiation in patients with chronic fatiguesyndrome and fibromyalgia. Clin Biomech (Bristol,
- 474 Avon). 2016 Aug; 37:147-152. doi: 10.1016/j.clinbiomech.2016.07.008.
- 475 17. Garrido-Ardila EM, González-Lopez-Arza MV, Jiménez-Palomares M, et al. Effectiveness of
- acupuncture vs. corestability training in balance and functional capacity ofwomen with
- 477 fibromyalgia: a randomized controlled trial. Clin Rehabil. 2020;34(5):630–645.
- 478 18. Muto LHA, Sauer JF, Yuan SLK, Sousa A, Mango PC, Marques AP. Postural control and balance self-
- efficacy in women with fibromyalgia: are there differences? Eur J Phys Rehabil Med. 2015
- 480 Apr;51(2):149-54.
- 481 19. Kim SK, Busch AJ, Overend TJ, Schachter CL, van der Spuy I, Boden C, Góes SM, Foulds H, Bidonde
- 482 J. Flexibility exercise training for adults with fibromyalgia. Cochrane Database Syst Rev2019 Sep
- 483 2;9(9):CD013419. doi:10.1002/14651858.CD013419.
- 484 20. Loftus N, Dobbin N, Crampton JS. The effects of a group exercise and education programme on
- 485 symptoms and physical fitness in patients with fibromyalgia: a prospective observational cohort
- 486 study. Disabil Rehabil. 2021 Mar 1;1-8. doi: 10.1080/09638288.2021.1891463.
- 487 21. Heredia-Jimenez J, Orantes-Gonzalez E. Gender differences in patients with fibromyalgia: a gait
- 488 analysis. Clin Rheumatol. 2019 Feb; 38(2): 513-522. doi: 10.1007/s10067-018-4293-x.
- 489 22. Natvig, Dag Bruusgaard, Willy Eriks B. Physical Leisure Activity Level and Physical Fitness among
- Women with Fibromyalgia. Scandinavian Journal of Rheumatology. 1998;27(5):337-341.
- 491 23. Taul-Madsen L, Connolly L, Dennett R, Freeman J, Dalgas U, Hvid LG. Is aerobic or resistance
- 492 training the most effective exercise modality for improving lower extremity physical function and
- 493 perceived fatigue in people with multiple sclerosis? A systematic review and meta-analysis. Arch
- 494 Phys Med Rehabil. 2021 Apr 24:S0003-9993 (21)00307-5. doi: 10.1016/j.apmr.2021.03.026.
- 495 24. Wang J, Ullah S, Solano MA, Overley SC, Bumpass DB, Mannen EM. Changes in kinematics, kinetics,
- 496 and muscle activity in patients with lumbar spinal stenosis during gait: systematic review. Spine
- 497 J. 2021 Jun 8:S1529-9430(21)00724-5.doi: 10.1016/j.spinee.2021.06.003.
- 498 25. Balke B. A simple field test for the assessment of physical fitness. Rep Civ Aeromed Res Inst US.
- 499 1963(53):1-8.
- $26.\ Cooper\,KH.\ A\,means\, of\, assessing\, maximal\, oxygen\, in take: correlation\, between field\, and\, treadmill$
- 501 testing. JAMA. 1968; 203 (3): 201-4.

- 27. Podsiadlo D, Richardson S. The Timed Up & Go: A test of basic functional mobility for frail elderly
 persons. J Am Geriatr Soc 1991; 39:142-8.
- 504 28. Johnston W, O'Reilly M, Coughlan G, F, Caulfield B, Inertial Sensor Technology Can Capture 505 Changes in Dynamic Balance Control during the Y Balance Test. Digit Biomark 2017;1:106-117.
- 506 29. O'Reilly MA, Whelan DF, Ward TE, Delahunt E, Caulfield BM. Classification of deadlift 507 biomechanics with wearable inertial measurement units. J Biomech. 2017;58:155–61. doi: 508 10.1016/j.jbiomech.2017.04.028
- 30. Moreno F-Á, Merchán-Baeza JA, González-Sánchez M, González-Jiménez J, Cuesta-Vargas AI.
 Experimental Validation of Depth Cameras for the Parameterization of Functional Balance of
 Patients in Clinical Tests. Sensors. 2017 Feb 22;17(2).
- 31. Galán-Mercant A, Barón-López FJ, Labajos-Manzanares MT, Cuesta-Vargas AI. Reliability and
 criterion-related validity with a smartphone used in timed-up-and-go test. Biomed Eng Online.
 2014 Dec 2;13:156.
- 32. Bidonde J, Busch AJ, Schachter CL, Overend TJ, Kim SY, Góes SM, Boden C, Foulds HJ. Aerobic
 exercise training for adults with fibromyalgia. Cochrane Database Syst Rev. 2017 Jun
 21;6(6):CD012700.doi:10.1002/14651858.CD012700.
- 33. O'Connor SR, Tully MA, Ryan B, Bleakley CM, Baxter GD, Bradley JM, McDonough SM. Walking
 exercise for chronic musculoskeletal pain: systematic review and meta-analysis. Arch Phys Med
 Rehabil. 2015 Apr;96(4):724-734.e3. doi: 10.1016/j.apmr.2014.12.003.
- 34. Bidonde J, Busch AJ, Webber SC, Schachter CL, Danyliw A, Overend TJ, Richards RS, Rader T.
 Aquatic exercise training for fibromyalgia. Cochrane Database Syst Rev. 2014 Oct
 28;(10):CD011336.doi: 10.1002/14651858.CD011336.
- 35. Busch AJ, Webber SC, Richards RS, Bidonde J, Schachter CL, Schafer LA, Danyliw A, Sawant A, Dal
 Bello-Haas V, Rader T, Overend TJ. Resistance exercise training for fibromyalgia. Cochrane
 Database Syst Rev. 2013 Dec 20;2013(12):CD010884. doi: 10.1002/14651858.CD010884
- 36. Moher D, Liberati A, Tetzlaff J, Altman D. Preferred Reporting Items for Systematic Reviews and
 Meta-Analyses: The PRISMA Statement. PLoS Medicine. 2009;6(7):e1000097.
- 37. Modesti PA, Reboldi G, Cappuccio FP, Agyemang C, Remuzzi G, Rapi S, Perruolo E, Parati G, ESH
 Working Group on CV Riskin Low Resource Settings. Panethnic Differences in Blood Pressure in
 Europe: A Systematic Review and Meta-Analysis. PLoS One. 2016 Jan 25;11(1):e0147601. doi:
 10.1371/journal.pone.0147601.
- $38. \; Enright \; PL. \; The \; six-minute \; walk test. \; Respir \; Care. \; 2003; 48(8):783-785.$

- 39. Rikli RE, Jones CJ. Development and validation of a functional fitness test for community-residing older adults. J Aging Phys Act. 1999;7(2):129–61.
- $40. \ Segura-Jimenez\ V,\ Munguia-Izquierdo\ D,\ Camiletti-Moiron\ D,\ Alvarez-Gallardo\ IC,\ Ortega\ FB,\ Ruiz$
- 537 JR, et al. Comparison of the International Physical Activity Questionnaire (IPAQ) with a multi-
- sensor armband accelerometer in women with fibromyalgia: the al-Andalus project. Clin Exp
- 539 Rheumatol. 2013;31(6-Suppl.79):S94–101.
- 41. Góes S, Leite N, Stefanello J, Homann D, Lynn S, Rodacki A. Ankle dorsiflexion may play an
 important role in falls in women with fibromyalgia. Clinical Biomechanics. 2015;30(6):593-598.
- 42. Heredia Jiménez J, Aparicio García-Molina V, Porres Foulquie J, Delgado Fernández M, Soto
- Hermoso V. Spatial-temporal parameters of gait in women with fibromyalgia. Clinical
- 544 Rheumatology. 2009;28(5):595-598.
- 43. Heredia-Jimenez J, Soto-Hermoso V. Kinematics gait disorder in men with fibromyalgia.
 Rheumatology International. 2013;34(1):63-65.
- 44. Heredia-Jimenez J, Orantes-Gonzalez E, Soto-Hermoso V. Variability of gait, bilateral coordination, and asymmetry in women with fibromyalgia. Gait & Posture. 2016;45:41-44.
- 45. Koca I, Savas E, Ozturk Z, Boyaci A, Tutoglu A, Alkan S et al. The evaluation in terms of sarcopenia
 of patients with fibromyalgia syndrome. Wiener klinische Wochenschrift. 2015;128(21-22):816 821.
- 46. Latorre-Román P, Santos-Campos M, Heredia-Jimenez J, et al. Analysis of the performance of
 women with Fibromyalgia in the six-minute walk test and its relation with health and quality of
 life. J Sports Med Phys Fitness 2014;54:511-7.
- 47. Martín-Martínez J, Villafaina S, Collado-Mateo D, Fuentes-García J, Pérez-Gómez J, Gusi N. Impact
 of cognitive tasks on biomechanical and kinematic parameters of gait in women with
 fibromyalgia: A cross-sectional study. Physiology & Behavior. 2020;227:113171.
- 48. Akkaya N, Akkaya S, Atalay N, Balci C, Sahin F. Relationship between the body image and level of
 pain, functional status, severity of depression, and quality of life in patients with fibromyalgia
 syndrome. Clinical Rheumatology. 2012;31(6):983-988.
- 49. Andreissy Breda C, Félix Rodacki A, Leite N, Homann D, Meira Goes S, Facco Stefanello J. Physical
 activity level and physical performance in the 6-minute walk test in women with fibromyalgia.
 Revista Brasileira de Reumatologia (English Edition). 2013;53(3):276-281.
- 50. Aparicio V, Segura-jiménez V, Álvarez-gallardo I, Soriano-maldonado A, Castro-piñero J, Delgado fernández M et al. Fitness Testing in the Fibromyalgia Diagnosis. Medicine & Science in Sports &
 Exercise. 2015;47(3):451-459.

- 51. Auvinet B, Chaleil D, Cabane J, Dumolard A, Hatron P, Juvin R, Lanteri-Minet M, Mainguy Y, Negre-
- Pages L, Pillard F, Riviere D, Maugars YM. The interest of gait markers in the identification of
- subgroups among fibromyalgia patients. BMC Musculoskelet Disord. 2011 Nov 11;12:258. doi:
- **10.1186/1471-2474-12-258.**
- 571 52. Ayán C, Martín V, Alonso-Cortés B, Álvarez M, Valencia M, Barrientos M. Relationship between
- aerobic fitness and quality of life in female patients with fibromyalgia. Clinical Rehabilitation.
- 573 2007;21(12):1109-1113.
- 574 53. Carbonell-Baeza A, Aparicio V, Ortega F, Cuevas A, Alvarez I, Ruiz J et al. Does a 3-month
- 575 multidisciplinary intervention improve pain, body composition and physical fitness in women
- with fibromyalgia?. British Journal of Sports Medicine. 2010;45(15):1189-1195.
- 577 54. Carbonell-Baeza A, Aparicio V, Martins-Pereira C, Gatto-Cardia C, Ortega F, Huertas F et al.
- 578 Efficacy of Biodanza for Treating Women with Fibromyalgia. The Journal of Alternative and
- 579 Complementary Medicine. 2010;16(11):1191-1200.
- 55. Carbonell-Baeza A, Aparicio V, Sjöström M, Ruiz J, Delgado-Fernández M. Pain and Functional
- Capacity in Female Patients with fibromyalgia. Pain Medicine. 2011;12(11):1667-1675.
- 56. Carbonell-Baeza A, Romero A, Aparicio V, Ortega F, Tercedor P, Delgado-Fernández M et al.
 - Preliminary Findings of a 4-Month Tai Chi Intervention on Tenderness, Functional Capacity,
- Symptomatology, and Quality of Life in Men With Fibromyalgia. American Journal of Men's
- 585 Health. 2011;5(5):421-429.

583

- 57. Carbonell-Baeza A, Ruiz J, Aparicio V, Ortega F, Delgado-Fernández M. The 6-Minute Walk Test in
- $587 \hspace{1cm} \textbf{Female Patients with fibromyalgia: Relationship With Tenderness, Symptomatology, Quality of States and States are also considered as a supplementary of the property of the States and States are also considered as a supplementary of the States and States are also considered as a supplementary of the States are also considered as a sup$
- Life, and Coping Strategies. Pain Management Nursing. 2013;14(4):193-199.
- 589 58. Carbonell-Baeza A, Álvarez-Gallardo I, Segura-Jiménez V, Castro-Piñero J, Ruiz J, Delgado-
- Fernández M et al. Reliability and Feasibility of Physical Fitness Tests in Female Patients with
- fibromyalgia. International Journal of Sports Medicine. 2014;36(02):157-162.
- 592 59. Cardoso FS, Curtolo M, Natour J, Lombardi Júnior I. Assessment of quality of life, muscle strength
 - and functional capacity in women with fibromyalgia. Rev Bras Reumatol. 2011;51(4):344-350.
- 594 60. Córdoba-Torrecilla S, Aparicio V, Soriano-Maldonado A, Estévez-López F, Segura-Jiménez V,
- 595 Álvarez-Gallardo I et al. Physical fitness is associated with anxiety levels in women with
- fibromyalgia: the al-Ándalus project. Quality of Life Research. 2015;25(4):1053-1058.
- 597 61. Ericsson A, Bremell T, Mannerkorpi K. Usefulness of multiple dimensions of fatigue in
- fibromyalgia. Journal of Rehabilitation Medicine. 2013;45(7):685-693.

- 62. Ernberg M, Christidis N, Ghafouri B, Bileviciute-Ljungar I, Löfgren M, Bjersing J et al. Plasma
 Cytokine Levels in Fibromyalgia and Their Response to 15 Weeks of Progressive Resistance
 Exercise or Relaxation Therapy. Mediators of Inflammation. 2018;2018:1-14.
- 63. Giannotti E, Koutsikos K, Pigatto M, Rampudda M, Doria A, Masiero S. Medium-/Long-Term
 Effects of a Specific Exercise Protocol Combined with Patient Education on Spine Mobility,
 Chronic Fatigue, Pain, Aerobic Fitness and Level of Disability in Fibromyalgia. BioMed Research
 International. 2014;2014:1-9.
- 64. Hernando-Garijo I, Ceballos-Laita L, Mingo-Gómez MT, Medrano-de-la-Fuente R, Estébanez-de Miguel E, María Martínez-Pérez N, Jiménez-Del-Barrio S. Immediate Effects of a Telerehabilitation
 Program Based on Aerobic Exercise in Women with Fibromyalgia. Int J Environ Res Public Health.
 2021 Feb 20;18(4):2075. doi: 10.3390/ijerph18042075.
- 65. Homann D, Stefanello J, Góes S, Leite N. Redução da capacidade funcional e exacerbação da dor durante o esforço do teste de caminhada de 6 minutos em mulheres com fibromialgia. 2018.
- 66. Mannerkorpi K, Nordeman L, Cider Å, Jonsson G. Does moderate-to-high intensity Nordic walking
 improve functional capacity and pain in fibromyalgia? A prospective randomized controlled trial.
 Arthritis Research & Therapy. 2010;12(5):R189.
- 67. Mingorance JA, Montoya P, García Vivas Miranda J, Inmaculada Riquelme I. A Comparison of the
 Effect of Two Types of Whole Body Vibration Platforms on Fibromyalgia. A Randomized
 Controlled Trial. Int J Environ Res Public Health. 2021 Mar 15;18(6):3007. doi:
 10.3390/ijerph18063007.
- 68. Ollevier A, Vanneuville I, Carron P, Baetens T, Goderis T, Gabriel L, Van de Velde D. A 12-week multicomponent therapy in fibromyalgia improves health but not in concomitant moderate depression, an exploratory pilot study. Disabil Rehabil. 2020 Jun;42(13):1886-1893. doi: 10.1080/09638288.2018.1543361.
- 69. Polat M, Abdulvahap Kahveci A, Birsen Muci B, Zafer Günendi Z, Gülçin Kaymak Karataş G. The
 Effect of Virtual Reality Exercises on Pain, Functionality, Cardiopulmonary Capacity, and Quality
 of Life in Fibromyalgia Syndrome: A Randomized Controlled Study. Games Health J. 2021
 Jun;10(3):165-173. doi: 10.1089/g4h.2020.0162.
- 70. Salvat I, Zaldivar P, Monterde S, Montull S, Miralles I, Castel A. Functional status, physical activity
 level, and exercise regularity in patients with fibromyalgia after Multidisciplinary treatment:
 retrospective analysis of a randomized controlled trial. Rheumatology International.
 2016;37(3):377-387.

- 71. Sañudo B, Galiano D, Carrasco L, Blagojevic M, de Hoyo M, Saxton J. Aerobic Exercise Versus
 Combined Exercise Therapy in Women With Fibromyalgia Syndrome: A Randomized Controlled
 Trial. Archives of Physical Medicine and Rehabilitation. 2010;91(12):1838-1843.
- 72. Soriano-Maldonado A, Amris K, Ortega F, Segura-Jiménez V, Estévez-López F, Álvarez-Gallardo I et al. Association of different levels of depressive symptoms with symptomatology, overall disease severity, and quality of life in women with fibromyalgia. Quality of Life Research. 2015;24(12):2951-2957.
- 73. Soriano-Maldonado A, Henriksen M, Segura-Jiménez V, Aparicio V, Carbonell-Baeza A, Delgado Fernández M et al. Association of Physical Fitness With Fibromyalgia Severity in Women: The al Ándalus Project. Archives of Physical Medicine and Rehabilitation. 2015;96(9):1599-1605.
- 74. Tavares L, Germano Maciel D, Pereira Barros da Silva T, Brito Vieira W. Comparison of functional
 and isokinetic performance between healthy women and women with fibromyalgia. Journal of
 Bodywork and Movement Therapies. 2020;24(1):248-252.
- 75. Villafaina S, Borrega-Mouquinho Y, Fuentes-García J, Collado-Mateo D, Gusi N. Effect of Exergame
 Training and Detraining on Lower-Body Strength, Agility, and Cardiorespiratory Fitness in
 Women with Fibromyalgia: Single-Blinded Randomized Controlled Trial. International Journal of
 Environmental Research and Public Health. 2019;17(1):161.
- 76. Vincent A, Whipple M, Low P, Joyner M, Hoskin T. Patients With Fibromyalgia Have Significant
 Autonomic Symptoms But Modest Autonomic Dysfunction. PM&R. 2016;8(5):425-435.
- 77. Silva A, Chagas D, Cavaliere M, Pinto S, de Oliveira Barbosa J, Batista L. Kinematic analysis of subtalar eversion during gait in women with fibromyalgia. The Foot. 2016;28:42-46.
- 78. Góes S, Leite N, de Souza R, Homann D, Osiecki A, Stefanello J et al. Características da marcha de mulheres com fibromialgia: um padrão prematuro de envelhecimento. Revista Brasileira de Reumatologia. 2014;54(5):335-341.
- 79. Auvinet B, Chaleil D. Identification of subgroups among patients with fibromyalgia. Reumatismo.
 2012;64(4).
- 80. Shigetoh H, Tanaka Y, Koga M, Osumi M, Morioka S. The Mediating Effect of Central Sensitization
 on the Relation between Pain Intensity and Psychological Factors: A Cross-Sectional Study with
 Mediation Analysis. Pain Research and Management. 2019;2019:1-6.
- 81. Lundin-Olsson L, Nyberg L, Gustafson Y. "Stops walking when talking" as a predictor of falls inelderly people. Lancet. 1997;349:617.

- 82. Eyskens J, Nijs J, Wouters K, Moorkens G. Reduced gait automaticity in female patients with
- 663 chronic fatigue syndrome: Case-control study. Journal of Rehabilitation Research and
- Development. 2015;52(7):805-814.
- 83. Rolland Y, Lauwers-Cances V, Cournot M, Nourhashémi F, Reynish W, Rivière D, et al. Sarcopenia,
- calf circumference, and physical function of elderly women: a cross-sectional study. J Am Geriatr
- 667 Soc. 2003;51:1120-4.
- 668 84. Laurentani F, Russo C, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, Corsi AM, Rantanen T,
- Guralnik JM, Ferrucci L. Age-associated changes in skeletal muscles and their effect on mobility:
- an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95:1851-60.
- 671 85. Kamiya K, Hamazaki N, Matsue Y, Mezzani A, Corrà U, Matsuzawa R, Nozaki K, Tanaka S, Maekawa
- E, Noda C, Yamaoka-Tojo M, Matsunaga A, Masuda T, Ako J. Gait speed has comparable prognostic
- 673 capability to six-minute walk distance in older patients with cardiovascular disease. European
- Journal of Preventive Cardiology. 2017;25(2):212-219.
- $86.\ Roshanravan\,B, Robinson-Cohen\,C, Patel\,K, Ayers\,E, Littman\,A, de\,Boer\,I\,Ikizler\,TA,\,Himmelfarb\,A, Littman\,A, de\,Boer\,B, Littm$
- 676 J, Katzel LI, Kestenbaum B, Seliger S. Association between Physical Performance and All-Cause
- Mortality in CKD. Journal of the American Society of Nephrology. 2013;24(5):822-830.
- 678 87. Studenski S. Gait Speed and Survival in Older Adults. JAMA. 2011;305(1):50.
- 88. Mannerkorpi K, Svantesson U, Broberg C. Relationships Between Performance-Based Tests and
- Patients' Ratings of Activity Limitations, Self-Efficacy, and Pain in Fibromyalgia. Archives of
- Physical Medicine and Rehabilitation. 2006;87(2):259-264.
- 682 89. Cohen, Jacob (1988). Statistical Power Analysis for the Behavioral Sciences. Routledge. ISBN 978-
- 683 **1-134-74270-7.**
- 684 90. Auvinet B, Bileckot R, Alix A, Chaleil D, Barrey E. Gait disorders in patients with fibromyalgia. Joint
- Bone Spine. 2006;73(5):543-546.
- 91. Jones J, Rutledge D, Jones K, Matallana L, Rooks D. Self-Assessed Physical Function Levels Of
- Women with Fibromyalgia. Women's Health Issues. 2008; 18(5):406-412.
- 688 92. Pierrynowski MP, Tiidus PP, Galea V. Women with fibromyalgia walk with an altered musde
- synergy. Gait Posture. 2005 Nov; 22(3):210-8. doi: 10.1016/j.gaitpost.2004.09.007.
- $93. \ Kaleth \ A, Slaven \ J, \ Ang \ D. \ Determining \ the \ Minimal \ Clinically \ Important \ Difference \ for \ 6-Minute$
- Walk Distance in Fibromyalgia. American Journal of Physical Medicine & Rehabilitation.
- 692 2016;95(10):738-745.

694	and bilateral coordination to the impact of dual tasking on gait. Exp Brain Res. 2013
695	Apr;226(1):81-93. doi: 10.1007/s00221-013-3412-9.
696	95. Hagner-Derengowska M, Krystian Kałużny K, Hagner W, Kałużna A, Kochański B, Borkowska
697	A, Budzyński J. Gait Parameters during Dual Tasks in Healthy Postmenopausal Women. Biomed
698	Res Int. 2016;2016:1205469. doi: 10.1155/2016/1205469.
699	96. Bell T, Trost Z, T Buelow M, Olivio Clay O, Younger J, Moore D, Crowe M. Meta-analysis of
700	cognitive performance in fibromyalgia. J Clin Exp Neuropsychol. 2018 Sep;40(7):698-714.
701	doi:10.1080/13803395.2017.1422699.
702	97. Núñez-Fuentes D, Obrero-Gaitán E, Zagalaz-Anula N , Ibáñez-Vera AJ, Achalandabaso-Ochoa A,
703	López-Ruiz MC, Rodríguez-Almagro D, Lomas-Vega R. Alteration of Postural Balance in Patients
704	with Fibromyalgia Syndrome-A Systematic Review and Meta-Analysis. 2021 Jan 15;11(1):127.
705	doi: 10.3390/diagnostics11010127.
706	98. Kim D Jones, Laurie A King, Scott D Mist, Robert M Bennett, Fay B Horak Postural control deficits
707	in people with fibromyalgia: a pilot study. Arthritis Res Ther. 2011 Aug 2;13(4):R127. doi:
708	10.1186/ar3432.
709	99. Collado-Mateo D, Gallego-Diaz JM, Adsuar JC, Domínguez-Muñoz FJ, PR Olivares PR, Gusi N. Fear
710	of Falling in Women with Fibromyalgia and Its Relation with Number of Falls and Balance
711	Performance. Biomed Res Int. 2015;2015:589014. doi: 10.1155/2015/589014.
712	
713	
714	
715	
716	
717	
718	
719	
720	
721	
722	
723	
724	
725	

 $94.\ Yogev-Seligmann\ G\ , Giladi\ N\ , Gruendlinger\ L\ , Hausdorff\ JM\ The\ contribution\ of\ postural\ control$

CTUDY		Sele	election		Comparability		Outcome		- Total
STUDY	1	2	<mark>3</mark>	<mark>4</mark>	<mark>1a</mark>	<mark>2b</mark>	1	2	Total
.kkaya N et al, 2012 ^[48] .	*	-	-	**	*	*	*	*	7
Indreissy Breda C et al, 2013 ^[49] .	*	-	*	**	*	*	*	*	<mark>8</mark>
paricio V et al, 2015 ^[50] .	*	-	*	**	*	*	*	*	8
uvinet B et al, 2011 [51]	*	*	Ŧ	**	*	*	*	*	8
yán C et al, 2007 ^[52] .	Ī	-	*	**	*	*	*	*	<mark>7</mark>
arbonell-Baeza A et al, 2010 ^[53] .	*	-	Ţ	**	*	*	*	*	<mark>6</mark>
arbonell-Baeza A et al, 2010 ^[54] .	*	-	-	**	*	*	*	*	<mark>6</mark>
arbonell-Baeza A et al, 2011 ^[55] .	*	Ī	i	**	Ī	Ī	Ē	Ī	<mark>3</mark>
arbonell-Baeza A et al, 2011 ^[56] .	*	-	Ī	**	_	Ī	Ī	-	3
arbonell-Baeza A et al, 2013 ^[57] .	*	-		**	_	_	<u>-</u>	-	3
arbonell-Baeza A et al, 2014 ^[58] .	*	_		**	_	_	_	_	<mark>3</mark>
ardoso FS et al, 2018 ^[59] .	*	-	*	**	*	*	*	*	8
órdoba-Torrecilla S et al, 2015 ^[60] .	*	-	ī	**	Ī	Ī	Ī	*	<mark>4</mark>
ricsson A et al, 2013 ^[61] .	*	<mark>-</mark>	*	**	*	*	*	*	8
rnberg M et al, 2018 ^[62] .	*	_	*	**	*	<mark>*</mark>	*	*	8
iannotti E et al, 2014 ^[63] .	*	-	Ī	**	*	*	*	*	7
ióes S et al, 2015 ^[41] .	*	Ī	*	**	*	*	*	*	8
leredia Jiménez Jet al, 2009 ^[42] .	*	_	*	**	*	<mark>*</mark>	*	*	8
Ieredia-Jimenez J et al, 2013 ^[43] .	*	-	*	**	*	*	*	*	8
Ieredia-Jimenez J et al, 2016 ^[44] .	*	-	*	*	*	*	*	*	<mark>7</mark>
lernando-Garijo I et al, 2021 [64]	*	*	*	**	*	*	*	*	9
Iomann D et al, 2011 ^[65] .	*	-	<u>-</u>	**	*	*	*	*	7
oca I et al, 2015 ^[45] .	*	-	*	**	*	*	*	*	8
atorre-Román P et al, 2014 ^[46] .	*	-	*	**	*	*	*	*	8
Mannerkorpi K et al 2010 ^[66] .	*	*	*	**	*	*	*	*	9
Martín-Martínez J et al, 2020 ^[47] .	*	7	7	**	<u></u>	T T	*	*	5
Mingorance Jet al, 2021 ^[67]	*	*	ļ	**	*	*	_ <mark>T</mark>	*	7
Ollevier A, et al, 2019 ^[68]	Ī	*	i	**	Ī	Ī	*	*	<mark>5</mark>
olat M et al, 2021 ^[69] .	*	Ī	*	**	*	*	*	*	8
alvat I et al, 2016 ^[70] .	*	_	*	**	<mark>*</mark>	*	**	*	9
añudo B et al, 2010 ^[71] .	*	*	*	**	<mark>*</mark>	*	**	*	10
oriano-Maldonado A et al, 2015 ^[72] .	*	Ī	Ī	**	*	*	*	*	7
oriano-Maldonado A et al, 2015 ^[73] .	*	<mark>-</mark>		**	<u>_</u>				3
avares L et al, 2020 ^[74] .	*	<mark>-</mark>	···· <mark>:</mark>	**	*	*	**	*	8
'illafaina S et al, 2019 ^[75] .	*	*	ļ	**	*	*	<mark>**</mark>	*	9
incent A et al, 2016 ^[76] .	*	1	*	**	*	*	*	*	8

nemando-Ganjo retai, 2021 ^[64] .	<mark>34</mark>	·· <mark>FM1·17</mark> ···	5 <u>1.81 (9.05)</u>	68:19 (16:88)	158.63 (6.29)		403:57 (107:13)	
Hernando-Garijo I et al,	(00). 070)	FM2 12	51.3 (6.3)	-	-	23.4 (4.2)	403.2 (86.4)	
Giannotti E et al, 2014 ^[57] .	32 (93,75%)	FM1 20	52.8 (10.6)	-			·	
G , -	(100%)	HC 130	48.2 (11.4)	-	-	24.2 (3.8)	656.9 (60.1)*	
Emberg Met al, 2018 ^[56] .	255 (100%)	FM 125	51.2 (9.4)	-	-	28.0 (5.2)	551.4 (71.0)*	
Ericsson A et al, 2013 ^[55] .	133 (100%)	FM 133	46 (8.6)	-	-	27.3 (5.3)	507.0 (84.0)	
Córdoba-Torrecilla S et al, 2015 ^[54] .	439 (100%)	-FM-439	52:2 (8:0)	71.3 (14.0)	157.8 (6.0)	28.6 (5.5)	484.0 (81.7)	
2018 ^[53] .	(100%)	HC 15	54.1 (4.4)	70.6 (13.7)	160 (9)	27.5 (4.5)	522.1 (47.6)*	
Cardoso FS et al,	31	FM 16	53.5 (7.5)	70.6 (14.6)	158 (5)	28.0 (4.9)	446.7 (126.0)*	
Carbonell-Baeza A et al, 2014 ^[52] .	100 (100%)	FM 100	50.6 (8.6)	70.4 (12.5)	158.6 (5.9)	28.0 (5.4)	473.11 (81.74)	
Carbonell-Baeza A et al, 2013 ^[50] .	118 (100%)	FM 118	51.9 (7.3)	-	-	28.58 (5.6)	438.72	
Carbonell-Baeza A et al, 2011 ^[49] .	6 (0%)	FM 6 52.3 (9.3) 79.3		79.3 (10.7)	-	27.1 (3.8)	495.8 (78.0)	
Carbonell-Baeza A et al, 2011 ^[48] .	123 (100%)	FM 123	51.7 (7.2)	70.75 (13.66) 157.26 (4.97)		28.54 (5.60)	447.02 (83.54)	
2010 ^[47] .	(100%)	FM2 32	51.4 (7.4)	68.5 (2.1)	.1 (2.2) - 27.5 (0.9) 448.7 (13.5) .5 (2.1) - 28.2 (0.9) 456.6 (12.7) 5 (13.66) 157.26 (4.97) 28.54 (5.60) 447.02 (83.54) 3 (10.7) - 27.1 (3.8) 495.8 (78.0)	456.6 (12.7)		
Carbonell-Baeza A et al,	59	FM1 27	54.2 (6.2)	68.1 (2.2)	=	27.5 (0.9)	448.7 (13.5)	
2010 ^[46] .	(100%)	FM2 32	50.0 (7.3)	68.1 (2.2)	-	27.8 (0.9)	458.7 (15.0)	
Carbonell-Baeza A et al,	65	FM1 33	51.4 (7.4)	71.2 (2.1)	-	28.5 (0.9)	SD)] 0 (4.2) 300.9 (52.3)* 3 (3.9) 373.9 (50.5)* 7 (3.9) 441.8 (84.1)* 2 (5.1) 523.9 (80.3)* 6 (5.4) 483.5 (89.6)* 5 (4.6) 586.3 (73.3)* 6 (5.4) 432.8 (61.2) 5 (0.9) 451.9 (14.0) 8 (0.9) 458.7 (15.0) 5 (0.9) 448.7 (13.5) 2 (0.9) 456.6 (12.7) 8.54 6.60) 447.02 (83.54) 1 (3.8) 495.8 (78.0) 5 (6.5) 448.7 (126.0)* 5 (4.5) 522.1 (47.6)* 6 (5.5) 484.0 (81.7) 3 (5.3) 507.0 (84.0) 0 (5.2) 551.4 (71.0)* 2 (3.8) 656.9 (60.1)* 3 (3.4) 378 (68.4)* 7 755	
Ayán C et al, 2007 ^[45] .	29 (100%)	FM 29	53 (9)	-	-	26 (4)	432.8 (61.2)	
Aparicio V et al, 2015 ^[44] .	(100%)	HC 250	49.3 (9.9)	67.8 (12.7)	159.8 (6.2)	26.5 (4.6)	586.3 (73.3)*	
	737	FM 487	51.9 (8.3)	71.3 (14.0)	157.8 (6.0)	28.6 (5.4)	483.5 (89.6)*	
2013 ^[43] .	(100%)	HC 28	40.7 (6.3)	70.6 (13.1)	160.7 (6.3)	27.2 (5.1)	523.9 (80.3)*	
Andreissy Breda C et al,	58	FM 30	42.6 (5.8)	72.4 (9.3)	158.9 (5.3)	28.7 (3.9)	441.8 (84.1)*	
Akkaya N et al, 2012 ^[42] .	(100%)	HC 41	33.3 (7.4)	-	-	26.3 (3.9)	373.9 (50.5)*	
	92	FM 51	35.5 (9.9)	-	-	27.0 (4.2)	300.9 (52.3)*	
Study N [N (Women%)]		n	Age (SD)	Weight [(Kg) (SD)]	Height [(Cm) (SD)]	[(Kg/m²) (SD)]	Results (m)	

Formatted: Portuguese(Brazil)

Formatted: Portugues@Brazil)

	<mark>(100%)</mark>	FM2 17	<mark>55.06 (8.51)</mark>	68.13 (15.10)	<mark>161.81 (5.13)</mark>	25.93 (5.27)	407.01 (137.09)	
Hamana D at al 2044 [58]	39	FM 20	39.50 (6.07)	70.97 (14.39)	159.38 (6.48)	27.69 (5.43)	473.52 (77.84)*	
Homann D et al, 2011 ^[58] .	(100%)	HC 19	41.84 (6.18)	72.04 (9.64)	159.34 (5.15)	28.40 (3.89)	541.75 (85.62)*	
Latorre-Román P et al,	50	FM 36	49.8 (5.4)	67.2 (12.1)	157 (4)	27.7 (4.8)	477.5 (63.1)*	
2014 ^[40] .	(100%)	HC 14	47.3 (5.9)	65.6 (8.7)	159 (6)	25.9 (3.2)	561.5 (73.1)*	
Mannerkorpi K et al, 2010 ^[59] .	33 (100%)	FM 33	50 (7.6)	-	-	28 (4.5)	522 (56.1)	
		FM1	50.25 (8.53)	67.00 (7.46)	169.15 (6.41)	23.34 (1.23)	391.25 (21.9)	
Mingorance J et al, 2021 ^[67] .	60 (90%)	FM2	52.30 (8.04)	2.30 (8.04) 65.05 (5.82)		22.95 (1.30)	365 (11)	
		FM3	54.85 (8.62)	67.00 (7.43)	166.90 (7.86)	24.21 (3.93)	385 (31.85)	
Ollevier A et al, 2019 ^[68]	46 (100%)	FM1	40.76 (6.62)	69.76 (16.71)	1.66 (0.06)	25.30 (5.12)	328.91 (98.12)	
Polat M et al, 2021 ^[69] .	40	FM1 20 47.0 (7.1)		71.4 (10.1)	160.0 (5.5)	27.9 (0.80)	443.15 (109.2)	
Folat Wretal, 2021 .	<mark>(100%)</mark>	FM2 20	42.6 (8.7)	69.7 (8.03)	162.0 (6.6)	26.6 (0.79)	467 (43.9)	
Salvat I et al, 2016 ^[70] .	155	FM1 81	50.0	-	•	26.3	384.0	
Salvatretal, 2016 .	(100%)	FM2 74	50.0	-	•	27.9	353.0	
	64 (100%)	FM1 22	55.9 (1.6)	72.3 (2.3)	157 (1)	29.6 (1.1)	512.5 (15.9)	
Sañudo B et al, 2010 ^[71] .		FM2 21	55.9 (1.7)	68.5 (3.0)	157 (2)	27.6 (1.1)	535.0 (16.2)	
		FM3 21	56.6 (1.9)	74.5 (3.3)	158 (1)	29.7 (1.1)	488.7 (16.9)	
Soriano-Maldonado A et al, 2015 ^[72] .	451 (100%)	FM 451	52.0			28.6	486:3 (3:71)	
Soriano-Maldonado A et al, 2015 ^[73] .	444 (100%)	FM 444	52.1 (7.9)			28.5 (5.2)	486 (79)	
Tavares L et al. 2020 ^[74] .	40	FM 20	40.55 (6.19)	62.42 (7.80)	1.60 (0.05)	24.40 (2.58)	546.40 (60.88)*	
ravales Let al, 2020	(100%)	HC 20	38.7 (7.30)	63.75 (7.56)	1.61 (0.06)	24.70 (3.29)	616.39 (48.05)*	
Villafaina S et al, 2019 ^[75] .	37	FM1 22	54.27 (9.29)	-	-	27.11 (2.90)	491.15 (80.21)	
v iliataif1a 5 et al, 2019 ^{, 9} .	(100%)	FM2 15	53.44 (9.47)	-	-	28.19 (3.88)	517.45 (58.42)	
Vincent A et al, 2016 ^[76] .	60	FM 30	47.0 (10.4)			25.8 (4.6)	570.7 (51.9)*	
vincent A et al, 2016.	(100%)	HC 30	41.1 (8.4)	-	-	26.0 (4.0)	640.2 (65.7)*	

FM= Fibromyalgia syndrome; P = Data obtained indirectly; BMI = Body mass index; HC = Healthy control group; FMx = Fibromyalgia subgroup;*= P<0.05.

Formatted: Portuguese(Brazil)

Formatted: Portuguese(Brazil)

Table 3. Results of the 8 foot up and go test

Study	N (Women%)	n	Age (SD)	Weight (Kg) (SD)	Height (Cm) (SD)	Body mass index (Kg/m²) (SD)	Results 8UG Test (s) (Differences between groups)
A	737	FM 487	51.9 (8.3)	71.3 (14.0)	157.8 (6.0)	28.6 (5.4)	7.02 (2.34)*
Aparicio V et al, 2015 ^[50] .	(100%)	HC 250	49.3 (9.9	67.8 (12.7)	159.8 (6.2)	26.5 (4.6)	5.27 (1.03)*
Carbonell-Baeza A et al,	65	FM1 33	51.4 (7.4)	71.2 (2.1)	-	28.5 (0.9)	8.5 (0.4)
2010 ^[54] .	(100%)	FM2 32	50.0 (7.3)	68.1 (2.2)	-	27.8 (0.9)	8.2 (0.4)
Carbonell-Baeza A et al,	59	FM1 27	54.2 (6.2)	68.1 (2.2)	-	27.5 (0.9)	7.6 (0.3)
2010 ^[55] .	(100%)	FM2 32	51.4 (7.4)	68.5 (2.1)	-	28.2 (0.9)	8.3 (0.3)
Carbonell-Baeza A et al, 2011 ^[56] .	123 (100%)	FM 123	51.7 (7.2)	70.75 (13.66)	157.26 (4.97)	28.54 (5.60)	8.35 (2.32)
Carbonell-Baeza A et al, 2011 ^[57] .	6 (0%)	FM 6	52.3 (9.3)	79.3 (10.7)	-	27.1 (3.8)	6.8 (1.1)
Carbonell-Baeza A et al, 2014 ^[58] .	100 (100%)	FM 100	50.6 (8.6)	70.4 (12.5	158.6 (5.9)	28.0 (5.4)	7.31 (2.37)

FM= Fibromyalgia syndrome; HC = Healthy control group; FMx = Fibromyalgia subgroup; *= P<0.05.

Table 4. Characteristics and results of studies that analyze gait pattern characteristics.

Study	N (Women%)	n	Age (SD)	Weight (Kg) (SD)	Height (Cm) (SD)	Body mass index (Kg/m²) (SD)	Test	System	Stride Length (m)	Cadence (step/min)	Swing (%cycle)	Stance (%cycle)	Single support (%cycle)	
A D 12011[51]	104 (100%)	FM 52	44.1 (8.1)	-	165 (5.8)	24.2 (4.1)	40	Locometrix™ (three	=	-	-	<u>-</u>	Ē	Ē
Auvinet B et al, 2011 ^[51] .		HC 52	44.5 (7.3)	-	164 (6.4)	23.8 (4.4)	meters	accelerometers, recording device)	-	-	-	-	-	-
0/ 0 - 1 2045[4]	32	FM 16	41.5 (5.9)	-	-	28.2 (3.9)	Walking	Vicon; MX-13 (6- camera Vicon	1.22 (0.09)	58.42 (4.52)	<u>-</u>	=	-	=
Góes S et al, 2015 ^[41] .	(100%)	HC 16	40.4 (6.4)	-	-	26.8 (5.6)	<mark>speed</mark>	motion analysis system)	1.23 (0.09) (P= 0.755)	57.41 (4.31) (P= 0.523)	-	-	=	-
Heredia Jiménez J et al,	99	FM 55	49.5 (8.9)	69.2 (12.9)	157.9 (6.6)	27.8 (5.1)	18.6m	GAITRite system;	1.19 (0.14)	109.5 (12.6)	36.6 (2.2)	63.4 (2.2)	36.6 (2.2)	26.7 (4.5)
2009 ^[42] .	(100%)	HC 44	47.1 (6.8)	67.8 (13.4)	157.0 (5.4)	27.3 (5.3)	walkwa y	CIR Systems Inc., Clifton, NJ, USA.	1.33 (0.11). (P= 0.001)	124.8 (8.5) (P= 0.001)	39.0 (1.4) (P= 0.001)	60.9 (1.4) (P= 0.001	39.0 (1.4) (P= 0.001	22.1 (2.8) (P= 0.001)
Heredia-Jimenez Jetal,	26 (0%)	FM 12	45.8 (7.4)	81.1 (7.8)	173.3 (5.2)	27.0 (2.4)	18.6m walkwa y	GAITRite system;	1.37 (0.15)	101.4 (11.8)	36.6 (1.3)	63.4 (1.3)	36.6 (1.3)	30.0 (2.5)
2013 ^[43] .		HC 14	44.4 (7.2)	81.9 (13.1)	173.9 (5.5)	27.0 (4.0)		CIR Systems Inc., Clifton, NJ, USA.	1.54 (0.11) (P= 0.002)	112.9 (7.6) (P= 0.008)	37.3 (1.4) (P= 0.218)	62.6 (1.4) (P= 0.212)	37.3 (1.4) (P= 0.218)	25.3 (3.0) (P= 0.158)
Heredia-Jimenez Jetal,	115 (100%)	FM 65	49.3 (8.7)	69.1 (11.3)	157.1 (6.2)	27.8 (4.1)	18.6m walkwa y	GAITRite system;	2.9 (1.4)	=	-	=	-	-
2016[44].		HC 50	47.4 (6.2)	68.7 (12.4)	157.4 (5.9)	27.3 (5.1)		CIR Systems Inc., Clifton, NJ, USA.	2.4 (0.9) (P= 0.04)	-	-	-	-	-
Koca I et al, 2015 ^[45] .	120	FM 82	40.7 (2.0)	-	-	26.2 (4.2)	Walking	Not described	<u> </u>	<u> </u>	=	=	<u>-</u>	
	(100%)	HC 38	38.8 (2.8)	-	-	25.1 (2.1)	speed		<u> </u>	<u> </u>	<u> </u>	=	=	
Latorre-Román P et al,	tal, 50 (100%)	FM 36	49.8 (5.4)	67.2 (12.1)	157 (4)	27.7 (4.8)	6MWT	GAITRite system; CIR Systems Inc., Clifton, NJ, USA	1.36 (0.12)	178.9 (29.8)	=	=	<u>=</u>	<u> </u>
2014 ^[46] .		HC 14	47.3 (5.9)	65.6 (8.7)	159 (6)	25.9 (3.2)			1.50 (0.14) (P=0.001)	201.3 (59.6) (P=0.03)	-	-	-	-
Martín-Martínez J et al, 2020 ^[47] .	36 (100%)	FM 36	54.6 (10.2)	-	-	27.29 (4.89)	10- MWT	Functional Assessment of Biomechanics ™ (FAB) System (Biosyn System Inc.; Surrey, BC, Canada)	1.35 (0.21)	135.6 (21)	-	•	-	
		FM1	50.25 (8.53)	67.00 (7.46)	169.15 (6.41)	23.34 (1.23)	6MWT Walking speed		-	-	31.52 (3.44)	61.48 (3,43)	-	-
Mingorance J et al, 2021 ^[67] .	60 (<mark>90%</mark>)	FM2	52.30 (8.04)	65.05 (5.82)	168.25 (6.35)	22.95 (1.30)		Walking CasioExilimEX	CvMob 3.1 and CasioExilimEX-FS10 camera	•	-	31.77 (1.99)	64.75 (7.24)	•
FM = Fibromyalgia syndron		FM3	54.85 (8.62)	67.00 (7.43)	166.90 (7.86)	24.21 (3.93)	speed		-	-	31.69 (2.78)	68.30 (2.77)	-	-

FM= Fibromyalgia syndrome; HC= Healthy control group

748