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New observations on test architecture and construction of
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We present new observations on Jullienella foetida Schlumberger, 1890, a giant
agglutinated foraminifer with a leaf- or fan-like test reaching a maximum dimension of 14
cm, that is common on some parts of the west African continental shelf. The test wall
comprises a smooth, outer veneer of small (<10 µm) mineral grains that overlies the much
thicker inner layer, which has a porous structure and is composed of grains measuring
several hundreds of microns in size. Micro-CT scans reveal that much of the test interior is
filled with cytoplasm, while X-ray micrographs reveal an elaborate system of radiating
internal partitions that probably serve to channel cytoplasmic flow and strengthen the test.
Jullienella foetida resembles some xenophyophores (giant deep-sea foraminifera) in terms
of test size and morphology, but lacks their distinctive internal organization; the
similarities are therefore considered to be convergent. Based on micro-CT scan data, we
calculated an individual cytoplasmic biomass of 3.65 mg wet weight for one specimen.
When combined with literature records of seafloor coverage, this yielded an estimate of
>7.0 g wet weight m-2 for the seafloor biomass of J. foetida in areas where it is particularly
abundant. The relatively restricted distribution of this species off the north-west African
coast at depths above 100 m is probably related to the elevated, upwelling-related surface
productivity along this margin, which provides enough food to sustain this high biomass.
This remarkable species appears to play an important, perhaps keystone, role in benthic
ecosystems where it is abundant, providing the only common hard substrate on which
sessile organisms can settle.
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16 Abstract

17 We present new observations on Jullienella foetida Schlumberger, 1890, a giant agglutinated 

18 foraminifer with a leaf- or fan-like test reaching a maximum dimension of 14 cm, that is 

19 common on some parts of the west African continental shelf. The test wall comprises a smooth, 

20 outer veneer of small (<10 µm) mineral grains that overlies the much thicker inner layer, which 

21 has a porous structure and is composed of grains measuring several hundreds of microns in size. 

22 Micro-CT scans reveal that much of the test interior is filled with cytoplasm, while X-ray 

23 micrographs reveal an elaborate system of radiating internal partitions that probably serve to 

24 channel cytoplasmic flow and strengthen the test. Jullienella foetida resembles some 

25 xenophyophores (giant deep-sea foraminifera) in terms of test size and morphology, but lacks 

26 their distinctive internal organization; the similarities are therefore considered to be convergent. 

27 Based on micro-CT scan data, we calculated an individual cytoplasmic biomass of 3.65 mg wet 

28 weight for one specimen. When combined with literature records of seafloor coverage, this 

29 yielded an estimate of >7.0 g wet weight m-2 for the seafloor biomass of J. foetida in areas where 

30 it is particularly abundant. The relatively restricted distribution of this species off the north-west 

31 African coast at depths above 100 m is probably related to the elevated, upwelling-related 

32 surface productivity along this margin, which provides enough food to sustain this high biomass. 

33 This remarkable species appears to play an important, perhaps keystone, role in benthic 

34 ecosystems where it is abundant, providing the only common hard substrate on which sessile 

35 organisms can settle. 

36
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37 Introduction

38 In 1890, Schlumberger described a new and gigantic agglutinated foraminifer from the western 

39 coast of Africa (Liberia) and named it Jullienella foetida after its collector, the French bryozoan 

40 specialist Jules Jullien (Schlumberger, 1890). When first discovered, during a French expedition 

41 off Liberia in front of “Poor River” at 12.6 meters water depth (Wedabo Beach), Jullien noted 

42 that the specimens exuded a particularly "foul-smelling odour", leading Schlumberger to name it 

43 foetida (from lat. foetidus meaning fetid, foetid or malodorous). The species was initially 

44 considered to be a bryozoan, but Schlumberger recognized its true character and correctly 

45 described it as a single-chambered (monothalamous) agglutinated foraminifer with a large, flat or 

46 slightly undulating plate-like test, leaf-like, or fan-like in overall shape and with the chamber 

47 interior subdivided by longitudinal partitions (Schlumberger, 1890). 

48

49 Julienella foetida is currently placed within the Schizamminidae, a family established by 

50 Nørvang (1961) for species of large and somewhat bizarre monothalamous foraminifera that 

51 includes the genus Schizammina Heron-Allen & Earland, 1929, in addition to Jullienella 

52 Schlumberger, 1890. This family belongs to the class Monothalamea (‘monothalamids’), a 

53 paraphyletic group of single-chambered foraminifera that encompasses the orders Allogromiida 

54 and Astrorhizida, and includes freshwater as well as marine species (Pawlowski, Holzmann & 
55 Tyszka, 2013). The monothalamids are subject to ongoing genetically-based revisions and 

56 species are currently grouped into a series of clades (Voltski & Pawlowski, 2015; Gooday et al., 
57 2020). Unfortunately, there are no genetic data for any species of the Schizamminidae and the 

58 relationship of these unusual foraminifera to other monothalamids is therefore unclear. 

59

60 Since it was first described by Schlumberger (1890), J. foetida has been widely reported from 

61 depths of 14 to 89 m across the West African continental shelf from Western Sahara to Ghana 

62 (Fig. 1) (Longhurst, 1958; Buchanan, 1958; 1960; Nørvang, 1961; Le Calvez, 1963; 1972; 
63 Manning & Holthuis, 1981). It occurs on fine sandy and muddy substrates at densities of up to 

64 200 individuals per m2 and covering up to 10% of the sandy seafloor (Le Loeuff & Intes, 1968; 
65 Thiel, 1982; Tendal & Thiel, 2003). Schlumberger (1890) reported that the largest specimens 

66 from off Liberia were 6 cm in maximum dimension, and more recent records suggest that it can 

67 reach more than twice this size. In situ images of J. foetida have shown the thin, plate-like test 

68 lying horizontally on the sediment surface with only the lower side partially buried (Thiel, 1982; 
69 Tendal & Thiel, 2003). These large agglutinated structures often constitute the only available 

70 hard substrate on which sessile organisms can settle (Cook, 1968; 1985). Its great size, 

71 abundance and ecological importance make J. foetida an important species in some continental 

72 shelf ecosystems of the west African shelf. In this study, we have applied a suite of non-

73 destructive methods, including light microscopy, SEM, X-ray and high-resolution X-ray micro-

74 computed tomography (micro-CT), to reveal new aspects of the internal and external test 

75 characteristics of this remarkable foraminifera.

76
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77 Material and Methods

78 The new material of Jullienella foetida originates from sediment samples collected in 1971 

79 during Meteor Cruise M25 at a water depth of 68 m (sample station # 74/1; Seibold, 1971; 
80 1972). The sample site is located off the coast of Mauritania, north of the capital of Nouakchott 

81 at 18°52'N and 16°31'W (Fig. 1). A total of 12 tests was examined (Fig. 2). Images were taken 

82 using light microscopy and Scanning Electron Microscopy (SEM, CamScan MV 2300, 

83 Vegascan) and arranged into plates using Adobe Photoshop CS6. X-ray pictures were obtained 

84 using a Radifluor 360 generator (Philips Electronics). All specimens analyzed are stored in the 

85 micropaleontology collection at the Institute of Geoscience, University of Bonn (LA-2021-Jf-1-

86 14). 

87

88 To investigate the internal structure further, two individuals of J. foetida (Fig. 2A and Fig. 2F) 

89 were scanned using the micro-CT scanner v|tome|xs 240 kV (GE Sensing & Inspection 

90 Technologies GmbH phoenix|x-ray) at the Institute of Geosciences, University of Bonn. During 

91 the scans, a total of 1,000 X-ray projections was collected through a 360° rotation of the sample. 

92 The specimens were scanned dry at 120 kV and 120 µA (voxel size 0.016 mm). The micro-CT 

93 scanner is equipped with a detector panel that produces isotropic voxels (single size image 2024 

94 x 2024 pixels) and a maximum resolution (voxel size) of 1 μm. For all scans, the same shutter 

95 speed of 200 ms per capture was used. This generated a stack of grayscale JPEG slice images 

96 that were imported into the visualization and analysis program Avizo light 9.2 (ThermoFisher 

97 Scientific) for the segmentation of individual architectural elements based on grayscale values 

98 (relative X-ray absorption). 3D-reconstructions of the test and volumetric calculations for the test 

99 and chamber lumina were then generated, again using Avizo. The raw CT scans and 

100 reconstructed 3D models are available for viewing and download on MorphoSource 

101 (http://www.morphosource.org/) in Project 000393778. 

102 Micro-CT imaging, which has been used only occasionally with agglutinated foraminifera, was 

103 used here to visualize the distribution of the cytoplasm and the test simultaneously. To calculate 

104 the area occupied by remnants of dried cytoplasm in vertical and horizontal micro-CT stack 

105 images, grey-scale images were analysed using ImageJ software (Rasband, 1997-2018). The 

106 resulting image analysis provides novel information about the relationship between the 

107 cytoplasm and the test.

108

109 Results

110 Overall test morphology 

111 Our specimens of Jullienella foetida from Mauritania have large, hard, rigid, leaf-like, fan-like, 

112 and plate-like agglutinated tests (Fig. 2), up to ~ 3 cm in size. The surface is wrinkled, often 

113 gently undulating and interrupted by more or less distinct arcuate or crescentic ridges (Figs. 2C, 

114 G), spaced at intervals of about 1.5 mm. Total test thickness ranges between 800 µm and 1.2 mm 

115 (n = 8), with lowest values in smaller individuals and within the slightly depressed areas between 
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116 ridges. The wall thickness does not vary significantly during growth stages and remains almost 

117 constant throughout the test. In one specimen (Fig. 3A), the plate-like test has overgrown three 

118 finger-like projections of what appears to have been an earlier outer margin. Possibly, the growth 

119 of this specimen had been interrupted and then redirected as a result of some damage or trauma. 

120

121 The earliest part of the test appears to be missing in all our specimens of J. foetida. Two show a 

122 bifurcation in the proximal "stem" (Figs. 2B, E), suggesting that this may be the remains of a link 

123 between two lobes of the test (see also Nørvang, 1961), rather than the initial part. Towards the 

124 distal end of the test, flattened tubular processes, usually fairly short, extend from the margin. 

125 They may branch dichotomously (Figs. 2A, F, I; Fig. 4A, B). The apertures are multiple and 

126 consist of numerous rounded, elliptical or slit-like openings at the ends of these tubular 

127 extensions of the test periphery. 

128

129 Test structure
130 Examination of Jullienella foetida tests by SEM revealed an external veneer, comprising small 

131 (typically 5-10 µm) angular mineral particles (Fig. 5C, D). The layer is very thin (~20 µm) with 

132 a smooth outer surface, but is interrupted by numerous shallow bumps where the much larger 

133 underlying grains protrude through it (Fig. 3B). This arrangement, and the transparency of the 

134 protruding grains, creates a finely speckled appearance when the wall is viewed at high 

135 magnifications under a light microscope. The underlying wall is much thicker (250–350 µm) and 

136 composed of subrounded grains, measuring several 100s of microns in size (Figs. 5C, D). It has a 

137 very irregular inner surface with deep pits that communicate with open spaces within the wall, 

138 creating a porous, labyrinthic structure (Fig. 3D). This is reflected in the micro-CT scans, which 

139 show (in reverse view) the interface between the test lumen and inner surface of the wall covered 

140 in tiny projections (Fig. 4B, D). To some extent the spaces between the grains are occupied by 

141 fine particles similar to those in the outer veneer (Fig. 5E, F). The internal partitions are 

142 extensions of the inner layer of the wall and have a similar structure. 

143

144 Internal structure 

145 The volume of the test and of the internal cavity could be derived from micro-CT data. In two 

146 specimens, the agglutinated test alone occupied 67% and 73% (mean 70%) and the test cavity 

147 33% and 27% (mean 30%) of the total volume. Scanning electron, X-ray and micro-CT images 

148 show that the test cavity of Jullienella foetida is subdivided by a series of discontinuous radiating 

149 walls (internal partitions) that have no external expression on the outer surface of the test (Figs. 

150 2, 4, 5). These interior walls are aligned almost in parallel and are spaced at regular distances, 

151 subdividing the test lumen into elongated sections. Their radial arrangement reflects the fan-

152 shaped and leaf-like growth form of the large agglutinated test. As the lateral fanning-out of the 

153 test increases with growth, new partitions are added (Figs. 2D', J'). Almost all these internal walls 

154 are discontinuous, with interruptions often occurring at approximately the same growth stage, 

155 allowing efficient protoplasmic communication in both longitudinal and lateral directions. From 
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156 an architectural point of view, the longitudinal arrangement of the intermittent partitions may 

157 serve to strengthen the test and prevent the otherwise unsupported “roof” from collapsing, in 

158 addition to channelling cytoplasmic streaming. However, they are not equally developed in all 

159 specimens. In some (Figs. 2D', I', J'), they appear consistently strong in the X-ray images, but in 

160 others they are weaker and more intermittent (Figs. 2A', C', G'). 

161

162 Cytoplasm
163 Along broken edges of the test, remnants of dark brown cytoplasm are present within the lumen 

164 (Fig. 5D) or attached to the inner surface of the wall (Figs. 3E, F). This material contains a 

165 number of diatoms (Fig. 3F). The cytoplasm is also visible in micro-CT scans, where it stands 

166 out as a light-grey, low-density component within the test lumen. In the CT-scan slices shown in 

167 Fig. 6A-B, it is present within the central area as well as the finger-like projections and marginal 

168 openings, but is patchily distributed. Grey-scale image analysis using ImageJ showed that the 

169 dried cytoplasm occupies ~19.2% of the test area in cross section (Fig. 6A), and ~36.4% in 

170 vertical sections (Fig. 6B). However, different horizontal CT-scan slices of the same specimen 

171 (Supplementary Fig. S1) reveal the presence of cytoplasm in other parts of the test lumen. This 

172 suggests that cytoplasm is more widely distributed within the test lumen than is apparent in Fig. 

173 6B, although shrinkage during drying will have created gaps.

174

175 Discussion 

176 Comparison with previous observations
177 The largest specimens of Jullienella foetida documented in the literature were observed at ~60 m 

178 depth off the coast of Mauritania (station 192, Meteor expedition 44; Tendal & Thiel, 2003). 

179 Here, they reached a maximum dimension of 14 cm and included a range of morphological 

180 types, including thin, leaf-, fan- and kidney-shaped forms, most of them more or less flat. Other 

181 published illustrations show the leaf-like growth pattern extending from a central juvenile stage 

182 in opposite directions to create a dumbbell-shaped test, or in one direction to form a subcircular 

183 feature (Schlumberger, 1890; Buchanan, 1958; Longhurst, 1958; Nørvang, 1961; Tendal & 
184 Thiel, 2003; see also our Figs. 2A, G). Finger-like tubular processes extending from the test 

185 margin, are characteristic of the species (Schlumberger, 1890; Buchanan, 1960; Nørvang, 1961). 

186 Altenbach et al. (2003) described these features as extending laterally or at an angle of 90° into 

187 the seafloor, occasionally branching at some distance from the main part of the test (Tendal & 
188 Thiel, 2003). Some specimens collected off the coast of Ghana (‘Unpublished record’ in Fig. 1), 

189 also incorporate tubular processes that project at various angles to the main plane of the test 

190 (Gooday, unpublished observations). 

191

192 Our specimens of J. foetida from off the coast of Mauritania have maximum dimensions of only 

193 ~3 cm and are therefore much smaller than many of those illustrated in the literature, including 

194 the specimens of Tendal & Thiel (2003), referred to above, which were also from the 

195 Mauritanian margin. None appears to be intact, and indeed, complete specimens of this species 
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196 have rarely been recovered (Buchanan, 1958). They are all plate-like (Fig. 2), and one 

197 incorporates a single open space (Fig. 3A), but there is no tendency to form a reticulated 

198 structure, as seen in some examples illustrated by Nørvang (1961) and Tendal & Thiel (2003). 

199 The marginal processes are also generally less well developed in our material. However, in other 

200 respects, our specimens resemble published illustration of J. foetida and we have no doubt that 

201 they belong to this large and distinctive species. 

202

203 The discontinuous, fine-grained surface veneer with protruding large grains is reminiscent of the 

204 pattern of agglutination seen in Astrammina rara Rhumbler, 1931 (Bowser & Bernhard, 1993), 

205 although the surface layer in J. foetida is more distinct and the protruding grains occupy a 

206 smaller area. In common with many other agglutinated foraminiferal species (Heron-Allen, 
207 1915; Lipps, 1973; Armynot du Châtelet, Recourt & Chopin, 2008; Makled & Langer, 2009), J. 
208 foetida appears able to select particular kinds of grains according to both size and composition. 

209 We assume that these are bound together by the kind of organic cement found in monothalamous 

210 and some multichambered agglutinated foraminifera (Bender, 1989; 1995; Loeblich & Tappan, 
211 1989; Kaminski, 2004). The typical brownish colour of the test probably reflects the presence of 

212 iron chemically bound to an organic cement (Hedley, 1963), and this may be responsible for the 

213 strength of the test wall, which is remarkably difficult to break. However, we could not observe 

214 any obvious cement in our SEM micrographs (Figs. 5E, F). Berthois and Le Calvez (1966) 

215 mention that the test of J. foetida is formed from quartz grains bound together by siliceous 

216 cement (‘ciment siliceux’) that is secreted by the organism. However, no further details of the 

217 cement are given and it is unclear what the authors were referring to. Loeblich and Tappan 

218 (1989) conclude that there is no evidence for siliceous cement in any agglutinated foraminfera.

219

220 The possible contribution of Jullienella foetida to seafloor biomass
221 SEM micrographs of J. foetida demonstrate the presence of cytoplasm within at least some of the 

222 tests. The dried cytoplasm has a granular appearance and contains scattered diatoms (Fig. 3F). It 

223 somewhat resembles the cytoplasm of the large tubular foraminifera Bathysiphon filiformis Sars, 

224 1872 from the North Carolina margin (Plate 3, Fig. 2 of Gooday et al., 1992), although in that 

225 case biogenic particles were more abundant and diverse. Our micro-CT data provide further 

226 information, suggesting that the cytoplasm is distributed throughout the test. These scans allow 

227 us to make rough estimates of the individual biomass of the specimen illustrated in Fig. 4A, B. 

228 The absolute volumes of the test and lumen were 190.2 mm3 and 71.56 mm3, respectively. If we 

229 assume that 50% of the lumen was occupied by cytoplasm (a very conservative estimate given 

230 that patches of cytoplasm were present in most parts of the test; see Fig. 6B and Supplementary 

231 Fig. S1), and that the density of the cytoplasm is 1.02 g ml-1 (= 0.102 mg mm-3), then the 

232 individual biomass of this specimen would be 3.65 mg wet weight. Gooday et al. (2018) report 

233 cytoplasm (‘granellare’) volumes for 4 abyssal Pacific xenophyophore specimens varying from 

234 9.45 mm3 in Galatheammina sp. to 72.6 mm3 in their specimen 1 of Psammina aff. limbata 
235 Kamenskaya, Gooday & Tendal, 2015. Xenophyophore cytoplasm is packed with barite crystals. 

236 If we assume that these occupied 50% of the granellare volume in these xenophyophores, then 

PeerJ reviewing PDF | (2021:10:67126:0:1:NEW 3 Nov 2021)

Manuscript to be reviewed

nbrig
Nota
truely in all your specimens the embyonic apparatus is not visible, but could it be that you have retrieved the asexual generation whereas all other findings report the sexual one which is commonly much larger?



237 their individual biomass values were between 0.48 to 3.70 mg wet weight, respectively. 

238 According to these calculations, our scanned J. foetida specimen therefore had a biomass 

239 comparable to that of a slightly larger xenophyophore (the maximum dimension of P. aff. 

240 limbata specimen 1 was ~3.5 cm compared to ~2.2 cm for J. foetida), and greater than that of 

241 three other xenophyophore specimens. 

242

243 If similar assumptions are applied to the much larger specimens of J. foetida photographed by 

244 Tendal & Thiel (2003) at 17° N off Mauritania, then their individual biomass would be much 

245 greater than the estimate for our specimen. Thiel (1982) estimated that Jullienella covered up to 

246 about 10% of the seafloor area. Based on these data, and assuming that the average test thickness 

247 is 1 mm, the cytoplasm occupies 50% of the lumen, and again that the wet weight of 1 ml of 

248 cytoplasm is 1.02 g (Levin & Gooday, 1992, Gooday et al., 2018), we calculate the maximum 

249 possible seafloor biomass of J. foetida in Thiel’s (1982) study area to be 15.3 g wet weight m-2. 

250 This estimate would be less if, as seems likely, a proportion of the specimens was dead. For the 

251 sake of argument, we will again assume that this proportion is 50%, which would reduce the 

252 seafloor biomass to 7.65 g wet weight m-2. 

253

254 We emphasise that these estimates are based on very limited data and involve several major 

255 assumptions, particularly regarding the extrapolation from our study to that of Thiel (1982). The 

256 actual figures should therefore not be taken too seriously. However, they are probably the right 

257 order of magnitude and give some indication of the contribution that J. foetida could make to 

258 seafloor biomass on parts of the NW African shelf (Fig. 1) where it is abundant. The value of 

259 7.65 g wet weight m-2 is comparable to maximum foraminiferal biomass estimates, in most cases 

260 derived from whole assemblages of smaller species, from different settings (Murray, 2006). For 

261 shelf seas around Europe and North America it is higher than almost all of those (maximum 2.99 

262 g m-2; in one case 16.3 g m-2) compiled by Murray & Alve (2000). 

263

264 Korsun (2002) concludes that at shelf and upper bathyal depths in parts of the Eurasian Arctic, 

265 foraminiferal biomass may be dominated by large agglutinated species. Our estimate is higher 

266 than that for the St. Anna Trough in the Kara Sea (0.06–1.7 g m-2), where biomass in the >500-

267 µm sieve fraction was dominated by Reophax pilulifer Brady, 1884 (Korsun et al., 1998). 

268 However, an earlier Russian study cited by Korsun et al. (1998) gives values (1 to 10 g m-2) that 

269 are comparable to ours for large astrorhiziid foraminifera (Hyperammina subnodosa Brady, 

270 1884, Rhabdammina abyssorum Sars in Carpenter, 1869, Pelosina variabilis Brady, 1879) in the 

271 Barents Sea. At a 230-m-deep site in the Barents Sea, Kuznetsov (1996) recorded a biomass of 

272 6.2 g m-2 for Hormosina globulifera Brady, 1879 (although his illustration shows a unilocular 

273 test resembling Saccammina sphaerica Brady, 1871). We therefore believe that our estimates 

274 provide plausible maximum values for the seafloor biomass of J. foetida.
275

276 Comparison with xenophyophores
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277 In terms of test morphology, Jullienella foetida resembles some xenophyophores, a group of 

278 large monothalamous foraminifera (suborder Xenophyophoroidea) that are common in the deep 

279 sea below about 550 m depth (Tendal, 1972; 1996; Gooday et al., 2017). These similarities were 

280 first noticed by Goës (1892) who considered that J. foetida 'has much in common' with Neusina 
281 agassizi Goës, 1892, a species he described from the tropical eastern Pacific that is synonymous 

282 with the xenophyophore Stannophyllum zonarium Haeckel, 1889. He concluded that the two 

283 species 'stand much isolated' from other agglutinated foraminifera and 'justly claim to be placed 

284 in a family by themselves'. Later, Cushman (1927) established the family Neusinidae to 

285 accommodate Neusina Goës 1892 and Botellina Carpenter, Jeffreys & Thompson, 1870, to 

286 which he later added Jullienella, and Schizammina (Cushman, 1948), apparently unaware of the 

287 synonymy between N. agassizi and S. zonarium. Jullienella is in fact quite different from 

288 Stannophyllum, which has a soft, flexible test ramified by fine proteinaceous fibres (Tendal, 
289 1972; Gooday et al., 2020). As pointed out by Schulze (1907), these fibres ('dünne Chitinfäden') 

290 are not present in Jullienella.      
291

292 There is a closer morphological similarity between J. foetida and some plate-like species of 

293 Psammina, such as P. zonaria Tendal, 1994, in which a proximal tube widens to become flat and 

294 plate-like (Tendal, 1994). The arrangement of cytoplasmic strands in the fan-shaped P. aff. 

295 limbata (Gooday et al., 2018) is reminiscent of the system of partitions in J. foetida, and the 

296 corresponding shape of the cell body. Nazareammina tenera Gooday, Aranda da Silva & 

297 Pawlowski, 2011 is another Jullienella-like xenophyophore. Photographs of this abyssal species 

298 taken on the surface of a box core resemble in situ images of J. foetida (compare Fig. 12A of 

299 Gooday, Aranda da Silva & Pawlowski, 2011, with photographs in Tendal & Thiel, 2003). Like 

300 some specimens of J. foetida illustrated in Plate VIII, Figs. 1,2,5 of Nørvang (1961), N. tenera 
301 also has a tendency for the plate-like test to break into bar-like elements that may form a 

302 reticulated structure. Despite these morphological similarities, all xenophyophores have a 

303 distinctive internal organization, comprising light-coloured strands of cytoplasm enclosed within 

304 an organic tube (‘granellare’) and dark accumulations of waste pellets (stercomata), that 

305 distinguish them from J. foetida. These features are often immediately obvious when a 

306 xenophyophore test is broken open (Gooday et al., 2018) but have never been reported in J. 
307 foetida. The similarities in test morphology between these two taxa are very likely to be 

308 convergent, although in the absence of genetic data for J. foetida, a phylogenetic relationship 

309 between them cannot be entirely ruled out. 

310

311 We are somewhat less confident about Jullienella zealandica Hayward & Gordon, 1984. Some 

312 specimens of this species illustrated by Hayward & Gordon (1984) are remarkably similar in 

313 their overall external test morphology to Psammina zonaria. It is important to note that J. 
314 zealandica lives at 950 to 1400 m, well within the known depth range of xenophyophores 

315 (Tendal, 1972; 1989; 1996) but much deeper than other members of the Schizamminidae. 

316 However, the internal test structure is apparently rather different, being subdivided by transverse 
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317 partitions in P. zonarium but undivided in J. zealandica. An examination of the cellular 

318 organization of this species would be helpful in determining whether or not it is a true Jullienella 
319 species.  
320

321 Distribution 
322 Since Schlumberger’s original description from off Liberia (Schlumberger, 1890), Jullienella 

323 foetida has been found to be widespread along the western coast of Africa, including between 

324 Western Sahara to Ghana, Mauritania, Senegal, Gambia, French Guinea, Sierra Leone, Liberia, 

325 Ghana, and Côte d’Ivoire (Fig. 1). Our material adds an additional record from off Mauritania. 

326 The species occurs across this range in fairly shallow waters on sandy sediment at depths 

327 between 12 and 89 m and within a temperature range from 16 to 25°C. Abundance is maximal 

328 (up to 200 individuals per m2) at 19°C, a temperature that also corresponds to the occurrence of 

329 the largest specimens (Tendal & Thiel, 2003). Although the bathymetric distribution of this and 

330 other schizamminid species may be influenced by sediment grain size (Buchanan, 1960), the 

331 need for a high food supply seems to the main factor controlling its overall range. Tendal & 

332 Thiel (2003) hypothesized that J. foetida is restricted to regions where seasonal upwelling 

333 occurs, which would be consistent with its large test size and likely high individual biomass. 

334 Other large agglutinated foraminifera are reported to occur in areas of organic matter flux to the 

335 seafloor (e.g. Gooday et al., 1992). The overall distribution coincides well with large parts of the 

336 Canary Current Upwelling System (CCUS), an area that extends from the Iberian Peninsula to 

337 Guinea, and constitutes one of the most productive coastal upwelling systems in the world 

338 (Demarcq & Somoue, 2015; Kämpf & Chapman, 2016). In addition, the CCUS area is situated 

339 adjacent to the Sahara Desert and exposed to one of the highest rates of airborne dust, a major 

340 source of nutrients, in particular iron (Neuer et al., 2004). Towards the southern part of the range 

341 (Gulf of Guinea), river runoff becomes the main source for the organic matter deposited on the 

342 continental shelf (Kämpf & Chapman, 2016). Despite extensive studies on the shallow benthic 

343 foraminiferal assemblages from reefs, shallow coastal habitats, lagoons and mangrove 

344 environments, J. foetida has not yet been recorded from Gabon, Sao Tomé, Príncipe or Nigeria 

345 (Langer, Fajemila & Mannl, 2016; Fajemila & Langer 2016; 2017; Fajemila, Sariaslan & 
346 Langer, 2020). 

347

348 Concluding remarks

349 Jullienella foetida is probably the largest agglutinated foraminiferal species occurring in 

350 relatively shallow water (<100 m depth). The thin, basically fan-shaped test can reach lengths of 

351 up to ~14 cm, a size only matched among continental-shelf foraminifera by the discoidal 

352 calcareous nummulitiid (Globothalamea) Cycloclypeus carpenteri Brady, 1881 (Briguglio et al., 
353 2016). Some deep-sea xenophyophores are larger in terms of test size (up to 20 cm or more; 

354 Tendal, 1972), but only a small part (a few percent at most) of this volume is occupied by 

355 cytoplasm. In contrast, our new observations of the internal structure of J. foetida suggests that 

356 the cell body probably fills much of the test interior, which would mean that this species is 
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357 possibly one of the largest of all foraminifera in terms of biomass. X-ray images of the test reveal 

358 an elaborate system of radial partitions that subdivides the test interior into channels (also shown 

359 in pl. 17, figs. 7,8 of Loeblich & Tappan, 1988). These may serve to direct the flow of the 

360 cytoplasm, and perhaps increase its surface to volume ratio, as suggested recently for the much 

361 smaller calcareous foraminifera Chilostomella ovoidea Reuss, 1850 (Nomaki et al., 2020). 

362

363 Jullienella foetida occupies a restricted geographical range around part of the NW African 

364 margin at water depths above 100 m (Fig. 1). It is found in eutrophic settings and on sandy, 

365 sometimes rippled substrates, suggesting a preference for energetic environments. Like some 

366 other large agglutinated foraminifera (Gooday et al., 1992), the cytoplasm contains diatoms, 

367 suggesting that it feeds on detritus. It seems likely that this species fulfils an important, perhaps 

368 keystone, ecosystem role by providing the only extensive firm substrate on which sessile 

369 organisms can settle (Cook 1968; 1985), thereby increasing local biodiversity, as well as by 

370 processing organic matter at the base of the benthic food chain. However, much remains to be 

371 learnt about the ecology and biology of J. foetida. It will also be important to obtain DNA 

372 sequences from fresh material in order to clarify the place of this giant species, and others 

373 currently assigned to the Schizamminidae, within the radiation of monothalamous foraminifera. 

374
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Figure 1
Distribution of Jullienella foetida.

Map showing all known localities where Jullienella foetida has been recorded. The
unpublished record from off Ghana is based on a sample in the collections of the National
Oceanography Centre, Southampton, of uncertain provenance. The label in the bottle reads

‘Plant material. Agazziz Trawl No 3. 2-5-51 (i.e., 2nd of May 1951). Gold Coast. R. Barrindale’.
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Figure 2
Jullienella foetida

Jullienella foetida; light photographs and corresponding X-ray photographs of 10

specimens. The radiating linear structures in the X-ray images are interpreted as internal
partitions. In some cases, these features are strongly developed along their entire length, but
in others they resemble dashed lines, with prominent sections separated by gaps where they
are weakly developed or absent.
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Figure 3
SEM electron micrographs of Jullienella foetida.

Jullienella foetida; scanning electron micrographs. (a) Complete specimen. (b) Test
surface showing smooth, fine-grained outer layer with larger grains projecting through it from
the underlying wall. (c) Detail of area enclosed by rectangle in figure (a) showing area where
the wall has been removed to show internal features and remnant of dried cytoplasm
(smaller rectangle). (d) Detail of area indicated by the larger rectangle in figure (c) showing
inner surface of test wall with complex pattern of pits and upstanding areas. (e) Detail of
area indicated by smaller rectangle in figure (c) showing surface of cytoplasmic remnant. (f)
Detail of area indicated by rectangle in figure (e) showing surface of cytoplasm with diatoms.
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Figure 4
Jullienella foetida; micro-CT scans.

Jullienella foetida; micro-CT scans of the two specimens shown in Fig. 2a, f. (a, c).
Test surface; note the protruding grains. (b, d) Test lumen showing the interface between the
test wall and the inner cavity. In effect, this is a view of the inner surface of the wall in
reverse. The interface is covered with small-scale irregularities reflecting the labyrinthic
nature of the test wall. Note that the internal partitions in (b, d), indicated by open spaces,
are developed intermittently, particularly in (b).
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Figure 5
Scanning electron micrographs of Jullienella foetida.

Jullienella foetida; scanning electron micrographs. (a) Complete specimen. (b-d)
Progressively closer views of a broken edge with the coarsely agglutinated test wall overlain
by a very thin, fine-grained surface veneer; the test lumen is interrupted by internal
agglutinated grains that form, either cross-sections of partitions or more isolated columnar
structures. (e) Detail of broken test wall showing large agglutinated grains with intervening
spaces filled by fine-grained mortar. (f) Detail of fine-grained mortar.
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Figure 6
Micro-CT images of Jullienella specimen with coloured cytoplasm.

Greyscale micro-CT images of the Jullienella specimen illustrated in Fig. 2a,a' and

4a,b with two density components. (a) Cross section. (b) Section in the plane of the test.
The agglutinated test wall (=aw) and internal test partitions (=itp) are well defined as dense
and bright white in greyscale scan images. The cytoplasm (=cy) occurs as low-density,
material (coloured yellow) and is patchily distributed throughout the test. See also
Supplementary Fig. S1.
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