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ABSTRACT
Background. Tumor Treating Fields (TTFields), are a novel, non-invasive tissue
ablation technology for treatment of cancer. Tissue ablation is achieved through the
continuous delivery of a narrow range of electromagnetic fields across a tumor, for
a period of months. TTFields are designed to affect only cells that divide and to
interfere with the cell division process. The therapy is monitored with MRI imaging,
performed every couple ofmonths. Current technology is unable to assess the treatment
effectiveness in real time.
Methods. We propose that the effect of the treatment can be assessed, in real time, by
continuouslymeasuring the change in electrical impedance across the TTFields delivery
electrode arrays. An in vitro anatomic skull experimental study, with brain and tumor
mimics phantom tissues was conducted to confirm the potential value of the proposed
monitoring system.
Results. Experiments show that measuring the change in the impedance amplitude
between opposite TTFields electrode arrays, at a typical TTFields treatment frequency
of (200 kHz), can detect changes in the tumor radius with a sensitivity that increases
with the radius of the tumor. The study shows that TTFields electrode arrays can be used
to assess the effectiveness of TTFields treatment on changes in the tumor dimensions in
real time, throughout the treatement. This monitoring system may become a valuable
addition to the TTFields cancer treatment technology. It could provide the means to
continuously assess the effectiveness of the treatment, and thereby optimize the design
of the treatment protocol.

Subjects Biochemistry, Bioengineering, Biophysics, Biotechnology, Radiology and Medical
Imaging
Keywords Tumor Treating Fields, Impedance detection, Brain tumor, Tumor condition,
Monitoring sensitivity

INTRODUCTION
Tumor Treating Fields (TTFields) are a minimally invasive, non-contact, tissue
ablation technology that employs intermediate-frequency (100–300 kHz), and low-
intensity (<3 V/cm) electric fields to inhibit the growth of dividing (cancer) cells
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(Kirson et al., 2004). Clinical evidence shows that the delivery of TTFields prolongs the
survival time of glioblastoma multiform (GBM) patients, without obvious side effects
(Guberina et al., 2020; Mun et al., 2018). The Food and Drug Administration (FDA) has
approved the use of TTFields for GBM treatment (Guberina et al., 2020; Mun et al., 2018).
In clinical practice, TTFields are delivered in paired orthogonal directions, left–right and
anterior-posterior using insulated ceramic disk electrode arrays, attached to a patient’s
shaved scalp (Trusheim et al., 2017). A schematic of the placement of the electrodes in
relation to the tumor, is shown in Fig. 1A. The electrodes are rigidly attached to the
shaved scalp and are connected to a portable power generator. To maximize the intensity
of the electric fields delivered to the tumor, the placement of the treatment electrodes
is individualized to each patient, using the patient own baseline magnetic resonance
image (MRI) of the brain to determine the optimal placement. The NovoTAL System
(NovoTAL, USA) is a commercial software for optimization of the TTFields electrode
placements. A detailed description of the way in which the electrode placements and the
choice of treatment parameters are optimized is given in Trusheim et al. (2017). TTFields
treatment is substantially different from other clinical tissue ablation treatments. In most
conventional tissue ablation treatments, such as microwave, radiofrequency, cryosurgery,
focused ultrasound, irreversible electroporation, radiation therapy, the surgical procedure
is minutes long. The ablative energy is delivered under real time medical imaging. The
success of these treatments can be assessed shortly after the end of the procedure, with
conventional medical imaging. Unlike other tissue ablation treatments, which affect all the
cells in the treated volume, TTFields affect only the tumor cells that divide. The TTFields
electromagnetic fields interfere with the cell division process and stop the cell division (Li,
Yang & Rubinsky, 2020). Therefore, TTFields are delivered for long periods to affect cells
that divide, whenever they are dividing. In conventional TTFields treatment, the electric
fields are delivered for many months and even years (Davies, Weinberg & Palti, 2013). The
patient activates a portable power supply to deliver the treatment. The treatment usually
lasts for up to 18 h per day (Mrugala et al., 2014). The effect of TTFields is frequency
depended and the optimal frequency can vary with cell type (Giladi et al., 2015). For GBM,
the optimal frequency is thought to be about 200 kHz. For technical and economic reasons
the success of the treatment on GBM is assessed by a limited number of follow-up MRI
scans, which are usually performed every two months (Trusheim et al., 2017; Hottinger,
Pacheco & Stupp, 2016). If these once every two months MRI scans show that the treatment
is not successful, the remedy is to change the treatment parameters. However, GBM is an
aggressive disease in which the tumor can grow fast. A technology for real time monitoring
of the tumor growth or recession during the actual TTFields treatment could provide
timely feedback to the physician on the efficacy of the treatment parameters.

Typical TTFields treatment protocols are as follows. After clinical verification of the
nature of the tumor, MRI is used to precisely determine the location of the tumor and its
dimensions. Then, the MRI images are used with an optimization algorithm, the NovoTAL
System (Trusheim et al., 2017) (NovoTAL, USA) to calculate the optimal placement of the
treatment electrodes, in such a way that the resulting electromagnetic fields are focused
onto the tumors, throughout the months long application of the treatment. In this paper
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Figure 1 Schematics and photographs TTFields treatment of TTFields electrode arrays. TTFields treat-
ment of GBM: (A) schematic of the configuration of electrode array on the skull, (B) equivalent lump
model circuit, (C) photographs of the anatomical skull and the TTFields electrode arrays.

Full-size DOI: 10.7717/peerj.12877/fig-1

we show that the way in which TTFields are delivered across tumors, with electrodes fixed
to the skull at a location calculated to deliver the electric fields precisely to the tumors,
makes the treatment electrodes particularly suitable for real time monitoring of tumor size
through the measurement of the electrical impedance between the electrodes. Changes in
the tumor size will affect the electrical impedance between electrodes because normal and
malignant brain tissues have different electric properties (Latikka & Eskola, 2019).

The head can be viewed as a complex electric circuit network, represented by a black box.
The electrode arrays on the scalp are the accessible nodes to the black box network, which
is the head, as shown in a schematic way in Fig. 1B. Because of the difference in electrical
properties between the normal and malignant brain tissue (Latikka & Eskola, 2019), any

Li et al. (2022), PeerJ, DOI 10.7717/peerj.12877 3/13

https://peerj.com
https://doi.org/10.7717/peerj.12877/fig-1
http://dx.doi.org/10.7717/peerj.12877


changes in the tumor size and composition will lead to changes in the impedance measured
across the black box circuit network that is the head. Therefore, we suggest that monitoring
changes in the electrical impedance between the TTFields delivery electrodes could be used
to detect changes in the tumor treated by these electric fields, throughout the treatment,
in real time. Once changes are detected, conventional medical imaging can be used to
investigate the nature of these changes. This could replace randomly chosen times for
medical imaging follow-up with follow ups that are clinically significant. Furthermore, if
no changes in the impedance between the TTFields electrodes are detected, it may be an
indication that the treatment is ineffective and that the treatment parameters should be
modified. It should be emphasized, thatmeasuring changes in electrical impedance between
electrodes to monitor changes in the composition of tissue between the electrodes is not
new. In fact, it serves as the basis for imaging techniques known as ‘‘electrical impedance
tomography’’ (EIT) (Escobar, 2020) and magnetic induction tomography (MIT) (Griffiths,
2001). A closely related use of the concept described in this paper is to clinically monitor
internal bleeding in the brain (Gonzalez et al., 2013), and to monitor cerebrovascular
autoregulation (Oziel et al., 2016).

This paper is a first order feasibility experimental study, whose goal is to asses if
measuring changes in electrical impedance between TTFields electrodes is sensitive enough
to detect changes in the tumor size. In this study we explore the feasibility of the concept
with a first order experimental model that employs a geometrically accurate head filled
with a gel with electrical properties of brain tissue and in which the tumor is simulated with
a tuber, with electrical properties of a tumor. The TTFields electrodes are attached to the
skull and the experiments measure the changes in electric impedance between the TTFields
electrodes as a function of the simulated tumor size and location. The other anatomic
details of the head are considered fixed throughout the treatment and represented by the
black box circuit network in Fig. 1B. This model is a first order approximation of human
and tumor anatomy and is used to evaluate the feasibility of the concept.

We should also note that GBMS are not simply solitarymasses but rather are often deeply
infiltrating tumors, with scattered neoplastic cells extending out far from any observable
mass onMRI. Moreover, the brain has ventricles which can take up a substantial volume of
the cranial vault. However, the intent of the technique introduced in this study is to evaluate
the feasibility of detecting changes in the main tumor mass from TTFields treatment by
monitoring changes in impedance between the TTFields electrodes at a given frequency
and for a fixed location of the TTField electrodes relative to the tumor. It should be
emphasized that conventional monitoring of the effect of TTFields treatment is also done
by monitoring the size of the tumor with MRI. The clinical efficiency of the treatment with
TTFields and MRI means of treatment monitoring, has been demonstrated in thousands
of treatment, worldwide.

While the brain and the tumor have a complex anatomy and composition, our
measurements are geared to compare only the changes in impedance across the brain,
before and after the TTFields treatment, with an eye towards the changes in the mass of
the main tumor, as MRI does. The concept of using electromagnetic properties ‘‘changes’’
across the brain, to detect physiological changes in the brain, while the head is considered
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as a black box, was validate in many clinical studies, e.g., Oziel et al. (2016), Kellner et al.
(2018) and Venkatasubba Rao et al. (2018).

MATERIALS & METHODS
The study was performed on a geometrically accurate, 1:1 anatomically scaled human skull
made of a durable polymer (Anatomy Warehouse, Evanston, IL, USA). The overall size
is about 170 mm × 145 mm. The TTFields electrodes were placed on the skull in a way
that precisely simulates clinical practice. Electrode arrays were attached to the skull at four
locations, anterior, posterior, left and right, as shown in Fig. 1C. At each location there
are 6 electrodes shorted together and connected to one measurement output. The 10 mm
radius electrodes were designed to be similar to TTFields treatment electrodes (Korshoej
et al., 2017). The TTFields simulating electrode arrays are made of a copper tape (Bertech,
USA) with an insulated adhesive layer with which the electrodes are attached to the surface
of the skull. The dimensions and placement of the electrodes on the skull and the output
electric wire from each array are shown in Fig. 1C. The brain was simulated by a gel with
electrical properties similar to those of bulk brain tissue (Pomfret, Sillay & Miranpuri, 2013;
Kandadai, Raymond & Shaw, 2012). The gel was made of 4% alginate sodium + 2% NaCl
+ 94% deionized water. We have verified that this composition has electric properties
similar to those of the brain in the frequency range of interest (test is not shown here).
The GBM brain tumor, has a higher water content and an electrical conductivity that is
several to ten times higher than the surrounding healthy tissue normal brain tissue (Foster
& Schwan, 1989), which can provide sufficient sensitivity to evaluate the tumor change
via impedance shift. The potato is used as a substitute for the tumor because the potato
electrical conductivity at the frequency range of interest (Gratz et al., 2021) is similar to
that of a tumor (Latikka & Eskola, 2019).

The potato was shaped into a sphere and placed at a predetermined location in the skull.
Then, 800 ml gel was poured into the inverted skull, around the potato, as shown in Fig. 2B.
The coordinates used for the placement of the potato (tumor) are shown in a schematic in
Fig. 2C. The electrode arrays were connected to a precision Impedance Analyzer (Agilent
4294A) (Fig. 2A) to measure the impedance between each two opposite electrode arrays.
Various dimensions of the potato sphere and their placement at various locations, were
used to study the effects of tumor size and location on the impedance between the TTFields
electrode arrays. Typically, TTFields are delivered in the frequency range of from 100 kHz
to 300 kHz (Fabian et al., 2019), at which they produce the maximal therapeutic effect.

In this study, the impedance measurements were made at a frequency of 200 kHz, which
is the preferred frequency used for clinical TTFields treatments. We report here only results
from the change in amplitude measurements. We have shown in a series of previous studies
that phase shift measurements at frequencies lower than 0.1 MHz cannot detect changes
in tissue e.g., Gonzalez & Rubinsky (2006a), González et al. (2006b), Gonzalez, Horowitz
& Rubinsky (2007) and González et al. (2009). Therefore, we report only experimentally
measured changes in the impedance amplitude that resulted from the insertion of various
tumor emulators in the skull, i.e., 1Z = |Z2|−|Z1|.
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Figure 2 Setup of experimental skull. The setup of electrical impedance detection experiment on in vitro
skull model, (A) skull model, (B) simulated brain tissue (gel) and tumor (potato), (C) the coordinate sys-
tem of the model.

Full-size DOI: 10.7717/peerj.12877/fig-2

RESULTS
In clinical practice, the TTFields electrode arrays are placed rigidly on the scalp at
locations predetermined by the NovoTAL System (NovoTAL, USA), in such a way as
to optimize the optimal delivery of the electric fields to the treated tumor. The treatment
electrode arrays are usually placed in two opposite configurations, orthogonal to each
other, which is considered to be the optimal layout for delivering the TTFields dose to
the tumor (Korshoej et al., 2017). Therefore, the impedance between TTFields electrode
arrays can be measured in two configurations, opposite and adjacent. Previous studies on
placement of electrical impedance tomography (EIT) electrodes have shown that opposite
electrodes measurements are more sensitive than adjacent electrode measurements
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(Koksal & Eyuboglu, 1995). Therefore, our experiments were carried out with
measurements made between opposite electrode arrays.

To establish a base line, the impedance between electrodes with the brain tissue phantom
(gel) only, i.e.,without the tumor, was measured first. At a frequency of 200 kHz, the values
of the impedance between the electrode arrays on the anatomical skull, filled only with
the gel, without the simulated tumors, along the x-axis and the y-axis, are 372.25 �

and 606.77 �, respectively, this measurement was followed by experiments in which we
inserted the tumor potato model at eight different locations on the x-axis and y-axis, in
the simulating brain tissue gel. In these experiments the impedance was measured between
the two opposite TTFields electrode arrays, at 200 kHz. Four repeated measurements were
made for each experimental case. Figure 3A gives the experimental results showing the
effect of tumor size and location on the changes in impedance relative to the baseline
measurements. The maximal positive and negative deviations relative to the mean value
were calculated from four repeat and are marked as error bars on the data points. It is
evident that the change in impedance increases with the radius of the tumor. The figures
show that it is possible to distinguish between the data point for every five mm increase in
consecutive tumor radiuses, with a statistical significant difference of F = 39.81 > F_crit
= 3.49 and P = 1.63×10−6 < 0.05, analyzed by ANOVA in Excel.

DISCUSSION
The experimental results demonstrate that changes in tumor size can be monitored with
typical TTFields electrodes and used to provide continuous information on the effects of the
treatment on the tumor dimensions, with a resolution of at least five mm. The experimental
data can be also used used to assess the sensitivity of the experimental impedance change
measurements to the initial tumor radius. The first order derivative is a local measure of
how changes in the abscissa affect changes in the ordinate. We performed this sensitivity
analysis for two extreme conditions. Case A which deals with tumors at x = 0 which is the
furthest location from the electrodes. Case B deals with tumors on y = 40, which is the
proximate location to the electrodes. To calculate the derivative continuously, as a function
of initial tumor radius, we used a cubic interpolation of the experimental points. The plots
of the derivatives as a function of initial tumor radius are shown Fig. 3B, for cases A and
B. It is evident that the sensitivity (first order derivative) increases with an increase in the
initial radius of the phantom tumors in an exponential way and is larger for tumors that are
close to the electrodes. This study shows that this technology is more effective at assessing
the success of the TTFields treatment on larger tumors. This has clinical value, because the
larger the tumor the larger the peril to the patient and the less time there is to optimize the
treatment parameters.

In any real measurement system, the measurement noise is unavoidable. This section
will discuss the effect of measurement noise on the accuracy. The conventional definition,
of the Signal to Noise Ratio (SNR) (Welvaert & Rosseel, 2013) is:

SNR= 20lg
Zs

Zn
. (1)
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Figure 3 Impedance as a function of tumor radius. (A) Upper left row: schematics of locations of the
tumor phantom. Lower left row: experimentally determined impedance change relative to the brain with
no tumor, as a function of tumor size at different tumor locations on the x axis and y axis, error bars are
shown for each data point. (B) The sensitivity to tumor changes. The first order derivative of the results
in A.

Full-size DOI: 10.7717/peerj.12877/fig-3
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where, Zs is the accurate measured impedance, Zn is the measurement impedance noise.
Considering the randomness of multiple measurements, the noise could be positive or

negative. In this analysis, we used a randomnumber generator to simulate themeasurement
noise, that is

Zn=Zs ·10−SNR/20(2 · rand−1). (2)

where, the rand is a function that generates a random number between 0 and 1.
In the presence of noise, the impedance measured across TTFields electrode arrays will

be

Z =Zs+Zn. (3)

To ensure that the impedance change is not obscured by noise, the impedance change
due to a change in tumor size must be larger than the measurement noise, that is

1Z >Zn=Zs ·10−SNR/20(2 · rand−1). (4)

As discussed earlier the baseline value of the measured impedance in the absence of
tumors is between 372 � and 605 �. We perform here a calculation for a roughly median
impedance measurement of 500 �. The highest resolutions of the impedance change for
different noise levels was calculated from Eq. (4) and results show that, as expected, the
resolution is improved with an increase in SNR. When the SNR is from 40 dB to 60 dB,
the resolution of impedance changes with the tumor size between 5 �/mm and 0.5 �/mm.
This implies that changes in tumor radius of one mm can be reliable detected only if it
yields a larger than 0.5 � change in impedance. Our experimental data analysis in Fig. 3B,
shows that this noise level is too high to detect one mm changes in tumor radius, even
for a tumor as large as 20 mm. At 20 mm initial tumor radius, the first derivative is less
than or close to 5 �/mm. However a SNR of 50 dB and higher is quite acceptable, in
particular for larger tumors. Figure 3B shows that the first derivative for a tumor larger
than 10 mm is about 1.21 �/mm (y = 40 mm, black curve in Fig. 3B) and 0.51 �/mm
(x = 0, red curve in Fig. 3B). This result suggests that in practice, the SNR of the impedance
measurement system should be higher than 50 dB. This is a reasonable level. The accuracy
of the commercial Impedance Analyzer Agilent 4294A that was used in the experimental
part of this study is 62 dB (±0.08%, data from the instrument manual). Higher precision
electronics can be used to ensure an even higher SNR, for example precision electric bridges.

As for the simulated skull model, obviously, it is not an exact replica of the real human
head and the real GBM tumor. In reality, the brain tissue is inhomogeneous with ventricles
and the GBM tumor can have extensions in the brain. However, the materials used in
the experiments have similar electric properties as the brain and the tumor. Therefore,
considering the head a black box with constant electric properties, except for the change
in size and location of the simulated tumor, can provide a qualitative assessment in a first
order model examination of the effect of tumor changes on impedance across TTFields
electrodes.
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CONCLUSION
TTFields are a relative new tissue ablation technology that treats cancer by affecting the
division process in cancer cells. Treatment is done over periods of months and years and
there is no simple technology to monitor the effectiveness of the treatment over time. Here
we examined the idea that measuring the change in impedance across the electrode arrays
that deliver the TTFields treatment could be used to monitor in real time the temporal
changes in the tumor size. An in vitro skull experimental study has confirmed the potential
value of the proposed monitoring system. Preliminary data suggests that measuring
the change in impedance amplitude between opposite TTFields electrode arrays, at the
frequency of the typical TTFields treatment parameters, can detect changes in the tumor
radius with a resolution that increases with an increase in the initial radius of the tumor.
This technique can be easily implemented by adding an impedance measurement function
to the original commercial TTFields treatment device. The electrode arrays on the scalp
can be designed to serve as a means to deliver the TTFields and as a sensor to measure
the electrical impedance, between them. Obviously this is a first stage feasibility study that
needs to be verified with clinical studies. If successful, this monitoring system may be a
valuable addition to the TTFields cancer treatment technology. It is possible that in future
implementations of this technique, an MRI image based exact simulation of the brain
and the tumor, such as that generated by the NovoTAL System (Trusheim et al., 2017)
(NovoTAL, USA) could be used to fine tune the interpretation of the measurements of the
change in impedance between the TTFields electrodes.

While the brain and the tumor have a complex anatomy and composition, our
measurements are geared to compare only the changes in impedance across the brain,
before and after the TTFields treatment, with an eye towards the changes in the mass of
the main tumor, as MRI does. It should be emphasized that the technique described in
this study is designed for monitoring the effect of the TTFields procedure on the tumor,
if it grows or recedes. The technique is not designed as a means to detect tumors. It is
used only after the tumors are detected with other techniques that are much more precise,
such as MRI. There is no doubt that MRI is much more sensitive and provides much more
information than the technique in this paper. The advantage of this technique over MRI
is that it is much less expensive, can be done at the home of the patient and continuously
monitors the success of the treatment. However, we anticipate that this technique will
be used primarily as a means to alert the physician that an MRI is immediately needed
because the tumor seems to keep growing despite the treatment and that perhaps changes
in treatment parameters are needed. Currently, the MRI’s are scheduled at the physician
chosen time intervals without any relation to the success of the treatment.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors recieved no funding for this work.

Li et al. (2022), PeerJ, DOI 10.7717/peerj.12877 10/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.12877


Competing Interests
Boris Rubinsky is an Academic Editor for PeerJ. The other co-authors declare that they
have no competing interests.

Author Contributions
• Xing Li conceived and designed the experiments, performed the experiments, analyzed
the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and
approved the final draft.
• Moshe Oziel conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.
• Boris Rubinsky conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The raw data for Fig. 3 is available in the Supplementary File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.12877#supplemental-information.

REFERENCES
Davies AM,Weinberg U, Palti Y. 2013. Tumor treating fields: a new frontier

in cancer therapy. Annals of the New York Academy of Sciences 1291:86–95
DOI 10.1111/nyas.12112.

Escobar RF. 2020. Electrical impedance tomography: hardware fundamentals and
medical applications. Ingeniería Solidaria 16(3):1–29
DOI 10.16925/2357-6014.2020.03.02.

Fabian D, Eibl M del PGP, Alnahhas I, Sebastian N, Giglio P, Puduvalli V, Gonzalez
J, Palmer JD. 2019. Treatment of glioblastoma (GBM) with the addition of tumor-
treating fields (TTF): a review. Cancers 11(2):174 DOI 10.3390/cancers11020174.

Foster KR, Schwan HP. 1989. Dielectric properties of tissues and biological materials: a
critical review. Critical Reviews in Biomedical Engineering 17:25–104.

Giladi M, Schneiderman R, Voloshin T, Al E. 2015.Mitotic spindle disruption by
alternating electric fields leads to improper chromosome segregation and mitotic
catastrophe in cancer cells. Scientific Reports 5:18046 DOI 10.1038/srep18046.

Gonzalez CA, Horowitz L, Rubinsky B. 2007. In vivo inductive phase shift measure-
ments to detect intraperitoneal fluid. IEEE Transactions on Biomedical Engineering
54:953–956 DOI 10.1109/TBME.2006.889183.

Gonzalez CA, Rubinsky B. 2006a. The detection of brain oedema with frequency-
dependent phase shift electromagnetic induction. Physiological Measurement
27:539–552.

Li et al. (2022), PeerJ, DOI 10.7717/peerj.12877 11/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.12877#supplemental-information
http://dx.doi.org/10.7717/peerj.12877#supplemental-information
http://dx.doi.org/10.7717/peerj.12877#supplemental-information
http://dx.doi.org/10.1111/nyas.12112
http://dx.doi.org/10.16925/2357-6014.2020.03.02
http://dx.doi.org/10.3390/cancers11020174
http://dx.doi.org/10.1038/srep18046
http://dx.doi.org/10.1109/TBME.2006.889183
http://dx.doi.org/10.7717/peerj.12877


González CA, Rubinsky B. 2006b. A theoretical study on magnetic induction frequency
dependence of phase shift in oedema and haematoma. Physiological Measurement
27:829–838 DOI 10.1088/0967-3334/27/9/006.

Gonzalez CA, Valencia JA, Mora A, Gonzalez F, Velasco B, Porras MA, Salgado J, Polo
SM, Hevia-Montiel N, Cordero S, Rubinsky B. 2013. Volumetric electromagnetic
phase-shift spectroscopy of brain edema and hematoma. PLOS ONE 8:e63223
DOI 10.1371/journal.pone.0063223.

González CA, Villanueva C, Vera C, Flores O, Reyes RD, Rubinsky B. 2009. The detec-
tion of brain ischaemia in rats by inductive phase shift spectroscopy. Physiological
Measurement 30:809–819 DOI 10.1088/0967-3334/30/8/006.

Gratz M, Schttroff F, Gall L, Zejma B, Simon F, Jaeger H. 2021. Advantages of ohmic
cooking in the kilohertz-range—part I: impact of conductivity and frequency on
the heating uniformity of potatoes. Innovative Food Science & Emerging Technologies
67:102595 DOI 10.1016/j.ifset.2020.102595.

Griffiths H. 2001.Magnetic induction tomography.Measurement Science and Technology
12:1126–1131 DOI 10.1088/0957-0233/12/8/319.

Guberina N, Pöttgen C, Kebir S, Lazaridis L, Scharmberg C, LübckeW, Lüdemann
L. 2020. Combined radiotherapy and concurrent tumor treating fields (TTFields)
for glioblastoma: Dosimetric consequences on non-coplanar IMRT as initial results
from a phase I trial. Radiation Oncology 15(1):83 DOI 10.1186/s13014-020-01521-7.

Hottinger AF, Pacheco P, Stupp R. 2016. Tumor treating fields: a novel treat-
ment modality and its use in brain tumors. Neuro-oncology 18:1338–1349
DOI 10.1093/neuonc/now182.

Kandadai MA, Raymond JL, Shaw GJ. 2012. Comparison of electrical conductivities of
various brain phantom gels: developing a Brain Gel Model.Materials Science and
Engineering C 32:2664–2667.

Kellner CP, Sauvageau E, Snyder KV, Fargen KM, Arthur AS, Turner R, Alexandrov
AV. 2018. The VITAL study and overall pooled analysis with the VIPS non-invasive
stroke detection device. Journal of NeuroInterventional Surgery 10:1079–1084
DOI 10.1136/neurintsurg-2017-013690.

Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A,Wasserman Y,
Schatzberger R, Palti Y. 2004. Disruption of cancer cell replication by alternating
electric fields. Cancer Research 64:3288–3295
DOI 10.1158/0008-5472.CAN-04-0083.

Koksal A, Eyuboglu B. 1995. Determination of optimum injected current patterns
in electrical impedance tomography. Physiological Measurement 16:A99–A109
DOI 10.1088/0967-3334/16/3A/010.

Korshoej AR, Hansen FL, Thielscher A, Von Oettingen GB, Sørensen JCH. 2017.
Impact of tumor position, conductivity distribution and tissue homogeneity on the
distribution of tumor treating fields in a human brain: a computer modeling study.
PLOS ONE 12:e0179214 DOI 10.1371/journal.pone.0179214.

Latikka J, Eskola H. 2019. The resistivity of human brain tumours in vivo. Annals of
Biomedical Engineering 47:706–713 DOI 10.1007/s10439-018-02189-7.

Li et al. (2022), PeerJ, DOI 10.7717/peerj.12877 12/13

https://peerj.com
http://dx.doi.org/10.1088/0967-3334/27/9/006
http://dx.doi.org/10.1371/journal.pone.0063223
http://dx.doi.org/10.1088/0967-3334/30/8/006
http://dx.doi.org/10.1016/j.ifset.2020.102595
http://dx.doi.org/10.1088/0957-0233/12/8/319
http://dx.doi.org/10.1186/s13014-020-01521-7
http://dx.doi.org/10.1093/neuonc/now182
http://dx.doi.org/10.1136/neurintsurg-2017-013690
http://dx.doi.org/10.1158/0008-5472.CAN-04-0083
http://dx.doi.org/10.1088/0967-3334/16/3A/010
http://dx.doi.org/10.1371/journal.pone.0179214
http://dx.doi.org/10.1007/s10439-018-02189-7
http://dx.doi.org/10.7717/peerj.12877


Li X, Yang F, Rubinsky B. 2020. A theoretical study on the biophysical mechanisms by
which tumor treating fields affect tumor cells during mitosis. IEEE Transactions on
Biomedical Engineering 67:2594–2602 DOI 10.1109/TBME.2020.2965883.

Mrugala MM, Engelhard HH, Tran DD, Kew Y, Cavaliere R, Villano JL, Bota DA,
Rudnick J, Sumrall AL, Zhu J-J, Butowski N. 2014. Clinical practice experience
with NovoTTF-100ATMsystem for glioblastoma: the patient registry dataset (PRiDe).
Seminars in Oncology 41:S4–S13 DOI 10.1053/j.seminoncol.2014.09.010.

Mun EJ, Babiker H,Weinberg U, Kirson ED, Von Hoff DD. 2018. Tumor-treating
fields: a fourth modality in cancer treatment. Clinical Cancer Research 24:266–275.

Oziel M, Hjouj M, Gonzalez CA, Lavee J, Rubinsky B. 2016. Non-ionizing radiofre-
quency electromagnetic waves traversing the head can be used to detect cerebrovas-
cular autoregulation responses (vol 6, 21667, 2016). Scientific Reports 6:23875.

Pomfret R, Sillay K, Miranpuri G. 2013. Investigation of the electrical properties of
agarose gel: characterization of concentration using nyquist plot phase angle and
the implications of a more comprehensive in vitromodel of the brain. Annals of
Neurosciences 20:99–107 DOI 10.5214/ans.0972.7531.200305.

Trusheim J, Dunbar E, Battiste J, Iwamoto F, Mohile N, Damek D, Bota DA, Con-
nelly J. 2017. A state-of-the-art review and guidelines for tumor treating fields
treatment planning and patient follow-up in glioblastoma. CNS Oncology 6:29–43
DOI 10.2217/cns-2016-0032.

Venkatasubba Rao CP, Bershad EM, Calvillo E, Al E. 2018.Monitoring of in-
tracranial fluid shifts during dialysis using volumetric integral phase-shift spec-
troscopy (VIPS): a proof-of-poncept study. Neurocritical Care 28:117–126
DOI 10.1007/s12028-017-0409-4.

Welvaert M, Rosseel Y. 2013. On the definition of signal-to-noise ratio and contrast-to-
noise ratio for fMRI data. PLOS ONE 8:e77089 DOI 10.1371/journal.pone.0077089.

Li et al. (2022), PeerJ, DOI 10.7717/peerj.12877 13/13

https://peerj.com
http://dx.doi.org/10.1109/TBME.2020.2965883
http://dx.doi.org/10.1053/j.seminoncol.2014.09.010
http://dx.doi.org/10.5214/ans.0972.7531.200305
http://dx.doi.org/10.2217/cns-2016-0032
http://dx.doi.org/10.1007/s12028-017-0409-4
http://dx.doi.org/10.1371/journal.pone.0077089
http://dx.doi.org/10.7717/peerj.12877

