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Rainfall fluctuation makes precipitation and flood prediction difficult. The coefficient of
variation can be used to measure rainfall dispersion to produce information for predicting
future rainfall, thereby mitigating future disasters. Rainfall data usually consist of positive
and true zero values that correspond to a delta-lognormal distribution. Therefore, the
coefficient of variation of delta-lognormal distribution is appropriate to measure the rainfall
dispersion more than lognormal distribution. In particular, the measurement of the
dispersion of precipitation from several areas can be determined by measuring the
common coefficient of variation in the rainfall from those areas together. The purpose of
this research is to construct confidence intervals for the common coefficient of variation of
delta-lognormal distributions based on the concepts of the fiducial generalized confidence
interval, Bayesian methodology based on the independent Jeffreys and uniform priors, and
the method of variance estimates recovery. The performances of the proposed methods
were verified by analyzing their coverage probabilities together with their expected
lengths via Monte Carlo simulation. The results show that the equal-tailed Bayesian based
on the independent Jeffreys prior was suitable. In addition, it can be used the equal-tailed
Bayesian based on the uniform prior as an alternative. Rainfall datasets from Nan,
Thailand, were used to demonstrate the performances of the proposed confidence
intervals.
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ABSTRACT11

Rainfall fluctuation makes precipitation and flood prediction difficult. The coefficient of variation can be

used to measure rainfall dispersion to produce information for predicting future rainfall, thereby mitigating

future disasters. Rainfall data usually consist of positive and true zero values that correspond to a delta-

lognormal distribution. Therefore, the coefficient of variation of delta-lognormal distribution is appropriate

to measure the rainfall dispersion more than lognormal distribution. In particular, the measurement of the

dispersion of precipitation from several areas can be determined by measuring the common coefficient of

variation in the rainfall from those areas together. The purpose of this research is to construct confidence

intervals for the common coefficient of variation of delta-lognormal distributions based on the concepts of

the fiducial generalized confidence interval, Bayesian methodology based on the independent Jeffreys

and uniform priors, and the method of variance estimates recovery. The performances of the proposed

methods were verified by analyzing their coverage probabilities together with their expected lengths via

Monte Carlo simulation. The results show that the equal-tailed Bayesian based on the independent

Jeffreys prior was suitable. In addition, it can be used the equal-tailed Bayesian based on the uniform

prior as an alternative. Rainfall datasets from Nan, Thailand, were used to demonstrate the performances

of the proposed confidence intervals.
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INTRODUCTION27

Currently, the Earth’s climate is rapidly changing due to the emission of greenhouse gases, sulfate aerosols,28

and black carbon, as well as changing ecosystems and transportation emissions (Nema et al., 2012). These29

phenomena are directly increasing the global temperature, warming the oceans, melting the polar ice30

caps, causing the sea level to rise, and initiating extreme events (NASA, 2020). Southeast Asia is a31

tropical area that is affected by ocean currents, prevailing winds, and abundant rainfall during the monsoon32

season (WorldAtlas, 2021). Thailand is located in Southeast Asia, where the climate is influenced by the33

monsoon winds. Especially, the southwest monsoon together with the Inter-Tropical Convergence Zone34

and tropical cyclones causes plenty of rain to fall over the country (Thai Meteorological Department,35

2015). Large amounts of rainfall cause regular flooding in some areas of the country, thereby leading to36

damage to property and loss of life. Moreover, Thailand is an agricultural country, and rainfall fluctuation37

makes it difficult to predict heavy precipitation that may cause loss of or damage to crops. Therefore, it38

is necessary to measure the dispersion of rainfall in specific areas by using statistical tools such as the39

coefficient of variation (CV) to enable accurate prediction of future catastrophic events. Furthermore,40

rainfall data usually comprises positive values that conform to a lognormal distribution, and true zero41

values, in which the frequency conforms to a binomial distribution. Many researchers have reported that42

rainfall data follow a delta-lognormal distribution (Fukuchi, 1988; Shimizu, 1993; Yue, 2000; Kong et al.,43

2012; Maneerat et al., 2019a, 2020a,b; Yosboonruang et al., 2019b, 2020; Yosboonruang and Niwitpong,44
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2020).45

The CV is commonly used to measure the dispersion of data since it is free from the unit of mea-46

surement. For statistical inference, many researchers have proposed methods to construct confidence47

intervals for the CV and functions of the CV (e.g. Pang et al. (2005); Hayter (2015); Nam and Kwon48

(2017); Yosboonruang et al. (2018, 2019a,b, 2020); Yosboonruang and Niwitpong (2020)). However,49

the common CV of delta-lognormal distributions has not yet been reported. Thus, we are interested in50

statistical inference based on the common CV of delta-lognormal distributions as it is useful for measuring51

the dispersion of several independent data series, especially rainfall data from several independent areas.52

Therefore, the common CV can be used to illustrate the dispersion of rainfall from the whole of different53

areas.54

Confidence intervals for the common CV of normal and non-normal distributions have previously been55

constructed. Gupta et al. (1999) obtained the asymptotic variance of the common CV and then constructed56

confidence intervals for it based on normal distributions; their results showed its suitability in terms of57

coverage probability and expected length. Tian (2005) developed a method by using the concept of the58

generalized confidence interval (GCI) for the common CV. Subsequently, Behboodian and Jafari (2008)59

used the concept of generalized p-values and GCI to construct a new method and compared with Tian’s60

method (Tian, 2005); the former method performed better in terms of coverage probability and expected61

length. Ng (2014) constructed confidence intervals for the common CV of lognormal distributions using62

the generalized variables approach; the performance of the proposed method was similar to Tian’s method63

(Tian, 2005). Liu and Xu (2015) provided a confidence distribution interval method to construct the64

confidence interval for the common CV of several normal populations. Thangjai and Niwitpong (2017)65

proposed the adjusted method of variance estimates recovery (MOVER) to construct the confidence66

interval for the weighted CV of two-parameter exponential distributions and then compared it with GCI67

and a large sample method; they revealed that the adjusted MOVER was suitable only for a positive value68

CV and that GCI was the best choice for constructing the confidence intervals for the weighted CV of69

two-parameter exponential distributions. Recently, Thangjai et al. (2020a) applied the adjusted GCI and a70

computational method for the confidence interval estimation of the common CV of normal distributions;71

they compared them with GCI and the adjusted MOVER, the results of which show that the adjusted GCI72

is appropriate for small samples and the computational method was suitable for large ones. In addition,73

Thangjai et al. (2020b) extended the computational approach and MOVER to construct the confidence74

intervals for the common CV of lognormal distributions and compared it with the fiducial GCI (FGCI)75

and Bayesian approaches; of which the FGCI was the best. Unfortunately, the work of Thangjai et al.76

(2020b) considered only the positively skewed distribution: lognormal distribution. In this work, we77

regarded the lognormal distribution that contained true zero values, the delta-lognormal distribution, for78

the confidence interval construction of the common CV. Therefore, the research by Thangjai et al. (2020b)79

also needs to continue as rainfall data must be the delta-lognormal distribution.80

Over an extended period of time, rainfall data usually conform to a delta-lognormal distribution,81

which has drawn interest from several researchers to present statistical inference for its parameters.82

Many researchers have proposed methods to construct confidence intervals for the mean and functions83

of the mean of delta-lognormal distributions, such as the traditional method, the normal algorithm, the84

exponential algorithm (Kvanli et al., 1998), bootstrapping, the likelihood ratio, the signed log-likelihood85

ratio (Zhou and Tu, 2000; Tian, 2005; Tian and Wu, 2006), GCI (Tian, 2005; Chen and Zhou, 2006;86

Li et al., 2013; Wu and Hsieh, 2014; Hasan and Krishnamoorthy, 2018; Maneerat et al., 2018, 2019b),87

MOVER (Maneerat et al., 2018, 2019a,b), Aitchison’s estimator, a modified Cox’s method, a modified88

Land’s method, the profile likelihood interval (Fletcher, 2008; Wu and Hsieh, 2014), FGCI (Li et al., 2013;89

Hasan and Krishnamoorthy, 2018; Maneerat et al., 2019a), as well as Bayesian approaches (Maneerat90

et al., 2019a). Moreover, confidence interval estimations for the variance (Maneerat et al., 2020a,b), CV91

(Yosboonruang et al., 2018, 2019a,b), and functions of the CV (Yosboonruang et al., 2020; Yosboonruang92

and Niwitpong, 2020) of delta-lognormal distributions have been suggested, including GCI, the modified93

Fletcher’s method, FGCI, MOVER, the Bayesian approach, and bootstrapping.94

The aim of this study is to construct new confidence intervals for the common CV of delta-lognormal95

distributions based on three concepts: FGCI, the Bayesian approach, and MOVER. The performances96

of the proposed methods were evaluated via their coverage probabilities and expected lengths. The97

methods for the confidence intervals estimation are presented in the next section. Subsequently, the98

results and discussion of a simulation study are analyzed, followed by the use of rainfall data to assess the99
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applicability of the proposed methods. Last, conclusions on the study is offered.100

METHODS101

Let Xi j, i = 1,2, . . . ,k, j = 1,2, . . . ,ni be a random variable of size ni from k delta-lognormal distributions

with density function

f
(
xi j; µi,σ

2
i ,δi

)
= (1−δi) I0 [xi j]+δi

1

xi j

√
2πσi

exp

{
−1

2

[
ln(xi j)−µi

σi

]2
}

I(0,∞) [xi j] , (1)

where I0 [xi j] is an indicator function for which the values are 1 when xi j = 0, and 0 otherwise; I(0,∞) [xi j]
are equal to 0 and 1 when xi j = 0 and xi j > 0, respectively; and δi = P(Xi j > 0). This distribution is a

combination of lognormal and binomial distributions. The numbers of positive and zero observations are

defined as ni1 and ni0, respectively, where ni = ni1 +ni0. According to Aitchison (1955), the mean and

variance of a delta-lognormal distribution are defined as

E (Xi j) = δi exp

(
µi +

σ2
i

2

)
(2)

and

σ2
i = δi exp

(
2µi +σ2

i

)[
exp
(
σ2

i

)
−δi

]
, (3)

respectively. Since the CV computed from σi/µi, then

CV (Xi j) = ηi =

[
exp
(
σ2

i

)
−δi

δi

] 1
2

. (4)

By using the log-transformation (Yosboonruang et al., 2018), let

ϕi =
1

2

{
ln
[
exp
(
σ2

i

)
−δi

]
− ln(δi)

}
. (5)

The unbiased estimators for σ2
i and δi are σ̂2

i = ∑
ni1
j=1 [ln(xi j)− µ̂i]

2 /(ni1 −1) and δ̂i = ni1/ni, for i =

1,2, . . . ,k, where µ̂i = ∑
ni1
j=1 ln(xi j)/ni1, respectively, then

ϕ̂i =
1

2

{
ln
[
exp
(
σ̂2

i

)
− δ̂i

]
− ln

(
δ̂i

)}
. (6)

The approximately unbiased estimate variance of ϕ̂i is

V̂ (ϕ̂i)≈
(
b̂i − âi

)(
1− âib̂i

)
−ni1 (1− âi)

2

4ni1 (1− âi)
2

+
σ̂4

i

2(ni1 −1)
, (7)

where âi =
(

1− δ̂i

)ni−1

and b̂i = 1+(ni −1) δ̂i. The ordinary form of the common log-transformed CV

is given by

ϕ̃ =
∑

k
i=1 wiϕ̂i

∑
k
i=1 wi

, (8)

where wi = 1/V̂ (ϕ̂i). Accordingly, the common CV is defined as

η̃ = exp(ϕ̃) = exp

(
∑

k
i=1 wiϕ̂i

∑
k
i=1 wi

)
. (9)

In the following section, we propose the methods to establish the confidence intervals for the common102

CV for delta-lognormal distributions.103
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FGCI104

Let Xi j, i = 1,2, . . . ,k, j = 1,2, . . . ,ni be a random sample with density function f (xi j;θi,µi), where105

θi =
(
δi,σ

2
i

)
are the parameters of interest and µi is a nuisance parameter. Let xi j be the observed values106

of Xi j. To construct the FGCI (Weerahandi, 1993; Hannig et al., 2006), the fiducial generalized pivotal107

quantity (FGPQ) R(Xi j;xi j,θi,µi) is needed to satisfy the following two properties:108

1. For a given xi j, the conditional distribution of R(Xi j;xi j,θi,µi) is free of the nuisance parameter.109

2. The observed value of R(Xi j;xi j,θi,µi), r (xi j;xi j,θi,µi), is the parameter of interest.110

Given that Rα is the 100α − th percentile of R(Xi j;xi j,θi,µi), then
(
Rα/2,R1−α/2

)
becomes the111

100(1−α)% two-sided FGCI for θi. Therefore, the FGPQs for δi and σ2
i are necessarily used to112

construct the confidence interval for common CV (η̃).113

Consider k individual random samples Xi1,Xi2, . . . ,Xini
. Following Hannig (2009) and Li et al. (2013),

the FGPQ for δi is as follows

Rδi
∼ 1

2
Beta(ni1,ni0 +1)+

1

2
Beta(ni1 +1,ni0) . (10)

Similarly, Wu and Hsieh (2014) followed the concept of Krishnamoorthy and Mathew (2003) to find

the FGPQ for σ2
i defined as

Rσ2
i
=

(ni1 −1) σ̂2
i

Ui

, (11)

where Ui ∼ χ2
ni1−1. To find the FGPQ for ϕ̂ , we then substitute Rδi

and Rσ2
i

into Eq (6) as follows:

Rϕ̂i
=

1

2

{
ln
[
exp
(

Rσ2
i

)
− ln

(
Rδi

)]
− ln

(
Rδi

)}
. (12)

Consequently, the FGPQ for common CV (η̃) is

Rη̃ = exp

(
∑

k
i=1 Rwi

Rϕ̂i

∑
k
i=1 Rwi

)
, (13)

where the FGPQ for an estimated variance of ϕ̂i, for which Rwi
is the inverse, is given by

RV̂ (ϕ̂i)
=

(
Rbi

−Rai

)(
1−Rai

Rbi

)
−ni1 (1−Rai

)2

4ni1 (1−Rai
)2

+
R2

σ2
i

2(ni1 −1)
, (14)

where Rai
=
(
1−Rδi

)ni−1
and Rbi

= 1+(ni −1)Rδi
.114

Therefore, Rη̃ is used to construct the confidence interval for η̃ . Accordingly, the 100(1−α)%115

two-sided confidence interval for η̃ based on FGCI is
(
Rη̃ (α/2) ,Rη̃ (1−α/2)

)
, which denote the α/2th116

and (1−α/2) th percentiles of Rη̃ .117

118

Algorithm 1119

(For i = 1 to M)120

Generate xi j, i = 1,2, . . . ,k, j = 1,2, . . . ,ni from a delta-lognormal distribution.121

Compute δ̂i and σ̂2
i .122

(For j = 1 to K)123

Generate Ui ∼ χ2
ni1−1, Beta(ni1,ni0 +1), and Beta(ni1 +1,ni0).124

Compute Rσ2
i
, Rδi

, Rϕ̂i
, and Rη̃ .125

(End j loop)126

Compute the 100(1−α/2)% confidence interval for η̃ .127

(End i loop)128
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Bayesian methods129

Since random samples Xi j, i = 1,2, . . . ,k, j = 1,2, . . . ,ni have a delta-lognormal distribution with un-

known parameters φ =
(
δ ∗

i ,µi,σ
2
i

)
, where δ ∗

i = 1−δi, the likelihood function of k-individual random

samples can be expressed as

L(φ | xi j) ∝
k

∏
i=1

(δ ∗
i )

ni0 δ
ni1
i

(
σ2

i

)− ni1
2 exp

{
− 1

2σ2
i

ni1

∑
j=1

[ln(xi j)−µi]
2

}
. (15)

Subsequently, the Fisher information matrix of φ derived from the partial derivative of the log-

likelihood function with respect to δi, µi, and σ2
i is

I (φ) = diag

[
n1

δ ∗
1 δ1

n1δ1

σ2
1

n1δ1

2(σ2
1 )

2 . . . . . . . . . nk

δ ∗
k

δk

nkδk

σ2
k

nkδk

2(σ2
k )

2

]
. (16)

In the present study, the Bayesian method is used to construct the equal-tailed confidence interval and130

the credible interval for the common CV. In the following section, we propose the independent Jeffreys131

and uniform priors.132

The Bayesian method using the independent Jeffreys prior133

It is accepted that the Jeffreys’ prior of unknown parameter φ is derived from the square root of the134

determinant of the Fisher information matrix I (φ), defined as p(φ) =
√

|I (φ)|. Since the parameters135

of interest ϑ =
(
δ ∗

i ,σ
2
i

)
, the independent Jeffreys prior for δi and σ2

i are p(δi) ∝ (δ ∗
i )

− 1
2 δ

− 1
2

i and136

p
(
σ2

i

)
∝ 1/σ2

i (Harvey and van der Merwe, 2012), respectively. Since δ ∗
i and σ2

i are independent,137

then the independent Jeffreys prior for a delta-lognormal distribution is p(ϑ) ∝ ∏
k
i=1 σ−2

i (δ ∗
i )

− 1
2 δ

− 1
2

i .138

Therefore, the joint posterior density of φ can be written as139

p(φ | xi j) =
k

∏
i=1

1

Beta
(
ni0 +

1
2
,ni1 +

1
2

) (δ ∗
i )
(ni0+

1
2 )−1 δ

(ni1+
1
2 )−1

i

1√
2π σi√

ni1

exp


− 1

2
σ2

i
ni1

(µi − µ̂i)
2




×

[
(ni1−1)σ̂2

i
2

] ni1−1

2

Γ

(
ni1−1

2

) (
σ2

i

)− ni1−1

2 −1
exp


−

(ni1−1)σ̂2
i

2

σ2
i


 ,

(17)

where µ̂i = ∑
ni1
j=1 ln(xi j)/ni1, and σ̂2

i = ∑
ni1
j=1 [ln(xi j)− µ̂i]

2 /(ni1 −1). This leads to the posterior density

of δ ∗
i given by

p(δ ∗
i | xi j) ∝

k

∏
i=1

1

Beta
(
ni0 +

1
2
,ni1 +

1
2

) (δ ∗
i )
(ni0+

1
2 )−1 δ

(ni1+
1
2 )−1

i , (18)

which is a beta distribution with parameters ni0+1/2 and ni1+1/2, denoted by δ ∗
i | xi j ∼Beta(ni0 +1/2,ni1 +1/2).

Similarly, the posterior density of σ2
i can be derived as

p
(
σ2

i | xi j

)
∝

[
(ni1−1)σ̂2

i
2

] ni1−1

2

Γ

(
ni1−1

2

) (
σ2

i

)− ni1−1

2 −1
exp


−

(ni1−1)σ̂2
i

2

σ2
i


 , (19)

which is in the general form of an inverse gamma distribution denoted by140

σ2
i | xi j ∼ Inv−Gamma

[
(ni1 −1)/2,(ni1 −1) σ̂2

i /2
]
.141

The Bayesian method using the uniform prior142

Because all possible values are equally likely a priori for the uniform prior, then it is a constant function143

of a priori probability (Stone, 2013; O’Reilly and Mars, 2015). According to Bolstad and Curran (2016),144

the uniform prior for δ ∗
i and σ2

i are proportional to 1, which can be defined as p(δ ∗
i ) ∝ 1 and p

(
σ2

i

)
∝ 1,145

respectively. It is well-known that δ ∗
i is independent of σ2

i , thereby the uniform prior for the parameters146
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of interest for a delta-lognormal distribution is p
(
δ ∗

i ,σ
2
i

)
∝ 1. Accordingly, the joint posterior density147

function is defined as148

p(φ | xi j) =
k

∏
i=1

1

Beta(ni0 +1,ni1 +1)
(δ ∗

i )
ni0 δ

ni1
i

1√
2π σi√

ni1

exp


− 1

2
σ2

i
ni1

(µi − µ̂i)
2




×

[
(ni1−2)σ̂2

i
2

] ni1−2

2

Γ

(
ni1−2

2

) (
σ2

i

)− ni1−2

2 −1
exp


−

(ni1−2)σ̂2
i

2

σ2
i


 ,

(20)

where µ̂i = ∑
ni1
j=1 ln(xi j)/ni1, and σ̂2

i = ∑
ni1
j=1 [ln(xi j)− µ̂i]

2 /(ni1 −1). We can derived the posterior

density of δ ∗
i as

p(δ ∗
i | xi j) ∝

k

∏
i=1

1

Beta(ni0 +1,ni1 +1)
(δ ∗

i )
ni0 δ

ni1
i , (21)

which is consequently a density function of a beta distribution, i.e. δ ∗
i | xi j ∼ Beta(ni0 +1,ni1 +1). For

σ2
i , the posterior density has an inverse gamma distribution with respective shape and scale parameters

(ni1 −2)/2 and (ni1 −2) σ̂2
i /2 which expressed as

p
(
σ2

i | xi j

)
∝

k

∏
i=1

(
(ni1−2)σ̂2

i
2

) ni1−2

2

Γ

(
ni1−2

2

) (
σ2

i

)− ni1−2

2 −1
exp


−

(ni1−2)σ̂2
i

2

σ2
i


 . (22)

Subsequently, we construct the confidence intervals and the credible intervals for the common CV by149

substituting the posterior densities of δ ∗
i and σ2

i from the independent Jeffreys and uniform priors into150

Eqs (6), (7), and (9).151

152

Algorithm 2153

(For i = 1 to M)154

Generate xi j, i = 1,2, . . . ,k, j = 1,2, . . . ,ni from a delta-lognormal distribution.155

Compute δ̂i and σ̂2
i .156

(For j = 1 to K)157

Generate the posterior densities of δ ∗
i | xi j.158

1. Independent Jeffreys prior: δ ∗
i | xi j ∼ Beta

(
ni0 +

1
2
,ni1 +

1
2

)
.159

2. Uniform prior: δ ∗
i | xi j ∼ Beta(ni0 +1,ni1 +1).160

Generate the posterior densities of σ2
i | xi j.161

1. Independent Jeffreys prior: σ2
i | xi j ∼ Inv−Gamma

[
ni1−1

2
,
(ni1−1)σ̂2

i
2

]
.162

2. Uniform prior: σ2
i | xi j ∼ Inv−Gamma

[
ni1−2

2
,
(ni1−2)σ̂2

i
2

]
.163

Compute ϕ̂i, V̂ (ϕ̂i), and η̃ .164

(End j loop)165

Compute the 100(1−α/2)% confidence intervals and credible intervals for η̃ .166

(End i loop)167

MOVER168

Following the method of Zou and Donner (2008), let ϕ1 and ϕ2 be the parameter of interest and then let

ϕ̂1 and ϕ̂2 be the independent estimators of ϕ1 and ϕ2, respectively. Furthermore, the lower and upper

confidence limits for ϕ1+ϕ2 are

CIϕ1+ϕ2
=
[
Lϕ1+ϕ2

,Uϕ1+ϕ2

]
= ϕ̂1 + ϕ̂2 ± zα/2

√
V̂ar (ϕ̂1)+V̂ar (ϕ̂2), (23)

Subsequently, let li and ui, for i = 1,2, be the lower and upper bounds of the confidence interval for ϕi,

respectively. Since li and ui provide the possible parameter values, then l1 + l2 is close to Lϕ1+ϕ2
and
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u1 + u2 is close to Uϕ1+ϕ2
. To obtain the lower limit Lϕ1+ϕ2

, the estimated variance of ϕ̂i at ϕi = li is

given by

V̂ar
(
ϕ̂li

)
=

(ϕ̂i − li)
2

z2
α/2

. (24)

Similarly, to obtain the upper limit Uϕ1+ϕ2
, the estimated variance of ϕ̂i at ϕi = ui is given by

V̂ar (ϕ̂ui
) =

(ui − ϕ̂i)
2

z2
α/2

. (25)

Next, by substituting V̂ar
(
ϕ̂li

)
and V̂ar (ϕ̂ui

) into Eq (23), we obtain

Lϕ1+ϕ2
= ϕ̂1 + ϕ̂2 −

√
(ϕ̂1 − l1)

2 +(ϕ̂2 − l2)
2

(26)

and

Uϕ1+ϕ2
= ϕ̂1 + ϕ̂2 −

√
(u1 − ϕ̂1)

2 +(u2 − ϕ̂2)
2. (27)

Thereby, the unbiased estimate variance of ϕ̂i at ϕi = li and ϕi = ui can be expressed as

V̂ar (ϕ̂i) =
1

2

[
(ϕ̂i − li)

2

z2
α/2

+
(ui − ϕ̂i)

2

z2
α/2

]
, i = 1,2. (28)

When this concept is extended to k parameters, the lower and upper confidence limits for υ = ∑
k
i=1 ϕi

are given by

Lυ = υ −
√
(ϕ̂1 − l1)

2 +(ϕ̂2 − l2)
2 + . . .+(ϕ̂k − lk)

2
(29)

and

Uυ = υ +

√
(u1 − ϕ̂1)

2 +(u2 − ϕ̂2)
2 + . . .+(uk − ϕ̂k)

2. (30)

According to Krishnamoorthy and Oral (2017) and recall the common log-transformed CV from Eq (8),

the upper and lower confidence limits for σ2
i and δi are required to construct the confidence interval for

the common CV of delta-lognormal distributions. Since the estimate of σ2
i is

σ̂2
i =

1

ni1 −1

ni1

∑
j=1

[ln(xi j)− µ̂i]
2 , (31)

where (ni1 −1) σ̂2
i /σ2

i ∼ χ2
ni1−1, the 100(1−α)% confidence interval for σ2

i is derived as

CIσ2
i
=
(

lσ2
i
,uσ2

i

)
=

[
(ni1 −1) σ̂2

i

χ2
1−α/2,ni1−1

,
(ni1 −1) σ̂2

i

χ2
α/2,ni1−1

]
. (32)

To construct the confidence interval for δi, the concept of the variance stabilizing transformation proposed

by DasGupta (2008) and Wu and Hsieh (2014) was used. Therefore, the confidence interval for δi is given

by

CIδi
=
(
lδi
,uδi

)
= sin2

(
arcsin

√
δ̂i ±

1

2
√

ni

Zi(1−α/2)

)
. (33)

Since ϕi =
{

ln
[
exp
(
σ2

i

)
−δi

]
− ln(δi)

}
/2, then let

li =
1

2

{
ln
[
exp
(

lσ2
i

)
− lδi

]
− ln

(
lδi

)}
(34)
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and

ui =
1

2

{
ln
[
exp
(

uσ2
i

)
−uδi

]
− ln

(
uδi

)}
, (35)

for i = 1,2, . . . ,k. Therefore, the 100(1−α)% confidence interval for η̃ based on MOVER can be written

as

CIm
η̃ =

[
Lm

η̃ ,U
m
η̃

]
, (36)

where

Lm
η̃ = exp


ϕ̃ −

√√√√ k

∑
i=1

w2
i (ϕ̂i − li)

2 /
k

∑
i=1

w2
i


 (37)

and

Um
η̃ = exp


ϕ̃ +

√√√√ k

∑
i=1

w2
i (ui − ϕ̂i)

2 /
k

∑
i=1

w2
i


 . (38)

Algorithm 3169

(For i = 1 to M)170

Generate xi j, i = 1,2, . . . ,k, j = 1,2, . . . ,ni from a delta-lognormal distribution.171

Compute δ̂i and σ̂2
i .172

Compute ϕ̂i and V̂ (ϕ̂i).173

Compute lσ2
i
, uσ2

i
, lδi

, uδi
, li, ui.174

Compute the 100(1−α/2)% confidence interval for η̃ .175

(End i loop)176

RESULTS AND DISCUSSION177

Monte Carlo simulation studies178

The R statistical program via Monte Carlo simulation was used to compute the coverage probabilities and179

expected lengths for evaluating the performances of the proposed confidence intervals, including FGCI,180

the Bayesian approach based on the independent Jeffreys and uniform priors, and MOVER. The criteria181

for choosing the best performing confidence interval were coverage probabilities equal to or greater than182

the nominal confidence level of 0.95 and the shortest expected length. To generate the data, we set the183

number of populations as k = 3,5,10; sample sizes as n1 = n2 = . . .= nk = n = 25,50,100; probabilities184

of non-zero values as δ1 = δ2 = . . .= δk = δ = 0.2,0.5,0.8; and variances as σ2
1 = σ2

2 = . . .= σ2
k = σ2 =185

0.5,1.0,2.0. For each combination of parameters, 10,000 simulation runs were generated together with186

2,000 replications for FGCI and the Bayesian approaches by applying Algorithms 1 and 2, respectively.187

The coverage probabilities and expected lengths of the 95% confidence and credible intervals for the188

common CV of delta-lognormal distributions for all k are reported in Tables 1 - 3. In addition, the coverage189

probabilities and expected lengths of the proposed methods for various sample sizes, probabilities of190

non-zero values, and variances are shown in Figs 1 - 6, respectively. The results for k parameters show191

that the coverage probabilities of the equal-tailed Bayesian based on the independent Jeffreys and uniform192

priors were consistency close to the nominal confidence level in almost all cases, while the other methods193

were close to or greater than the nominal confidence level for some cases. Furthermore, in terms of the194

expected lengths, the equal-tailed based on independent Jeffreys prior were shorter than the uniform prior195

for all cases. In addition, the expected lengths of the Bayesian credible interval based on the independent196

Jeffreys prior were shorter than the others in almost every case when σ2
i = 0.5. For all k and sample197

sizes together with σ2
i = 1,2, the expected lengths of the equal-tailed Bayesian based on the independent198

Jeffreys prior were the shortest when δi = 0.2,0.5, while MOVER had the shortest expected lengths for199

δi = 0.8. For FGCI, the coverage probabilities and their expected lengths were very wide for all cases in200

which it is not reasonable for the construction of confidence interval. However, the equal-tailed Bayesian201

based on the independent Jeffreys prior is suitable for constructing the confidence interval for the common202

CV in delta-lognormal distribution since the coverage probabilities were close to the target for almost all203

cases, although the expected lengths were not always shorter than the other methods in some cases.204
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Figure 1. Comparison of the coverage probabilities of the proposed methods according to sample sizes

for (A) k = 3 (B) k = 5 (C) k = 10.

Figure 2. Comparison of the coverage probabilities of the proposed methods according to probabilities

of non-zero values for (A) k = 3 (B) k = 5 (C) k = 10.

Figure 3. Comparison of the coverage probabilities of the proposed methods according to variances for

(A) k = 3 (B) k = 5 (C) k = 10.

Figure 4. Comparison of the expected lengths of the proposed methods according to sample sizes for

(A) k = 3 (B) k = 5 (C) k = 10.
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Figure 5. Comparison of the expected lengths of the proposed methods according to probabilities of

non-zero values for (A) k = 3 (B) k = 5 (C) k = 10.

Figure 6. Comparison of the expected lengths of the proposed methods according to variances for (A)

k = 3 (B) k = 5 (C) k = 10.

Application of the methods to real datasets205

Datasets of daily rainfall from Chiang Klang, Tha Wang Pha, and Pua in Nan, Thailand, were obtained from206

the Upper Northern Region Irrigation Hydrology Center and used to demonstrate the applicability of the207

proposed methods for generating confidence intervals. The reason for using these datasets is because these208

areas are near the origin of the Nan River that flows into the Chao Phraya River. Moreover, throughout209

the year, the precipitation in Nan fluctuates between a precipitation deficit and heavy rainfall. The latter210

accompanied by thunderstorms occurs in the late summer period, and due to the southwest monsoon, the211

amount of rainfall increases from mid-May to early October with the highest rainfall frequently in August212

or September, which can cause flooding in some areas (Thai Meteorological Department, 2015).213

In this study, the rainfall data from the three areas in Nan province in August 2018 and 2019 were214

selected. These data contain both true zero and non-zero values, as presented in Fig 7. Since the non-zero215

observations follow a right-skewed distribution, the minimum Akaike information criterion (AIC) and the216

lowest Bayesian information criterion (BIC) were used to test the distribution of these data. The AIC and217

BIC values in Tables 4 and 5, respectively, indicate that the non-zero observations from the three areas218

conform to lognormal distributions. Furthermore, the normal Q-Q plots via the log-transformation of219

non-zero observations shown in Fig 8 reveal that they follow normal distributions. By testing the non-zero220

observations together with the binomial distributions of the true zero observations indicate that the daily221

rainfall data from the three areas follow delta-lognormal distributions.222

The summary statistics for the three rainfall datasets were n1 : n2 : n3 = 62 : 62 : 62; δ̂1 : δ̂2 : δ̂3 =223

0.7258 : 0.7903 : 0.7419; µ̂1 : µ̂2 : µ̂3 = 2.1189 : 1.6448 : 1.8971; σ̂2
1 : σ̂2

2 : σ̂2
3 = 1.7857 : 3.4406 : 1.8346;224

and η̃ = 3.2011. Table 6 reports the 95% confidence intervals and credible intervals for the common CV225

of the rainfall datasets from three areas in Nan province, Thailand. The results reveal that the confidence226

intervals of all three methods could cover the parameter, which corresponds well with the simulation227

results. However, the expected length of FGCI was the shortest, thereby making it a good choice for228

estimating the common variance in the dispersion of precipitation from the three areas in Nan province,229

Thailand.230
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Figure 7. Histograms of the rainfall data from (A) Chiang Klang, (B) Tha Wang Pha, and (C) Pua in

Nan, Thailand.

Figure 8. The normal Q-Q plots of the log-transformation of the positive rainfall data from (A) Chiang

Klang, (B) Tha Wang Pha, and (C) Pua in Nan, Thailand.

CONCLUSION231

Herein, we proposed methods to construct the confidence intervals for the common CV of delta-lognormal232

distribution, including FGCI, two Bayesian approaches constructed under the equal-tailed confidence233

intervals and credible intervals using the independent Jeffreys and uniform priors, and MOVER. The234

performances of the proposed methods were determined via their coverage probabilities together with their235

expected lengths under various circumstances. The results indicate that the equal-tailed Bayesian based236

on the independent Jeffreys prior outperformed the other methods in terms of the coverage probability.237

Moreover, the equal-tailed Bayesian based on the uniform prior can be used as an alternative. When238

considering the coverage probabilities together with the expected lengths, the Bayesian credible interval239

based on the independent Jeffreys prior should be chosen for cases with small variance, while MOVER is240

the best choice for cases with a high proportion of non-zero values together with large variance.241
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Table 1. The coverage probabilities and expected lengths of 95% two-sided confidence intervals for the

common CV of delta-lognormal distributions in case of k = 3.

ni δi σ2
i

Coverage probabilities (Expected lengths)

FGCI E-B.Indj E-B.Uni C-B.Indj C-B.Uni MOVER

25 0.5 0.5 0.9983 0.9689 0.9734 0.9518 0.9564 0.5541

(4.2363) (1.5221) (1.6132) (1.3548) (1.4144) (0.4478)

1.0 0.9775 0.9613 0.9672 0.9429 0.9518 0.7872

(28.1984) (4.2206) (4.7049) (3.2428) (3.5018) (1.4839)

2.0 0.9027 0.9528 0.9600 0.9408 0.9485 0.9133

(7.4009) (34.3846) (42.9115) (18.1504) (20.8831) (8.0816)

0.8 0.5 0.9994 0.9658 0.9700 0.9575 0.9687 0.7894

(9.1319) (0.8848) (0.9205) (0.8193) (0.8486) (0.3732)

1.0 0.9890 0.9563 0.9623 0.9526 0.9589 0.9445

(274.3619) (2.0822) (2.1950) (1.7915) (1.8716) (1.1456)

2.0 0.9204 0.9518 0.9567 0.9464 0.9548 0.9705

(13.9706) (9.4530) (10.2449) (6.8908) (7.3329) (4.7949)

50 0.2 0.5 0.9940 0.9734 0.9721 0.9589 0.9580 0.4001

(5.3666) (3.0387) (3.3163) (2.5773) (2.7137) (0.7416)

1.0 0.9668 0.9663 0.9700 0.9436 0.9473 0.6903

(61.6887) (10.2196) (12.7965) (6.8382) (7.7720) (2.3985)

2.0 0.8941 0.9573 0.9674 0.9403 0.9473 0.8591

(10.2166) (205.9432) (470.3159) (61.6888) (89.7961) (16.4537)

0.5 0.5 0.9991 0.9665 0.9689 0.9517 0.9533 0.4400

(2.3261) (0.9184) (0.9322) (0.8743) (0.8851) (0.2156)

1.0 0.9977 0.9554 0.9608 0.9435 0.9462 0.7862

(27.7099) (2.0097) (2.0670) (1.8046) (1.8466) (0.7810)

2.0 0.9383 0.9498 0.9545 0.9385 0.9434 0.9348

(24.2678) (8.0467) (8.3999) (6.4058) (6.6170) (3.8741)

0.8 0.5 0.9997 0.9607 0.9665 0.9507 0.9593 0.7357

(1.6860) (0.5521) (0.5606) (0.5316) (0.5397) (0.2003)

1.0 0.9980 0.9563 0.9584 0.9458 0.9513 0.9516

(5.1781) (1.1695) (1.1911) (1.0905) (1.1088) (0.7058)

2.0 0.9464 0.9521 0.9554 0.9483 0.9515 0.9824

(293.3686) (3.9878) (4.0900) (3.4771) (3.5501) (2.7229)

100 0.2 0.5 0.9965 0.9691 0.9679 0.9508 0.9470 0.2665

(3.4026) (1.6493) (1.6684) (1.5542) (1.5659) (0.3647)

1.0 0.9947 0.9613 0.9631 0.9433 0.9420 0.6284

(13.0351) (3.7143) (3.8315) (3.2441) (3.3177) (1.0735)

2.0 0.9326 0.9547 0.9601 0.9384 0.9410 0.8846

(181.1185) (16.6849) (17.6932) (12.4128) (12.9191) (6.1118)

0.5 0.5 0.9996 0.9604 0.9632 0.9495 0.9501 0.3157

(1.3697) (0.6091) (0.6121) (0.5933) (0.5961) (0.1058)

1.0 0.9990 0.9553 0.9574 0.9379 0.9415 0.7982

(3.7435) (1.2257) (1.2378) (1.1620) (1.1725) (0.4857)

2.0 0.9668 0.9545 0.9548 0.9442 0.9475 0.9549

(32.9162) (4.0100) (4.0691) (3.6039) (3.6477) (2.4343)

0.8 0.5 1.0000 0.9562 0.9595 0.9465 0.9503 0.7093

(1.0189) (0.3729) (0.3754) (0.3648) (0.3672) (0.1204)

1.0 0.9992 0.9537 0.9562 0.9443 0.9465 0.9560

(2.3875) (0.7571) (0.7631) (0.7289) (0.7344) (0.4796)

2.0 0.9662 0.9496 0.9522 0.9445 0.9479 0.9872

(16.9898) (2.3221) (2.3448) (2.1655) (2.1851) (1.7740)

Note: E-B.Indj and E-B.Uni represented the respective equal-tailed Bayesian intervals based on

independent Jeffreys and uniform priors, and C-B.Indj and C-B.Uni represented the respective Bayesian

credible intervals based on independent Jeffrey’s and uniform priors.
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Table 2. The coverage probabilities and expected lengths of 95% two-sided confidence intervals for the

common CV of delta-lognormal distributions in case of k = 5.

ni δi σ2
i

Coverage probabilities (Expected lengths)

FGCI E-B.Indj E-B.Uni C-B.Indj C-B.Uni MOVER

25 0.5 0.5 0.9997 0.9710 0.9746 0.9531 0.9595 0.4830

(3.7038) (1.5339) (1.6273) (1.3637) (1.4246) (0.3499)

1.0 0.9737 0.9600 0.9647 0.9423 0.9506 0.7917

(8.9088) (4.2573) (4.7602) (3.2717) (3.5364) (1.2034)

2.0 0.8603 0.9541 0.9613 0.9410 0.9483 0.9096

(1933.3646) (32.2422) (40.4745) (17.2785) (19.8882) (5.9389)

0.8 0.5 1.0000 0.9639 0.9713 0.9574 0.9671 0.8460

(3.4724) (0.8808) (0.9159) (0.8160) (0.8447) (0.3396)

1.0 0.9836 0.9583 0.9637 0.9510 0.9614 0.9642

(10.7410) (2.0830) (2.1955) (1.7916) (1.8719) (1.0345)

2.0 0.8901 0.9517 0.9576 0.9493 0.9560 0.9807

(3.67E+04) (9.7354) (10.5885) (7.0602) (7.5199) (4.1883)

50 0.2 0.5 0.9987 0.9743 0.9730 0.9556 0.9546 0.2693

(5.1024) (3.0276) (3.2924) (2.5680) (2.7012) (0.5583)

1.0 0.9647 0.9655 0.9690 0.9441 0.9467 0.6413

(16.6022) (10.0192) (12.3389) (6.7304) (7.6160) (1.6963)

2.0 0.8562 0.9539 0.9636 0.9407 0.9498 0.8377

(3.08E+05) (187.9496) (362.9737) (60.4077) (85.9882) (10.2873)

0.5 0.5 1.0000 0.9661 0.9688 0.9519 0.9550 0.3610

(2.4601) (0.9163) (0.9303) (0.8721) (0.8834) (0.1694)

1.0 0.9990 0.9582 0.9620 0.9446 0.9489 0.8114

(6.0419) (2.0201) (2.0770) (1.8123) (1.8540) (0.6894)

2.0 0.9276 0.9529 0.9570 0.9440 0.9463 0.9459

(1419.0445) (7.9109) (8.2496) (6.2988) (6.5140) (3.4257)

0.8 0.5 1.0000 0.9650 0.9703 0.9546 0.9618 0.8014

(1.8753) (0.5542) (0.5624) (0.5337) (0.5412) (0.1868)

1.0 0.9993 0.9541 0.9547 0.9456 0.9501 0.9760

(4.2360) (1.1716) (1.1949) (1.0922) (1.1119) (0.6724)

2.0 0.9321 0.9552 0.9576 0.9518 0.9555 0.9932

(45.8789) (4.0252) (4.1253) (3.5054) (3.5809) (2.5923)

100 0.2 0.5 0.9995 0.9667 0.9640 0.9484 0.9459 0.1510

(3.6099) (1.6424) (1.6607) (1.5490) (1.5595) (0.2957)

1.0 0.9980 0.9626 0.9638 0.9438 0.9443 0.6174

(8.7078) (3.7265) (3.8501) (3.2539) (3.3293) (0.8938)

2.0 0.9178 0.9578 0.9612 0.9435 0.9464 0.8842

(1302.6130) (16.4958) (17.4678) (12.2904) (12.7883) (5.0720)

0.5 0.5 1.0000 0.9618 0.9621 0.9494 0.9494 0.2473

(1.5439) (0.6091) (0.6120) (0.5933) (0.5958) (0.0838)

1.0 1.0000 0.9541 0.9577 0.9425 0.9459 0.8244

(3.9566) (1.2291) (1.2421) (1.1653) (1.1763) (0.4456)

2.0 0.9672 0.9541 0.9558 0.9444 0.9464 0.9717

(15.8155) (4.0068) (4.0614) (3.6001) (3.6428) (2.2992)

0.8 0.5 1.0000 0.9607 0.9647 0.9483 0.9549 0.7699

(1.1485) (0.3738) (0.3762) (0.3656) (0.3679) (0.1127)

1.0 1.0000 0.9499 0.9530 0.9430 0.9461 0.9857

(2.6290) (0.7549) (0.7615) (0.7270) (0.7329) (0.4680)

2.0 0.9598 0.9516 0.9523 0.9466 0.9489 0.9969

(6.1687) (2.3383) (2.3604) (2.1803) (2.1988) (1.7304)
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Table 3. The coverage probabilities and expected lengths of 95% two-sided confidence intervals for the

common CV of delta-lognormal distributions in case of k = 10.

ni δi σ2
i

Coverage probabilities (Expected lengths)

FGCI E-B.Indj E-B.Uni C-B.Indj C-B.Uni MOVER

25 0.5 0.5 0.9999 0.9682 0.9716 0.9500 0.9550 0.3282

(3.7907) (1.5242) (1.6165) (1.3565) (1.4164) (0.2387)

1.0 0.9721 0.9568 0.9646 0.9396 0.9486 0.7670

(7.9902) (4.2284) (4.7050) (3.2447) (3.5022) (0.9681)

2.0 0.8170 0.9544 0.9617 0.9399 0.9486 0.9124

(27.2845) (35.0401) (46.9413) (18.2674) (21.6147) (4.5799)

0.8 0.5 1.0000 0.9658 0.9731 0.9566 0.9677 0.9021

(3.4758) (0.8807) (0.9150) (0.8155) (0.8441) (0.3032)

1.0 0.9796 0.9538 0.9594 0.9494 0.9584 0.9804

(7.0148) (2.0894) (2.2045) (1.7966) (1.8782) (0.9335)

2.0 0.8306 0.9552 0.9601 0.9488 0.9557 0.9900

(37.3845) (9.6166) (10.4834) (6.9970) (7.4504) (3.6911)

50 0.2 0.5 0.9979 0.9723 0.9724 0.9541 0.9518 0.1051

(5.3392) (3.0554) (3.3326) (2.5815) (2.7157) (0.3897)

1.0 0.9650 0.9636 0.9685 0.9442 0.9463 0.5255

(11.0842) (10.4725) (12.9382) (6.9200) (7.8607) (1.1454)

2.0 0.8124 0.9575 0.9658 0.9442 0.9522 0.8009

(53.4270) (1142.6720) (3369.2176) (122.0329) (222.4721) (6.6526)

0.5 0.5 1.0000 0.9672 0.9702 0.9516 0.9553 0.2112

(2.6159) (0.9159) (0.9302) (0.8720) (0.8828) (0.1163)

1.0 0.9970 0.9596 0.9621 0.9458 0.9507 0.8171

(6.1760) (2.0213) (2.0769) (1.8134) (1.8535) (0.6006)

2.0 0.8956 0.9540 0.9584 0.9415 0.9459 0.9652

(15.6125) (8.0203) (8.3825) (6.3810) (6.5924) (3.0276)

0.8 0.5 0.9596 0.9557 0.9487 0.9433 0.8688 0.9300

(2.0073) (0.5524) (0.5606) (0.5322) (0.5395) (0.1726)

1.0 0.9975 0.9554 0.9598 0.9451 0.9516 0.9910

(4.2894) (1.1691) (1.1913) (1.0899) (1.1089) (0.6371)

2.0 0.8936 0.9554 0.9579 0.9513 0.9566 0.9992

(7.8557) (4.0458) (4.1465) (3.5224) (3.5975) (2.4638)

100 0.2 0.5 0.9996 0.9680 0.9669 0.9550 0.9487 0.0384

(3.8651) (1.6467) (1.6645) (1.5521) (1.5622) (0.2242)

1.0 0.9942 0.9614 0.9623 0.9459 0.9445 0.5322

(8.9324) (3.7215) (3.8417) (3.2516) (3.3245) (0.6967)

2.0 0.8966 0.9539 0.9579 0.9389 0.9412 0.8751

(22.0831) (16.7659) (17.8464) (12.4326) (12.9750) (4.1159)

0.5 0.5 1.0000 0.9623 0.9624 0.9512 0.9519 0.1266

(1.6621) (0.6085) (0.6115) (0.5927) (0.5954) (0.0594)

1.0 1.0000 0.9561 0.9582 0.9433 0.9462 0.8441

(4.1570) (1.2303) (1.2424) (1.1663) (1.1766) (0.4028)

2.0 0.9565 0.9497 0.9523 0.9404 0.9409 0.9899

(8.2323) (4.0172) (4.0756) (3.6098) (3.6542) (2.1795)

0.8 0.5 1.0000 0.9590 0.9631 0.9501 0.9547 0.8216

(1.2451) (0.3745) (0.3770) (0.3663) (0.3686) (0.1055)

1.0 1.0000 0.9551 0.9568 0.9476 0.9483 0.9975

(2.7509) (0.7554) (0.7609) (0.7273) (0.7324) (0.4582)

2.0 0.9518 0.9497 0.9526 0.9469 0.9480 0.9999

(4.0077) (2.3383) (2.3610) (2.1800) (2.1998) (1.6955)
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Table 4. The AIC values of the non-zero observations from Chiang Klang, Tha Wang Pha, and Pua in

Nan, Thailand.

Areas
Distributions

Normal Lognormal Cauchy Exponential Gamma Weibull

Chiang Klang 430.7372 347.4835 387.5394 356.1853 355.0152 353.0018

Tha Wang Pha 477.9087 363.7785 415.4823 386.6203 366.9576 363.8529

Pua 425.2069 335.9760 379.7269 346.6206 344.5560 342.1551

Table 5. The BIC values of the non-zero observations from Chiang Klang, Tha Wang Pha, and Pua in

Nan, Thailand.

Areas
Distributions

Normal Lognormal Cauchy Exponential Gamma Weibull

Chiang Klang 434.3506 351.0968 391.1527 357.9920 358.6286 356.6151

Tha Wang Pha 481.6923 367.5621 419.2659 388.5121 370.7412 367.6365

Pua 428.8642 339.6333 383.3842 348.4493 348.2133 345.8124

Table 6. The 95% confidence intervals and credible intervals for the common CV of rainfall datasets

from Chiang Klang, Tha Wang Pha, and Pua in Nan, Thailand.

Methods Lower Upper Lengths

FGCI 2.0363 4.4528 2.4165

E-B.Indj 1.8975 4.7920 2.8945

E-B.U 1.9039 5.0631 3.1592

C-B.Indj 1.7583 4.3644 2.6061

C-B.U 1.7540 4.4703 2.7163

MOVER 2.3642 5.1399 2.7757
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