Unraveling the hidden diversity of the Middle Devonian (Emsian) crinoids (Crinoidea, Echinodermata) from Poland (#68648)

First submission

Guidance from your Editor

Please submit by 28 Dec 2021 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the materials page.

8 Figure file(s)

New species checks

- Have you checked our <u>new species policies</u>?
- Do you agree that it is a new species?
- Is it correctly described e.g. meets ICZN standard?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

-	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Unraveling the hidden diversity of the Middle Devonian (Emsian) crinoids (Crinoidea, Echinodermata) from Poland

William Ausich¹, Mariusz A Salamon ^{Corresp., 2}, Bartosz Płachno³, Tomasz Brachaniec², Wojciech Krawczyński², Andrzej Boczarowski², Karolina Paszcza², Magdalena Łukowiak⁴, Przemysław Gorzelak⁵

Corresponding Author: Mariusz A Salamon Email address: paleo.crinoids@poczta.fm

Most previous publications on Devonian crinoids from the Holy Cross Mountains in Poland have concentrated on crinoid columns, and until now, little has been published about crinoid cups and calyxes. Herein, five crinoid taxa are described from an abundant occurrence of aboral cups and partial crowns from the Bukowa Góra Member (Emsian) in the Holy Cross Mountains of southern Poland. The following taxa are described: *Bactrocrinites* sp., *Codiacrinus sevastopuloi* n. sp., *Halocrinites geminatus* (Bohatý, 2005), *Halocrinites schlotheimii* Steininger, 1831, and a single brachial plate from a flexible crinoid placed in Flexibilia *incertae sedis*. Simple discoid holdfasts are also present encrusted to cylindrical stromatoporoids. These taxa are the first crinoids described from the remains of partial crowns from Emsian strata of Poland.

¹ University of Columbus, Columbus, USA

² University of Silesia in Katowice, Sosnowiec, Poland

³ Jagiellonian University Cracow, Kraków, Poland

⁴ Insitute of Paleobiology, Warszawa, Poland

⁵ Insitute of Paleobiology Polish Academy of Science, Warszawa, Poland

1 Unraveling the hidden diversity of the Middle Devonian (Emsian) crinoids (Crinoidea,

3

2

- William I. Ausich¹, Mariusz A. Salamon^{2*}, Bartosz J. Płachno³, Tomasz Brachaniec², Wojciech
- 5 Krawczyński², Andrzej Boczarowski², Karolina Paszcza², Magdalena Łukowiak⁴ and
- 6 Przemysław Gorzelak⁴

Echinodermata) from Poland

7

- 8 ¹School of Earth Sciences, Ohio State University, 125 South Oval Mall, Columbus, Ohio, U.S.A.
- 9 2*University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Earth Sciences,
- 10 Będzińska Street 60, 41-200 Sosnowiec, Poland, e-mail: paleo.crinoids@poczta.fm
- ³Jagiellonian University in Kraków, Faculty of Biology, Institute of Botany, Gronostajowa Street
- 12 9, 30-387 Cracow, Poland
- ⁴Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland

14

- 15 Corresponding Author:
- 16 Mariusz A. Salamon²
- ²University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Earth Sciences,
- 18 Będzińska Street 60, 41-200 Sosnowiec, Poland
- 19 e-mail: paleo.crinoids@poczta.fm

20

٨	BSTR	٨	CT
\mathcal{A}	$\mathbf{D} \mathbf{J} \mathbf{I} \mathbf{K}$	\boldsymbol{A}	

21

Most previous publications on Devonian crinoids from the Holy Cross Mountains in Poland have 23 concentrated on crinoid columns, and until now, little has been published about crinoid cups and 24 calyxes. Herein, five crinoid taxa are described from an abundant occurrence of aboral cups and 25 partial crowns from the Bukowa Góra Member (Emsian) in the Holy Cross Mountains of 26 southern Poland. The following taxa are described: Bactrocrinites sp., Codiacrinus sevastopuloi 27 sp. nov., Halocrinites geminatus [B] hatý, 2005), Halocrinites schlotheimii [S] ininger, 1831, and 28 a single brachial plate from a flexible crinoid placed in Flexibilia incertae sedis. Simple discoid 29 30 holdfasts are also present encrusted to cylindrical stromatoporoids. These taxa are the first crinoids described from the remains of partial crowns from Emsian strata of Poland. 31

32

33

Subjects Paleontology

34 **Sywords** Devonian, Emsian, Poland, crinoids, Echinodermata, div ty.

35

36

INTRODUCTION

37

- 38 Crinoid remains are abundant in Devonian (Emsian-Famennian) strata of Poland (Holy Cross
- 39 Mountains, southern Poland; Cracow-Silesian area, southern Poland; Sudetes, southwestern
- 40 Poland; Pomerania, northern Poland). Polish Devonian crinoids were mentioned initially by
- 41 Dames (1868), Zeuschner (1867, 1869), Gürich (1896), and Sobolev (1909). Much later, Kongiel

(1958) and Piotrowski (1977) described the occurrence of the genus Ammonicrinus in the Holy 42 Cross Mountains (see Gorzelak et al., 2014) $\frac{1}{100}$ a series of subsequent papers, Głuchowski 43 (1980, 1981a-c, 1993a, 1993b, 2002, 2003; see also Hauser, 2002) listed ~50 crinoid taxa from 44 Devonian (Lochkovian, Emsian-Famennian) strata of Poland (for summary see Fig. 1). 45 Unfortunately, mainly of them were based on isolated skeletal remains, mainly columnals; and 46 47 they were described using the principles of artificial classification of crinoid remains proposed by Moore and Jeffords (1968). Głuchowski (2003) added that the applicability of crinoid stems 48 may be useful for stratigraphic and correlation purposes. 49 To date, only eight crinoid taxa have been identified on the basis of complete (or nearly 50 complete) crowns and aboral cups with column from the Devonian of Poland. Among these is 51 Haplocrinites sp. from Givetian-Frasnian of Holy Cross Mountains recorded by Głuchowski 52 (1993a, 2003). Specimens of this taxon from late Frasnian Detrital Beds of the Holy Cross 53 Mountains were later designated by Hauser (2002) as *Haplocrinites gluchowskii* Hauser, 2002. 54 55 According to Głuchowski et al. (2006) Givetian and early Frasnian Haplocrinites sp. specimens differ from H. gluchowskii in having distinctly less prominent radial facets. Another haplocrinitid 56 (Haplocrinitidae) species is *Haplocrinites aremoricensis* Le Menn, 1985 from the uppermost 57 Givetian of the Holy Cross Mountains (Głuchowski, 1993a). Also tree cupressocrinitid 58 (Cupressocrinitidae) taxa have been described from the Holy Cross Mountains by Głuchowski 59 (1993a). These are pressocrinites cf. abbreviatus Goldfuss (late Eifelian-late Givetian) (now 60 Halocrinites schlotheimii Steininger, 1831), C. inflatus Schultze, 1866 (late Givetian) (now 61 Halocrinites inflatus), and C. sampelayoi (Almela and Revilla, 1950) (now Halocrinites minor 62 63 (Schultze, 1866) known from late Givetian (Głuchowski 1993a, 2002). The remaining two crinoid species belong to the Melocrinitidae. These are Melocrinites cf. gibbosus Goldfuss, 1831 64

65	and M. cf. hieroglyphicus Goldfuss, 1831, which were found in the sediments of the uppermost
66	Frasnian.
67	Only four crinoid taxa are known from the Emsian of the Holy Cross Mountains and all
68	were documented on the basis of isolated columnals or their impressions (casts). In particular,
69	Głuchowski (1981b, 2002) listed the following taxa from the Bukowa Góra shales:
70	Acanthocrinus sp. (col.), Formosocrinus cf. formosus (col.) (Yeltyscheva and Sisova, 1973),
71	Laudonomphalus humilicarinatus (col.) (Yeltyscheva in Yeltyscheva and Dubatolova, 1961)
72	[now Hexacrum] es? humilicarinatus (col.)], and Marettocrinus subbiconcavus (col.) (Stukalina,
73	1965).
74	Here we report complete or almost complete Emsian cups associated with numerous
75	isolated calyx and column remains from the Bukowa Góra Member in the Holy Cross Mountains
76	of southern Poland. These include Bactrocrinites sp., Codiacrinus sevastopuloi sp. nov.,
77	Halocrinites geminatus (Bohatý, 2005), Halocrinites schlotheimii Steininger, 1831, and
78	Flexibilia incertae sedis. Simple discoid holdfasts are also present. Remains of unidentifiable
79	specimens indicate that several other crinoids also existed in the Bukowa Góra Member fauna.
80	
81	Figure 1 around here
91	rigure i around here
82	
83	GEOLOGIC FRAMEWORK
84	

107

85	The Holy Cross Mountains are located in the southern part of Poland. Their main element is the
86	Paleozoic core, divided into two parts: the Łysogóry region (northern, connected with the
87	Łysogóry Block) and the Kielce region (southern, connected with the Małopolska Block; see Fig
88	2A). These regions differ from each other by facies development of contemporaneous deposits.
89	Devonian sediments of the Łysogóry region were formed in the deeper basin in contrast to the
90	shallower facies exposed in the Kielce region (Szulczewski, 1995).
91	Outcrops of Lower Devonian rocks in the Łysogóry Region are connected with the
92	southern limb of the Bodzentyn Syncline. The sedimentary rocks of the upper Emsian are best
93	exposed in the active quarry "Bukowa Góra", located about 16 km northeast of Kielce (see Fig.
94	2A). The section includes sediments belonging to patulus Conodont Z and douglastownense-
95	eurypterota Miospore Z (Malec, 2005; Filipiak, 2011; Fijałkowska-Madej & Malec, 2011).
96	In the lower part of the section, the 110 m thick Zagórze "formation" comprised of
97	siliciclastic deposits is present (see Fig. 2B). They are mostly represented by quartzitic
98	sandstones with abundant trace fossils and by claystones. Within sandstones, there are storm
99	originated brachiopod coquinas with gastropods, bivalves, tentaculitids, crinoids, rarely
100	trilobites, rugose corals, nautiloids, and ostracodes. At the top of the Zagórze "formation",
101	conglomerates and sandstones of estuary facies crop out. Deposits of the Zagórze "formation"
102	were formed in the shallow sea environment from the lagoon to the shoreface (Szulczewski &
103	Porębski, 2008; see also Łobanowski, 1971, 1981).
104	As a result of the progressive deepening of the marine basin, deposits of the
105	Grzegorzowice Formation were formed, which is also present in the Kielce region (Malec, 2005;

Wójcik, 2015). In the Bukowa Góra quarry section the two members are present: the Bukowa

Góra Member and the Kapkazy Member. The Bukowa Góra Member occurs only within the

patulus Conodont Zone in the western part of the Bodzentyn Syncline (see Fig. 2B). In the eastern part of the Bodzentyn Syncline, the Bukowa Góra Member appears earlier, i.e., in the serotinus Conodont Zone (Malec, 2005). Malec (2005) marked the lower boundary of the Bukowa Góra Member in the bottom of the complex of dark claystones, whereas Szulczewski & Porębski (2008) put this boundary on the pebble conglomerate that begins of the lower shoreface to offshore transitional series.

In the lower part of interbedded sandstones, the Bukowa Góra Member is comprised of sandstones, siltstones, and claystones, which are about 7 m thick (see Szulczewski & Porębski, 2008). Above them appears the offshore facies represented by black to dark-gray claystones and silty claystones with a thickness of ~13 m and containing discontinuous beds of dolomitic limestones up to 10 cm thick (see Fig. 2B). Both claystones and limestones contain a rich faunal assemblage related to the colonization of the soft sea bottom. There are massive colonies of both stromatoporoids and tabulate corals accompanied by solitary rugoses, brachiopods, crinoids, ostracods, gastropods and trilobites (Malec, 2005; see also Głuchowski, 1993b; Fijałkowska-Mader et al., 1997).

Claystones of the Bukowa Góra Member are overlain by sandstones of the Kapkazy Member, which is ~34 m thick. The lower part of the Kapkazy Member is comprised of coarse-grained and conglomeratic sandstones, containing rare crinoids, brachiopods and gastropods. Above this is fine-grained sandstone, which is indicative of a clear shallowing of the sea basin (Malec 2005).

Figure 2 around here

MATERIALS AND METHODS

The studied material from Bukowa Góra Quarry was collected in 2019 and 2021. The first step consisted of examination of slab surfaces in the field. At this stage, numerous crinoid remains (isolated columnals and complete or nearly complete crowns) were collected. The next step consisted of soaking the respective samples (11 shales samples weighing each ca. 10 kg) only with hot water. Limy samples (4 samples weighing each ca. 5 kg) were soaked with Glauber's salt. These samples were then boiled and frozen (2-3 times). The residues were finally washed with running tap water and sieved on a sieve column (Ø1.0, 0.315 and 0.1 mm mesh). The final step consisted of drying the shaly and limy residues at 160°C. Residue was hand-picked from each macerated sample for microscopic study.

All crinoids were photographed by a SONY DSC-RX10M3 digital camera. Specimens discussed here are deposited in the University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Earth Sciences, Poland GIUS 4-3696) and in a private collection (Nr.CREF; see Boha 2005).

"The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix

153	http://zoobank.org/. The LSID for this publication is: zoobank.org:pub:B89FD16E-2084-431A-
154	ACE9-4E4362C6C3CD, and for taxonomic registration it is:
155	urn:lsid:zoobank.org:act:66DBF909-CF1C-479C-BDA0-F324F4FFC15F. The online version of
156	this work is archived and available from the following digital repositories: PeerJ, PubMed
157	Central SCIE and CLOCKSS".
158	
159	RESULTS
160	
161	More than 1,000 of columnals and pluricolumnals, dozens of disarticulated ossicles from cups
162	and arms, and 26 complete (or nearly complete) cups/calyces were collected. As a result of our
163	investigations, the following taxa were identified: Bactrocrinites sp., Codiacrinus sevastopuloi
164	sp. nov., Halocrinites geminatus (Bohatý, 2005), Halocrinites schlotheimii Steininger, 1831, and
165	Flexibilia incertae sedis. Simple discoid holdfasts are also described.
166	
167	SYSTEMATIC PALEONTOLOGY
168	
160	Abbreviations used for specimen measurements include ACH, shorel our height: ACdistW
169	Abbreviations used for specimen measurements include ACH, aboral cup height; ACdistW,
170	distal width of aboral cup; ACmaxW, maximum width of aboral cup; ACproxW, proximal width
171	of aboral cup; BConW, basal concavity width; BH, basal plate height; BW, basal plate maximum
172	width; CrW, crown width; 1stPBH, first primibrachial height; 1stBrW, first primibrachial width;
173	2 nd PBH, second primibrachial height; 2 nd PBdistW, second primibrachial distal width; 2 nd
174	PBproxW, second primibrachial distal width, 5thPBH, fourth primibrachial height; 3rdPBW,
175	third primibrachial width; 3 rd PBH, third primibrachial height; 5 th SBW, fifth primibrachial width.

L 7 6	All measurements are in mm. Terminology for encrusting organisms follows the
L 77	recommendations of Taylor and Wilson (2002).
L78	
179	Class Crinoidea Miller, 1821
L 8 0	Subclass Pentacrinoidea Jaekel, 1918
181	Infraclass Inadunata Wachsmuth and Springer, 1885
L82	Parvclass Cladida Moore and Laudon, 1943
183	Magnorder Eucladida Wright, 2017
L84	Superorder Cyathoformes Wright et al., 2017
L 8 5	Superfamily Codiacrinoidea Bather, 1890
186	Family Codiacrinidae Bather, 1890
L87	Subfamily Codiacrininae Bather, 1890
188	Genus Codiacrinus Schultze, 1866
189	
190	Type species
L 91	Codiacrinus granulatus Schultze, 1866
L 92	Included species

193	C. granulatus Schultze, 1866; C. nicolli Jell and Jell, 1999; C. ornatus (Prokop, 1973); C.
L94	piriformis LeMenn, 1997; C. procerus (Prokop, 1973); P. rarus Jell and Holloway, 1983; C.
195	robustus LeMenn, 1997; C. schultzei Follman, 1887; C. secundus Jell, 1999.
196	
.50	
L97	Figure 3 around here
198	
L99	Codiacrinus sevastopuloi sp. nov.
200	Fig. 3A1-A4, 3B1-B3, 3C
201	Diagnosis
202	Aboral cup medium bowl shape; three or more radiating ridges from center of basal plates that
203	project onto radial and infrabasal plates, also very fine nodose sculpturing across calyx plates;
204	basal plates largest plates of aboral cup; radial facets ~50% of distal width of radial plates
205	(arms and column characters not known).
206	Types
207	Holotype: GIUS4-3693/Codiacrinus1; paratypes: GIUS4-3693/Codiacrinus2, GIUS4-
208	3693/Codiacrinus3.
209	Occurrence
210	Bukowa Góra Member (Emsian), Bukowa Góra quarry, Holy Cross Mountains, southern Poland.
211	Description

213

214

215

216

217

218

219

220

221

222

223

224

Aboral cup medium globe shaped (Fig. 3A4, 3B1), height to width ratio ~1.0, maximum width at middle aboral cup height; three or more radiating ridges from center of basal plates that project onto radial and infrabasal plates (Fig. 3A1), also very fine nodose sculpturing across calyx plates. Infrabasal circlet ~9% of aboral cup height, extends proximally in a short neck that is truncate proximally with a shallow, circular basal concavity that occupies ~75% of proximal aboral cup width (Fig. 4A2, 4B2). Five pentagonal infrabasal plates, ~3.8 times wider than high, outer surface concave, sculpturing irregular nodose. Basal circlet ~55% of aboral cup height; basal plates largest plates in aboral cup, hexagonal, ~1.2 times higher than wide; sculpturing with radiating ridges and nodes, ridges from near the center of the plates to ridges on adjoining proximal and distal plates. Radial circlet ~36% of aboral cup height; radial plates ~1.2 times wider than high, pentagonal; plate sculpturing with ridges and nodes, ridges diagonal from base of radial facet to like ridges on adjoining basal plates. Radial facets angustary (~52% of radial plate distal width), horseshoe shaped (Fig. 4A3, 4B3). Radial facets, arms, and column unknown.

225 Etymology

- The species name is in recognition of the substantial contributions that George D. Sevastopulo
- made to crinoid paleobiology, as well as paleontology and stratigraphy in general.

228 Measurements

- 229 GIUS4-3693/Codiacrinus1 (holotype): ACH, 9.8; ACmaxW, 10.4; IH, 1.5; IW, 2.5; BH, 5.4;
- 230 BW, 7.6; RH, 5.2; RmaxW, 6.0, RdistW, 5.3, RFW, 3.1. GIUS4-3693/Codiacrinus2 (paratype):
- 231 ACH, 11.25; ACmaxW, 11.25*; IH, 1.4; IW, 5.3; BH, 8.4; BW, 6.8; RH, 5.4; RmaxW, 6.6,
- 232 RdistW, 4.8, RFW, 2.5.

Remarks

233

One well-preserved and two poorly preserved aboral cups are assigned to *Codiacrinus* sevastopuloi sp. nov. Both poorly preserved specimens have their shapes distorted through compaction.

Ten species of *Codiacrinus*, including *C. sevastopuloi*, are recognized herein. *C.? weyeri* is excluded, and it is regarded either as an aberrant individual or a member of another genus. Of these ten species, only three have arms and proximal columnals preserved (*C. robustus*, *C. schultzei*, and *C. secundus*). Thus, species diagnoses are largely based on characters of the aboral cup, which vary widely.

The most noticeable character used to differentiate species of *Codiacrinus* is the aboral cup shape, which may be low bowl, high cone, medium globe, high globe, or medium vase in shape. *Codiacrinus granulatus*, *C. nicolli*, *C. robustus*, and *Codiacrinus sevastopuloi* sp. nov. all have a medium globe-shaped aboral cup. *Codiacrinus granulatus* has a medium globe-shaped aboral cup, two poorly defined radiating ridges from the base of the radial facet onto each subjacent basal plate and perhaps some poorly developed concentric ridges, radial plates are the largest plates in the aboral cup, and the radial facets occupy ~50% of the distal radial plate width. *Codiacrinus nicolli* has a medium globe-shaped aboral cup, very fine nodose sculpturing, radial plates are the largest plates in the aboral cup, and the radial facets occupy ~60% of the distal radial plate width. *Codiacrinus robustus* has a medium globe-shaped aboral cup, three radiating ridges from the basal plate center and otherwise smooth sculpturing, basal plates are the largest plates in the aboral cup, and the radial facets occupy ~50% of the distal radial plate width.

Alternatively, *Codiacrinus sevastopuloi* sp. nov. has a medium globe-shaped aboral cup, three or more radiating ridges from center of basal plates that project onto radial and infrabasal

256	plates, also very fine nodose sculpturing across calyx plates, basal plates are the largest plates in
257	the aboral cup, and the radial facets occupy $\sim 50\%$ of the distal radial plate width.
258	
259	Figure 4 around here
260	
261	Superfamily Dendrocrinacea Wachsmuth and Springer, 1886
101	Superfamily Dendroermacea waensmuth and Springer, 1666
262	Family Dendrocrinidae Wachsmuth and Springer, 1886
263	Genus Bactrocrinites Schnur in Steininger, 1849
264	
265	Type species
266	Poteriocrinus fusiformis (Roemer, 1844).
267	Included species
268	Bactrocrinites birmanicus Reed, 1908; B. cyathus Schmidt, 1942; B. depressus (Schultze, 1866);
269	B. fieldi (Springer and Solcom, 1906); B. fusiformis (Roemer, 1844); B. holen elsensis Hauser,
270	2007; B. jaekeli (Schmidt, 1934); B. muelleri (Jaekel, 1895); B. oklahomaensis Strimple, 1952;
271	B. onondagensis Goldring, 1954; B. penaneachensis LeMenn, 1985; B. porectus Bohatý, 2005;
272	B. tenuis (Jaekel, 1895); B.? trabicus (Schmidt, 1934); B. zeileri (Mueller in Zeiler and Wirtgen,
273	1855)
274	
275	Bactrocrinites sp.

276 Fig. 3E, 4

Description

Relatively large aboral cup, aboral cup plates with pustulose plate sculpturing (Fig. 3E). Infrabasal plates not known. Basal plates partially preserved, inferred to be the dominant plate circlet in aboral cup (Fig. 3E). C radial plate supported beneath by radianal plate and BC basal plate; D radial plate larger that C radial plate, supported beneath by CD an DE basal plates. Radial facets large, semicircular, angustary, declivate. Two anal plates in aboral cup. Radianal presumably tetragonal, below and to the left of the C radial plate and supports the anal X plate on the upper left (Fig. 4). Anal X plate hexagonal, supported beneath by the CD basal plate and the radianal, separates and articulates with lateral sides of the C and D radial plates.

Other aspects of the aboral cup, anal sac, arms, and column are not known.

Occurrence

Bukowa Góra Member (Emsian), Bukowa Góra quarry, Holy Cross Mountains, southern Poland.

Remarks

Species diagnostic characters for Devonian *Bactrocrinites* include shape of the aboral cup, plate sculpturing, relative heights of aboral cup plates, and the dimensions of the infrabasal and basal plates. Unfortunately, the single specimen of *Bactrocrinites* from the Emsian of Poland is not complete (GIUS4-3693/Bactricrinites), so aboral cup shape, relative proportions of aboral cup plates and the dimensions of the basal plates cannot be determined. The pustulose aboral cup plate sculpturing and what are inferred to be prominent (high) basal plates most closely ally this

specimen with B. fusiformis. However, a more complete accounting of the morphology of this 297 Emsian specimen is required before a confident species assignment can be made. 298 299 Figure 5 and 6 around here 300 301 Superfamily Gasterocomoidea Roemer, 1854 302 303 Family Cupressocrinitidae Roemer, 1854 Subfamily Cupressocrinina hatý 2006 304 305 Genus Halocrinites Steininger, 1831 306 307 Type species Halocrinites schlotheimi schlotheimi Steininger, 1831. 308 **Included species** 309 Halocrinites altus (Schultze, 1866); H. assimilis (Dubatolova, 1964); H. geminatus (Bohatý, 310 2005); H. gibber (Bather, 1919); H. heinorum Bohatý and Ausich (2021); H. inflatus inflatus 311 (Schultze, 1866); H. inflatus convexus (Hauser, 2001); H. inflatus cuneatus Bohatý, 2006; H. 312 inflatus depressus (Hauser, 2001); H. minor (Schultze, 1866); H. nodosus (Sandberger and 313 Sandberger, 1856); H. rectangularis (Schmidt, 1941); H. schlotheimii schlotheimii Steininger, 314 1831; H. schlotheimii granulosus Schultze, 1866; H. schreueri Bohatý, 2006; H. tesserula 315 (Goldfuss, 1831); H. townsendi (König, 1825); and H. urogali Roemer, 1850. 316

Remarks

As discussed in Bohatý and Ausich (2021), generic and specific assignments of the
Cupressocrinitidae have been varied, commonly changed, and confused until recently (e.g.,
Bohatý, 2005; Bohatý, 2006; Bohatý, 2009; Bohatý and Herbig, 2010; and Bohatý and Ausich,
2021). Two species of <i>Halocrinites</i> are recognized from the Bukowa Góra Member in Poland,
including H. geminatus (Bohatý, 2005) and H. schlotheimii (Steininger, 1831). Most
Halocrinites specimens from Poland are lacking the exoplacoid layer or are sufficiently worn
that the character of the exoplacoid layer cannot be determined. One exception is specimen
GIUS 4-3696Hscholth6 (Fig. 5E), although even this specimen is worn. They are differentiated
on the basis of aboral cup shape, basal plate morphology, size of the infrabasal circlet relative to
the size of the proximalmost columnal, and the size of the basal concavity, as described below.
Halocrinites schlotheimii has a bowl-shaped aboral cup with a ratio of aboral cup diameter
versus crown height ~1:1.15–2.0; aboral cup typically ~2.0 times wider than high; infrabasal
plates fused into a single pentagonal plate that is confined to the basal concavity; brachials wider
than high (height to width ratio \sim 1:2.0–2.5); proximal columnal circular not filling entire basal
concavity. In contrast, <i>H. geminatus</i> aboral cup bowl to moderately conical in shape; ratio of
aboral cup diameter versus crown height ~1:1.15–2.0;, typically 2.0 times wider than high;
infrabasal plates fused into a single pentalobate plate that is confined to the basal concavity;
brachials wider than high (height to width ratio ~1:2.0-2.5); proximal columnal circular not
filling entire basal concavity.
Similar to the Cupressocrinitidae described Bohatý and Ausich (2021), <i>Halocrinites</i>
from Poland have a variety of epizoans encrusting the outer surface of crown plates. These
include trepostome bryozoans encrusted on aboral cup and brachial plates. A presumable

340	microconchid that is attached to a radial plate, and a juvenile pelmatozoan holdfast is attached to
341	a different radial plate. These encrustations did not induce a recognizable response from the
342	crinoid host, so it is probable that these encrustations occurred after the death of the crinoid and,
343	thus, are episkeletozoans (see Taylor and Wilson, 200 –
344	
345	Halocrinites schlotheimii Steininger, 1831
346	Figs. 3F1–F3, 5A1–A3, 5B1–B2, 5C1–C2, 53, 6A1, 6A2
347	
348	Type
349	The type specimens for this taxon are not known.
350	Diagnosis
351	Halocrinites with bowl-shaped aboral cup with a ratio of aboral cup diameter versus aboral cup
352	height ~1:1.15–2.0; aboral cup typically ~2.0 times wider than high; infrabasal plates fused into
353	a single pentagonal plate that is confined to the basal concavity; brachials wider than high
354	(height to width ratio \sim 1:2.0–2.5); proximal columnal circular not filling entire basal concavity.
355	Occurrence
356	In Poland, H. schlotheimii is from the Bukowa Góra Member (Emsian), Bukowa Góra quarry,
357	Holy Cross Mountains, Poland. Previously, this species has been described from the Eifelian and
358	Givetian of Australia, China, Germany, Poland, and Spain (Webster and Webster, 2019).
359	Description

Calyx medium sized. Aboral cup low to very low bowl shape in adults with height to maximum width ratio 0.44–0.66 (Fig. 3F); perfect pentameral symmetry; deep, subpentalobate basal concavity occupies 62–66% of proximal aboral cup width (Fig. 5E). Plates gently convex; coarse multilaminar exoplacoid sculpturing preserved on only a few specimens.

Infrabasal circlet completely in basal concavity pentagonal. Infrabasal plates presumably five. Basal circlet ~58–60% of aboral cup height, present on base and on vertical sides of aboral cup (Figs. 3D, 3F, 5A–5C). Five basal plates, equal in size, wider than high, smaller than radial plates. Radial circlet 40–42% of calyx height (Fig. 6A). Radial plates five, pentagonal, largest plates in aboral cup, height to width ratio 0.48–0.58. Radial facets plenary, planate; radial facet topography not known. Posterior interray plates absent from aboral cup; anal sac, if present, unknown.

Arms five, atomous, brachials uniserial; V-shaped in cross section across width of brachial plate; incompletely known (preserved only through sixth primibrachial) (Fig. 6A). First primibrachial (articular plate, see Bohatý and Ausich, 2021), very low, full width of radial facet; subsequent brachials, flat sided, equal in width to distal edge of second primibrachials; height to width ratio ~0.65.

Proximal column narrow, attachment to base of aboral cup circular, occupies slightly more than one half of infrabasal circlet; remainder of column unknown.

Measurements

- 379 GIUS4-3693/Hschloth3: CrH, 33.0*; ACH, 7.5; ACmaxW, 11.3; 4thPBH, 6.0; 4thPBW, 4.0.
- 380 GIUS4-3693/Hschloth4: ACH, 6.3; ACdistW, 14.0; BH, 6.3; BW, 6.5; RH, 4.3; RW, 8.9.

Remarks

382	Six specimens of <i>H. schlotheimii</i> are known from the Emsian of Poland (GIUS4-3693/Hschloth1
383	to GIUS4-3693/Hschloth6). In the collection of Polish specimens, small inidividuals tend to have
384	more pronounced convex basal plates that that nearly produce a central node.
385	
386	Halocrinites geminatus (Bohatý, 2005)
387	Fig. 5D, 5H
388	
389	Туре
390	Holotype is CREF34c-1.
391	Diagnosis
392	Halocrinites with aboral cup bowl to moderately conical in shape; ratio of aboral cup diameter
393	versus aboral cup height ~1:1.15–2.0;, typically 2.0 times wider than high; infrabasal plates
394	fused into a single pentalobate plate that is confined to the basal concavity; brachials wider than
395	high (height to width ratio ~1:2.0–2.5; proximal columnal circular not filling entire basal
396	concavity.
,,,	Concavity.
397	Occurrence
398	In Poland, H. geminatus is from the Bukowa Góra Member (Emsian), Bukowa Góra quarry,
399	Holy Cross Mountains. Previously, it was known from the Eifelian to early Givetian of Germany
400	(Webster and Webster, 2019).
401	Description
.01	Description

Calyx medium sized. Aboral cup very low bowl shape (Fig. 5D1), height to maximum width ratio 0.43; perfect pentameral symmetry; shallow, subpentalobate basal concavity occupies ~73% of proximal aboral cup width (Fig. 5D2). Plates gently convex.

Infrabasal circlet completely concealed in basal concavity; outer margin of basal concavity subtetragonal, entirely covered by proximal columnal. Infrabasal plates presumably five. Basal circlet ~56% of aboral cup height, present on base and on vertical sides of aboral cup. Five basal plates, equal in size, wider than high, much smaller than radial plates. Radial circlet ~44% of calyx height. Radial plates five, pentagonal, largest plates in aboral cup, height to width ratio 0.60. Radial facets plenary, planate; radial facet topography not known. Posterior interray plates absent from aboral cup; anal sac, if present, unknown.

Arms five, atomous, brachials uniserial (Fig. 5H); V-shaped in cross section across width of brachial plate; incompletely known (preserved only through sixth primibrachial). First primibrachial (articular plate, see Bohatý and Ausich, 2021), very low (height to width ratio 0.16), full width of radial facet; subsequent brachials, flat sided, equal in width to distal edge of second primibrachials; height to width ratio ~1.2.

Proximal column attachment to base of aboral cup wide, tetralobate, fills entire basal concavity covering infrabasal plates; remainder of column unknown.

Measurements

- 420 GIUS4-3969/Hgem1: CrH, 41.0*; ACH, 9.0; ACmaxW, 21.0; ACproxW, 9.0; BConW, 6.5; BH,
- 7.6; BW, 7.25; RH, 5.9; RW, 12.4; 1stPbH, 1.5; 1stPbW, 13.0; 2ndPbH, 6.0; 2ndPbproxW, 13.0;
- 422 2ndPbdistW, 10.0; 3rdPBH, 5.9.0; 3rdPBW, 5.0.

Remarks

124	Bohatý (2005) illustrated individuals of H . geminatus with a wide variety of shapes. The
125	description above is for the Poland specimens that all have a very low bowl shape. No specimens
126	from Poland preserve remnants of the exoth real scuplturing.
127	
128	Figure 7 and 8 around here
129	
130	Crinoidea Incertae Sedis
131	Figs. 5F, 5G, 6B-6D, 7A-7I, 8C, 8D
132	Occurrence
133	Bukowa Góra Member (Emsian), Bukowa Góra quarry, Holy Cross Mountains, southern Poland.
134	Remarks
135	A single brachial plate is identified as a flexible crinoid (GIUS4-3693/flexible; Fig. 7I). The
136	brachial plate is \sim 4.0 times deeper than high with, only the distal facet is visible and part of the
137	sides of the plate are visible that includes the aboral indentation where a patelloid process from
138	the distal adjoining brachial would reside. The brachial plate is as wide as deep. A crenulated
139	articular ridge is present along the abaxial portion of the facet, and the lateral sides of the facet
140	are crenulated. A narrow, shallow aboral groove is present along the adaxial margin of the facet.
141	Poorly preserved and unidentifiable remains of several additional taxa also occur in the
142	Bukowa Góra Member. In addition to the flexible crinoid and holdfasts mentioned below, others
143	include camerate crinoids (Fig. 5F, 5G) and various distinctive cladid crinoids (Fig. 6B-6D).
144	Distinctive columnals and pluricolumnals are also present (Fig. 7A, 8C, 8D). The pluricolumnals

145	illustrated in Fig. 8C undoubtedly belong to the Platycrinitidae and may be <i>Platycrinites</i>
146	minimalis (col.) Głuchowski, 1993a.
147	
148	Simple discoid holdfasts
140	Simple discoid noidrasts
149	Fig. 8A, 8B
150	
151	Occurrence
152	Bukowa Góra Member (Emsian), Bukowa Góra quarry, Holy Cross Mountains, Poland.
153	Remarks
154	Solitary rugose coral and a presumable stromatoporoid specimens associated with the described
155	crinoids have small, discoid holdfasts cemented to their outer surface (Fig. 8A, 8B). These
156	holdfasts are subcircular in outline and some have a slightly digitate outer margin. In one
157	example, the holdfast articulation to the column was canted toward the long axis of a rugose
158	coral, suggesting the crinoid was encrusted to the coral when both were alive. Therefore, these
159	holdfasts should be considered epizoozoans (Taylor and Wilson, 2002). It is not possible to
160	speculate on the identity of the crown that was attached to these holdfasts, and the smaller
161	specimens may have been juven les.
162	
163	CONCLUDING REMARKS

The first Emsian crinoids described on the basis of aboral cups and crowns are reported here from the Bukowa Góra Member in the Holy Cross Mountains of southern Poland. Named taxa include *Bactrocrinites* sp., *Codiacrinus sevastopuloi* sp. nov., *Halocrinites geminatus* (Bohatý, 2005), *Halocrinites schlotheimii* Steininger, 1831. Taxa that can only be recognized as incertae sedis include one flexible crinoid, as many as three camerate crinoids, as many as four additional cladid crinoids, and a number of distinctive holdfasts, columnals, and pluricolumnals that cannot be matched with the crown to which they were attached. Additional collecting in the Bukowa Góra Member should yield remains of many crinoids.

Previously, *Halocrinites* (including *H. schlotheimii*) have been described from younger Devonian strata in Poland (see Fig. 1). Further, species of *Bactrocrinites*, *Codiacrinus*, and *Halocrinites* occur in other Devonian crinoid faunas from Germany and Spain (Webster and Webster, 2019).

The new crinoids reported here are from the Bukowa Góra Member of Poland (Emsian) and are an extension of the Lower to Middle Devonian crinoid faunas from across Europe, which are best represented by Emsian to Givetian crinoids from Germany and Spain (e.g., Bohatý, 2005, 2006, 2009, Bohatý and Herbig, 2010; Hauser, 2001, 2002, 2007). *Halocrinites* has been reported from Germany, Spain, Belgium, and Russia (Eifelian–Frasnian); wheras both *Codiacrinus* and *Bactrocrinites* have longer ranges and are cosmopolitan in distribution. In addition, to Western Europe, *Codiacrinus* is known from Gondwana terrane (northern Africa and Australia). The oldest recognized species of *Bactrocrinites* is from the middle Silurian of North America, and this genus is only known from North America and Europe. As known, *Bactrocrinites* became extinct at the Givetian–Frasnian extinction and *Bactrocrinites* and *Halocrinites* became extinct at the Frasnian-Famennian extinction.

487	
488	ACKNOWLEDGMENTS
489	We thank Michał Stachacz, Kamil Moskowczenko, Damian Kuźma, Janusz Kucharski and
490	Mateusz Syncerz for help during the field work. Jan Bohatý generously helped with
491	identifications of taxa. Paweł Bącal is acknowledged for SEM imaging. We also thank XXX and
492	XXX, who provided careful reviews that helped us improve this paper. This project was
493	supported by NCN Grant no. 2018/31/B/ST10/00387.
494	
495	REFERENCES
496	Almela A, and Revilla J. 1950. Especies fósiles nuevas del Devoniano de León. <i>Notas y</i>
497	Communicaciones del Instituto Geológico y Minero de España 20:45–60.
498	Bather, FA. 1890. British fossil crinoids. II. The classification of the Inadunata Fistulata
499	(cont'd). Annals and Magazine of Natural History, ser. 6, 5:373–388.
500	Bather FA. 1919. Cupressocrinus gibber n. sp. du Dévonien supérieur de Belgique. Bulletin de
501	la Société Belge de Géologie, de Paléontologie et l'Hydrologie 28:129–136.
502	Bohatý, JA. 2005. Doppellagige Kronenplaten: Ein neues anatomisches Merkmal paläozoischer
503	Crinoiden und Revision der Familie Cupressocrinitidae (Devon). Paläontologische
504	Zeitschrift 79(2):201–225.
505	Bohatý, JA. 2009. Pre- and postmortem skeletal modifications of the Cupressocrinitidae
506	(Crinoidea, Cladida). Journal of Paleontology 83:45-62.
507	Bohatý, JA, Herbig H-G. 2010. Middle Givetian echinoderms from the Schlade Valley
508	(Rhenish Massif, Germany): habitats, taxonomy and ecostratigraphy. Paläontologische
509	Zeitschrift 84:365–386.

510	Bohaty JA. 2006. Neue Cupressocrinitidae (Crinoidea) aus den mitteldevonischen Kalkmulden
511	der Eifel (linksrheinisches Schiefergebirge, Deutschland). Senckenbergiana Lethaea
512	86(2):151–189.
513	Bohatý JA, Ausich WI. 2021. Revision of two Devonian cupressocrinititids from the Schultze
514	Collection (Museum of Comparative Zoology, Harvard University) and description of a
515	new Halocrinites (Crinoidea, Eucladida). Journal of Paleontology, 17 pp. [doi:
516	10.1017/jpa.2021.65]
517	Dames W. 1868. Über die in der Umgebung Freiburgs in Nieder-Schlesien auftretenden
518	devonischen Ablagerungen. Zeitschrift der Deutschen Geologischen Gesellschaft
519	21:469–508.
520	Dubatolova YuA. 1964. Morskie lilii devona Kuzbassa. Akademiya Nauk SSSR, Sibirskoe
521	Otdeleniye Trudy Instituta Geologii i Geofiziki, 153 pp.
522	Fijałkowska-Mader A, Malec J. 2011. Biostratigraphy of the Emsian to Eifelian in the Holy
523	Cross Mountains (Poland). Geological Quarterly 55:109-138.
524	Fijałkowska-Mader A, Malec J, Tarnowska M, Turnau E. 1997. Stratygrafia dolnego
525	dewonu w rejonie Bodzentyna – region łysogórski Gór Świętokrzyskich. Posiedzenia
526	Naukowe Państwowego Instytutu Geologicznego 53:122–125.
527	Filipiak P. 2011. Palynology of the Lower and Middle Devonian deposits in southern and
528	central Poland. Review of Palaeobotany and Palynology 166:213-252.
529	Follman O. 188' nterdevonische Crinoidea. Verhandlungen des Naturhistorischen Vereins
530	der Preussischen Rheinlande, Westfalens, and des Regierungs-bezirks Osnabruck, 26 pp.
531	Głuchowski E. 1980. New taxa of Devonian and Carboniferous crinoid stem parts from Poland.
532	Bulletin of the Polish Academy of Science 28:43–49.

533	Gluchowski E. 1981a. Stratigraphic significance of Paleozoic crinoid columnals from Poland.
534	Zeszyty Naukowe AGH 7:89–110.
535	Głuchowski E. 1981b. Paleozoic crinoid columnals and pluricolumnals from Poland. Zeszyty
536	Naukowe AGH 7:29–57.
537	Głuchowski E. 1981c. Człony łodyg liliowców z serii skalskiej (żywet) Gór Świętokrzyskich.
538	Sprawozdanie z posiedzeń Komisji Nauk Geologicznych PAN 22:428–429.
539	Gluchowski E. 1993a. Crinoid assemblages in the Polish Givetian and Frasnian. Acta
540	Palaeontologica Polonica 39:35–92.
541	Głuchowski E. 1993b. Upper Emsian crinoids from the Bukowa Góra quarry in the Klonów
542	Range, Holy Cross Mts. Prace Naukowe Uniwersyutetu Śląskiego, 1331, Geologia
543	12/13:159–174.
544	Głuchowski E. 2002. Crinoids from the Famennian of the Holy Cross Mountains, Poland. Acta
545	Palaeontologica Polonica 47:319–328.
546	Głuchowski E. 2003. Gromada Crinoidea Miller, 1821. In: Malinowska L. (ed.), Budowa
547	Geologiczna Polski. Atlas skamieniałości przewodnich i charakterystycznych. T. III.
548	Dewon. Państwowy Instytut Wydawniczy, Warszawa, 458–475.
549	Głuchowski E, Casier J-G, Olempska E. 2006. Crinoid and ostracod succession within the
550	Early-Middle Frasnian interval in the Wietrznia quarry, Holy Cross Mountains, Poland.
551	Acta Palaeontologica Polonica 51:695–706.
552	Goldfuss GA. 1826-1844. Petrefacta Germaniae, tam ea, Quae in Museo Universitatis Regiae
553	Borussicae Fridericiae Wilhelmiae Rhenanea, serventur, quam alia quaecunque in Museis
554	Hoeninghusiano Muensteriano aliisque, extant, iconibus et descriptions illustrata
555	Abbildungen und Beschreibungen der Petrefacten Deutschlands und der Angränzende

556	Länder, unter Mitwirkung des Hern Grafen Georg zu Münster, herausgegeben von
557	August Goldfuss. v. 1 (1826–1833), Divisio prima. Zoophytorum reliquiae, p. 1–114;
558	Divisio secunda. Radiariorum reliquiae, p. 115–221 [Echinodermata]; Divisio tertia.
559	Annulatorium reliquiae, p. 222–242; v. 2 (1834–40), Divisio quarta. Molluscorum
560	acephalicorum reliquiae. I. Bivalvia, p. 65-286; II. Brachiopoda, p. 287-303; III. (1841-
561	44), Divisio quinta. Molluscorum gasteropodum reliquiae, p. 1–121; Düsseldorf, Arnz &
562	Co.
563	Goldring, W. 1954. Devonian crinoids. new and old, II. New York State Museum Circular 37,
564	51 pp.
565	Gorzelak P, Głuchowski E, Salamon MA. 2014. Reassessing the improbability of a muscular
566	crinoid stem. Scientific Reports 4:4069.
567	Gürich G. 1896. Das Paläozoicum im polnische Mittelgebirge. Verhandlungen der
568	Russischkaiserlichen mineralogischen gesellschaft zu St. Petersburg 2, 168 pp.
569	Hauser J. 2001. Neubeschreibung mitteldevonischer Eifelcrinoiden aus der Sammlung Schultze
570	(Museum of Comparative Zoology, The Agassiz Museum, Harvard University,
571	Massachusetts, USA) nebst einer Zusammenstellung der Eifelcrinoiden (Holotypen) der
572	Goldfuss-Sammlung. Published by author, Bonn, 86 pp.
573	Hauser J. 2002. Die Crinoiden der Frasnes-Stufe (Oberdevon) von Wallerheim/Loch (Prümer
574	Mulde, Eifel) nebst einer Zusmmenstellung sämtlicher Melocriniten weltweit. Published
575	by author, Bonn, 69 pp.
576	Hauser J. 2007. Die Crinoidenwelt der Eifel vor 350.000.000 Jahren-Neue Crinoiden aus dem
577	Mitteldevon der Eifel, Tiel 2. Published by author, Bonn, 83 pp.

Jaekel O. 1895. Beiträge zur Kenntniss der palaeozoischen Crinoiden Deutschlands. 578 Paläontologisches Abhandlungen 7, (n.f. 3), p. 1–116. 579 580 Jaekel O. 1918. Phylogenie und System der Pelmatozoen. Paläeontologische Zeitschrift 3:1-128. 581 Jell PA. 1999. Silurian and Devonian crinoids from central Victoria. Memoirs of the Oueensland 582 Museum 43:114 pp. 583 Jell PA, Holloway DJ. 1983. Devonian and ?Late Silurian palaeontology of the Winneke 584 585 Reservoir site, Christman Hills, Victoria. Proceedings of the Royal Society of Victoria 95:1-21. 586 Jell PA, Jell JS. 1999. Crinoids, a blastoid and a cyclocystoid from the Upper Devonian reef 587 complex of the Canning Basin, Western Australia. Memoirs of the Queensland Museum 588 43: 201-236. 589 590 König CDE. 1825. Icones Fossilium Sectiles. London, 4 pp. Kongiel R. 1958. Nowy gatunek Ammonicrinus i jego występowanie w Polsce. Prace Muzeum 591 Ziemi 2:31-40. 592 LeMenn J. 1985. Les crinoides du Dévonien inférieur et moyen du massif Armoricain. 593 Mëmoires de la Société Géologique et Minéralogique de Bretagne 30, 268 pp. 594 **LeMenn J. 1997.** Crinoïdes devoniens d'Afrique du nord. revision systematique et affinites 595 paleobiogeographiques. Annales de la Société Géologique du Nord, 2nd ser 5:129–139. 596 **Lobanowski H. 1971.** The Lower Devonian in the western part of the Klonów belt (Holy Cross 597 Mts). Part 1. Upper Emsian. Acta Geologica Polonica 21:629–686. 598

599	Łobanowski H. 1981. Bukowa Góra quarry: Lower Devonian sandstones. In: Żakowa H. (ed.),
600	Przewodnik 53 Zjazdu Polskiego Towarzystwa Geologicznego w Kielcach,
601	Wydawnictwa Geologiczne; Warszawa, 249–255.
602	Malec J. 2005. Lithostratigraphy of the Lower and Middle Devonian boundary interval in the
603	Łysogóry Region of the Holy Cross Mts (Poland). Biuletyn Państwowego Instytutu
604	Geologicznego 415:5–28.
605	Marynowski L, Salamon MA, Narkiewicz M. 2002. Thermal maturity and depositional
606	environments of organic matter in the post-Variscan succession on the Holy Cross
607	Mountains. Geological Quarterly 46:25–36.
608	Miller JS. 1821. A natural history of the Crinoidea, or lily-shaped animals; with observations
609	on the genera, Asteria, Euryale, Comatula and Marsupites. Bristol, C. Frost, 150 pp.
610	Moore RC, Jeffords RM. 1968. Classification and nomenclature of fossil crinoids based on
611	studies of dissociated parts of their columns. The University of Kansas Paleontological
612	Contributions 46:1–86.
613	Moore RC, Laudon LR. 1943. Evolution and classification of Paleozoic crinoids. <i>Geological</i>
614	Society of America Special Paper 46, 151 pp.
615	Piotrowski A. 1977. Genus Ammonicrinus (Crinoidea) from the Middle Devonian of the Holy
616	Cross Mountains, Poland. Acta Palaeontologica Polonica 22:205–218.
617	Prokop RJ. 1973. Elicrinus n. gen. from the Lower Devonian of Bohemia (Crinoidea). Véstnik
618	Ustrédniho Ustavu Geologickeho 48(4):221–224.

619	Memoirs 2(5). 157 pp.
621	Roemer, CF. 1844. Das Rheinische Übergangsgebirge. Eine palaeontologisch-geognostische
622	Darstellung. Hannover, Hahn, 96 pp.
623	Roemer, CF. 1850. Über Stephanocrinus, eine fossile Crinoiden-Gattung aus der Familie der
624	Cystideen. Wiegmanns Archiv für Naturgeschichte, Jahrgang 16:365–375.
625	Roemer CF. 1852–54. Erste Periode, Kohlen-Gebirge. In Lethaea Geognostica, H. G. Bronn,
626	1851–1856, 3rd edit. Stuttgart, E. Schweizerbart, 2, 788 pp.
627	Salamon MA, Gerrienne P, Steemans P, Gorzelak P, Filipiak P, Le Hérissé A, Paris F,
628	Cascales-Miñana B, Brachaniec T, Misz-Kennan M, Niedźwiedzki R, Trela W. 2018.
629	Putative Late Ordovician land plants. New Phytologist DOI: doi.org/10.1111/nph.15091.
630	Sandberger G, Sandberger F. 1850-1856. Die Versteinerungen des rheinischen
631	Schichtensystems in Nassau. Wiesbaden, Kreidel and Niedner, 564 pp.
632	Schmidt WE. 1934. Die Crinoideen des Rheinischen Devons, I. Teil; Die Crinoideen des
633	Hunsrückschiefers. Abhandlung der Preussischen Geologischen Landesanstalt 163,
634	149 pp.
635	Schmidt WE. 1941. Die Crinoiden des Rheinischen Devons II. Teil. A. Nachtrag zu: Die
636	Crinoiden des Hunsrückschiefers; B. Die Crinoideen des Unterdevons bis zur
637	cultrijugatus-Zone (mit Ausschluß des Hunsrückschiefers). Abhandlungen der
638	Preußischen Geologischen Landesanstalt 182, 253 pp.

639	Schmidt WE. 1942. Die Crinoideen des Rheinischen Devons, II. Teil; A. Nachtrag zu Die
640	Crinoideen des Hunsrückschiefers; B. Die Crinoideen des Unterdevon bis zur
641	Cultrijugatus -Zone (mit Ausschluss des Hunsrückschiefers). Abhandlungen der
642	Reichstelle für Bodenforschung, n. s., 182, 253 pp.
643	Sobolev D. 1909. Sredniy devon kelecko-sandomirskoho krjaza. Materialy dla geologii Rossiji
644	24:41–536.
645	Schultze LJT. 1866. Monographie der Echinodermen des Eifler Kalkes. Vienna, Carl
646	Gerold's Sohn, 118 pp.
647	Springer F and Slocom AW . 1906. <i>Hypsocrinus</i> , a new genus of crinoids from the Devonian.
648	Field Columbia Museum Publication, 114, Geology Series 2(9): 267–271,
649	Steininger J. 1831. Bemerkungen über die Versteinerungen, welche in dem Uebergangs-
650	Kalkgebirge der Eifel gefunden werden. Eine Beilage zum Gymnasial-Program zu Trier,
651	Trier, 44 pp.
652	Steininger J. 1849. Die Versteinerungen des Uebergangs-Gebirges der Eifel. Jahresbericht über
653	den Schul-Cursus 1848/49 an dem Gymnasium zu Trier, 21–22.
654	Strimple, HL. 1952. Some new species of crinoids from the Henryhouse Formation of
655	Oklahoma. Journal of the Washington Academy of Science 42:75–79.
656	Stukalina, GA. 1965. Novye vidji Hexacrinites tsentralnogo Kazakhstana [New species of
657	Hexacrinites from central Kazakhstan]. Ezhegodnik Vsesoyuznogo Paleontologische
658	Obshchestva, v. 17, p. 188–195 (In Russian).
659	Szulczewski M. 1995. Depositional evolution of the Holy Cross Mts. (Poland) in the Devonian
660	and Carboniferous – a review. Geological Quarterly 39471:159–174.

661	Szulczewski M, Porębski S. 2008. Stop 1 – Bukowa Góra, Lower Devonian. In: Pieńkowski G.
662	and Uchman A. (eds), Ichnological Sites of Poland – the Holy Cross Mountains and the
663	Carpathian Flysch: The Second International Congress on Ichnology, The Pre-Congress
664	and Post-Congress Field Trip Guide Book, Cracow, 18–37.
665	Taylor PD, Wilson MA. 2002. A new terminology for marine organisms inhabiting hard
666	substrates. PALAIOS 17:522–525.
667	Wachsmuth C, Springer F. 1880–1886. Revision of the Palaeocrinoidea. Proceedings of the
668	Academy of Natural Sciences of Philadelphia Pt. I. The families Ichthyocrinidae and
669	Cyathocrinidae (1880), p. 226-378, (separate repaged p. 1-153). Pt. II. Family
670	Sphaeroidocrinidae, with the sub-families Platycrinidae, Rhodocrinidae, and
671	Actinocrinidae (1881), p. 177-411 (separate repaged, p. 1-237). Pt. III, Sec. 1.
672	Discussion of the classification and relations of the brachiate crinoids, and conclusion of
673	the generic descriptions (1885), p. 225–364 (separate repaged, 1–138). Pt. III, Sec. 2.
674	Discussion of the classification and relations of the brachiate crinoids, and conclusion of
675	the generic descriptions (1886), p. 64–226 (separate repaged to continue with section 1,
676	139–302).
677	Webster GD, Webster DW. 2019. Bibliography and index of Paleozoic crinoids, coronoids, and
678	hemistreptocrinids, 1758–2012. http://crinoids.azurewebsites.net/ (accessed September
679	2021).
680	Webster GD, Becker RT, Maples CG. 2005. Biostratigraphy, paleoecology, and taxonomy of
681	Devonian (Emsian and Famennian) crinoids from southeastern Morocco. Journal of
682	Paleontology 79: 1052–1071.

683	Wojcik K. 2015. The uppermost Emsian and lower Effelian in the Kielce Region of the Holy
684	Cross Mts. Part I: Lithostratigraphy. Acta Geologica Polonica 65:141–179.
685	Wright DF. 2017. Bayesian estimation of fossil phylogenies and the evolution of early to middle
686	Paleozoic crinoids (Echinodermata). Journal of Paleontology 91:799-814, [doi:
687	10.1017/jpa.2016.141].
688	Wright DF, Ausich WI, Cole SR, Peter ME, Rhenberg EC. 2017. Phylogenetic taxonomy and
689	classification of the Crinoidea (Echinodermata). Journal of Paleontology 91:829-846.
690	Yeltyschewa RS, Dubalotova YA. 1961. Morskie lilii V kn. Biostratigrafiia paleozoia Sayano-
691	Altaiskoi gornoi oblasti, Srednii paleozoi, t. II [Crinoids. In Biostratigraphy of the
692	Paleozoic of the Sayano Altai mountainous country, middle Paleozoic, v. II]. Moscow,
693	Izdatel'stvo Nauka, Trudy, pt. 20:294–296, 552–560. (In Russian)
694	Yeltyschewa RS. and Sisova EN. 1973. Anthinocrinidae-Novoe Semeistvo
695	Srednepaleozoiskikh Morskikh Lilii V kn. Voprosy Stratifrafii i Tektoniki Vostochnogo
696	Kazakhstana [Anthinocrinidae New Family of Middle Paleozoic Marine Lily. In
697	Aleksandrova, M. I., ed, Questions on the Stratigraphy and Tectonics of East
698	Kazakhstan]. Trudy Vsesoyuznogo Ordena Lenina Nauchno-Issledovatelskogo
699	Geologicheskogo Instituta, n. s. 160:86–99 (In Russian)
700	Zeiler F, Wirtgen PW. 1855. Bemerkungen über die Petreefacten der älteren devonischen
701	Gebirge am Rheine, insbesondere über die Echinodermen in der Umgegend von Coblenz
702	und in dem Eifeler Kalke vorkommenden Arten. Verhandlungen des Naturhistorisch
703	Vereins der Preussischen Rheinlands und Westfalen 12:79–85.

704	Zeuschner L. 1867. Devonische Formation im Sandomirer-Chenciner Gebirge. Neues Jahrbuch
705	für Mineralogie, Geologie und Paläontologie 67:478–508.
706	Zeuschner L. 1869. Geognostische Beschreibung der mittleren devonischen Schichten zwischen
707	Grzegorzowice und Skały-Zagaje, bei Nowa Słupia. Zeitschrift der Deutschen
708	Geologischen Gesellschaft 21:263–274.
709	Zittel KA, von. 1895. Grundzüge der Palaeontologie (Palaeozoologie), 1st edit. R. Oldenbourg,
710	München, 971 pp.
711	
712	Captions:
713	Figure 1 Stratigraphic ranges of crinoid taxa recorded in Devonian of Poland. Data compiled
714	after: Dames (1868), Zeuschner (1867, 1869), Gürich (1896), Sobolev (1909), Kongiel (1958),
715	Piotrowski (1977), Głuchowski (1980, 1981a-c, 1993, 2002, 2003), and Hauser (2002).
716	
717	Figure 2 (A) The map of Poland with the Holy Cross Mountains area marked as grey rectangle.
718	B. The lithostratigraphical scheme of Middle and Upper Devonian in the Bukowa Góra Quarry.
719	Compiled after Marynowski et al. (2002), Malec (2005), Szulczewski & Porębski (2008), Wójcik
720	(2015), and Salamon et al. (2018).
721	
722	Figure 3 (A1-A4) <i>Codiacrinus sevastopuloi</i> sp. nov. GIUS 4-3696/Codiacrinus1, holotype; (A1)
723	lateral view of aboral cup; (A2) basal view of aboral cup, note basal concavity bordered by ridge;
724	(A3), oral view of aboral cup; (A4), lateral view of aboral cup. (B1-B3) Codiacrinus

/25	sevasiopuloi sp. nov. G108 4-3696/Codiacinius2. paratype, (B1) lateral view of aboral cup, (B2)
726	basal view of aboral cup; (B3) oral view of aboral cup. (C) lateral view of an incomplete and
727	compressed specimen of <i>Codiacrinus sevastopuloi</i> sp. nov. GIUS 4-3696/Codiacrinus3. (D1-D2)
728	compressed specimen of <i>Halocrinites</i> sp. GIUS 4-3696/Hsp; (D1) lateral view of aboral cup with
729	plate boundaries visible; (D2) basal view of cup. (E) Bactrocrinites sp. GIUS 4-
730	3696/Bactrocrinites1; lateral view of incomplete aboral cup, note small radial plates and large
731	basal plates. (F1-F3) compressed aboral cup of Halocrinites schlotheimii. GIUS 4-
732	3696/Hschloth1 (F1) oblique basal view; (F2, F3) lateral views. All specimens are from Bukowa
733	Góra Member (Emsian), Bukowa Góra quarry, Holy Cross Mountains, southern Poland. Scale
734	bar equals 10 mm.
735	
736	Figure 4. Plate drawing of the posterior of <i>Bactrocrinites</i> sp.
737	
738	Figure 5 (A1-A3, B1-B2, C1-C2) Halocrinites schlotheimii. GIUS 4-3696/Hschloth2, 5 and 4
739	respectively; (A1, B1, C1) lateral views of aboral cup; (A2, B2, C2) basal views of aboral cup;
740	(A3) oral view of aboral cup. (D, H) Halocrinites geminatus. GIUS 4-3696/Hgem2 and 1
741	respectively; (D1) lateral view of aboral cup; (D2) basal view of aboral cup. (E) Halocrinites
742	with good exoplacoid sculpturing preserved; GIUS 4-3696/Hschloth6. (F, G) Crinoidea
743	indeterminate (presumably remains of a camerate crinoid). GIUS 4-3696/indet1 and 2

respectively. All specimens are from Bukowa Góra Member (Emsian), Bukowa Góra quarry,

746

744

745

Holy Cross Mountains, southern Poland. Scale bar equals 10 mm.

Figure 6 (A1-A2) *Halocrinites schlotheimii*; (A1) lateral view of partial crown, aboral cup plate boundaries distinct; (A2) basal view of a moderately compressed aboral cup. GIUS 4-3696/Hschloth3. (B-D) Crinoidea indeterminate; GIUS 4-3696/indet3, 4 and 5 respectively; (B, C) partial arms of an unknown cladid crinoids; (D) in upper left of specimen a pentalobate column presumably infrabasal plates attached; probably an unknown cladid). All specimens are from Bukowa Góra Member (Emsian), Bukowa Góra quarry, Holy Cross Mountains, southern Poland. Scale bar equals 10 mm.

Figure 7 (A-H) crinoid pluricolumnals. GIUS 4-3696/indet6-13. (A, B) pluricolumnal with numerous nodes around the periphery of each columnal; (C), set of pluricolumnals; (D) pluricolumnal with nodes and perhaps some spines around the periphery of each columnal; (E) numerous pluricolumnals of a column that lacks nodes; (F) lateral view of three-columnal pluricolumnal with a few nodes around the periphery of columnals that are offset in position from one columnal to the next; (G) columnal facet with a narrow peripheral lumen and a narrow, raised perilumen; (H) columnal with a wide lumen and a narrow, raised perilumen: (I) Flexible crinoid brachial. GIUS 4-3696/flexible; note crenulate sides and on the upper margin a notch to hold a patelloid process from the next highest columnal. All specimens are from Bukowa Góra Member (Emsian), Bukowa Góra quarry, Holy Cross Mountains, southern Poland. All scale bar equals 10 mm but in case of flexible crinoid brachial it is 1 mm.

Figure 8 (A, B) crinoid holdfast on stromatoporoids. GIUS 4-3696/holdfast1 and 2 respectively.

(C) crinoid pluricolumnal presumably from the dististele with broken radices; (D) pluricolumnal

- 769 with elliptical columnals, presumably from a member of the Platycrinitidae; GIUS 4-
- 3696/indet14 and 15 respectively. All specimens are from Bukowa Góra Member (Emsian),
- Bukowa Góra quarry, Holy Cross Mountains, southern Poland. Scale bar equals 10 mm.

Figure 1. Stratigraphic ranges of crinoid taxa recorded in Devonian of Poland.

Data compiled after: Dames (1868), Zeuschner (1867, 1869), Gürich (1896), Sobolev (1909), Kongiel (1958), Piotrowski (1977), Głuchowski (1980, 1981a-c, 1993, 2002, 2003), and Hauser (2002).

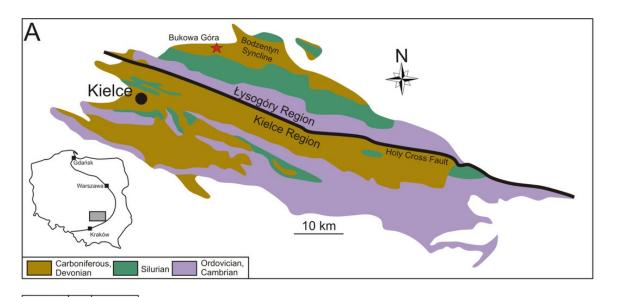

Lochkovian	Pragian	Emsian	Eifelian	Givetian	Frasnian	Famenn.	Crinoid taxa
							Kotanocrinus cf. balaensis (col.)
							Poteriocrinites? morlieresensis Formosocrinus cf. formosus (col.)
							Formosocrinus cf. formosus (col.)
							Acanthocrinus sp. (col.)
							Marettocrinus subbiconcavus (col.)
							Laudonomphalus humilicarinatus (col.)
				_			Procupressocrinites gracilis
							Mediocrinus microgrumosus (col.)
							Kazachstanocrinus acutilobus (col.)
							Asperocrinus brevispinosus (col.)
							Ricebocrinus kulagaiensis (col.)
							Ammonicrinus sulcatus (col.)
							Eocamptocrinus fragilis (col.)
							Gilbertsocrinus vetulus (col.)
				_			Myelodactylus canaliculatus (col.)
				_			Pentagonostipes petaloides (col.)
							Platycrinites minimalis (col.)
							Noctoicrinus? varius (col.)
							Marettocrinus angustannulus (col.)
							Halocrinites schlotheimi
							Praerocrinus polonicus (col.)
							Stenocrinus cf. bifurcatus (col.)
							Stenocrinus degratus (col.)
							Tantalocrinus scutellus (col.)
							Tjeecrinus crassijugatus (col.)
							Schyschcatocrinus creber (col.)
							Kazachstanocrinus tenuis (col.)
							Stenocrinus raricostatus (col.)
							Marettocrinus kartzevae (col.)
							Ammonicrinus kongieli (col.)
							Amurocrinus imatschensis (col.)
							Haplocrinites minor
							Laudonomphalus pinguicostatus (col.)
							Haplocrinites aremoricanus
							Anthinocrinus brevicostatus (col.) Anthinocrinus primaevus (col.)
							Halocrinites inflatus
							Ononicrinus gracilis (col.)
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Urushicrinus perbellus (col.)
							Ricebocrinus parvus (col.)
							Tjeecrinus simplex (col.)
							Schyschcatocrinus multiformis (col.)
							Haplocrinites sp.
							Schyschcatocrinus delicatus (col.)
							Wenjukowiocrinus wenjukowi (col.)
							Caleocrinus bicostatus (col.)
							Glyphidocrinus infimus (col.)
							Caleocrinus kielcensis (col.)
							Melocrinites cf. hieroglyphicus
							Melocrinites cf. gibbosus
							Exaesidiscus compositus (col.)
							Haplocrinites gluchowskii
							Tjeecrinus insectus (col.)
							Cosmocrinus polonicus (col.)

Figure 2. (A) The map of Poland with the Holy Cross Mountains area marked as grey rectangle. (B) The lithostratigraphical scheme of Middle and Upper Devonian in the Bukowa Góra Quarry.

Compiled after Marynowski et al. (2002), Malec (2005), Szulczewski & Porębski (2008), Wójcik (2015), and Salamon et al. (2018).

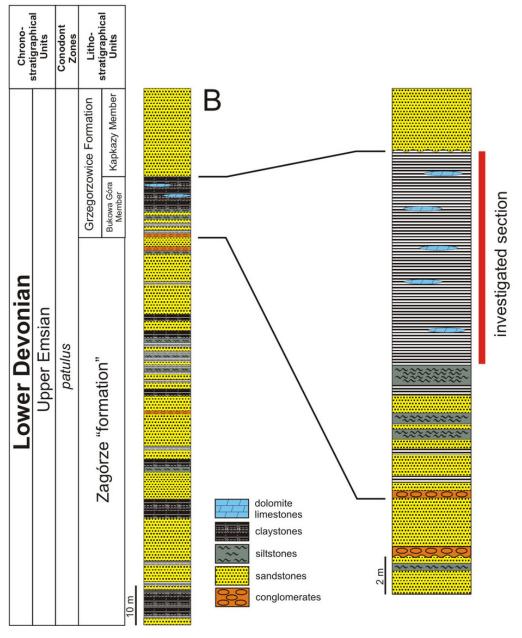


Figure 3. (A1-A4) *Codiacrinus sevastopuloi* sp. nov. GIUS 4-3696/Codiacrinus1, holotype; (A1) lateral view of aboral cup; (A2) basal view of aboral cup, note basal concavity bordered by ridge; (A3), oral view of aboral cup; (A4), lateral

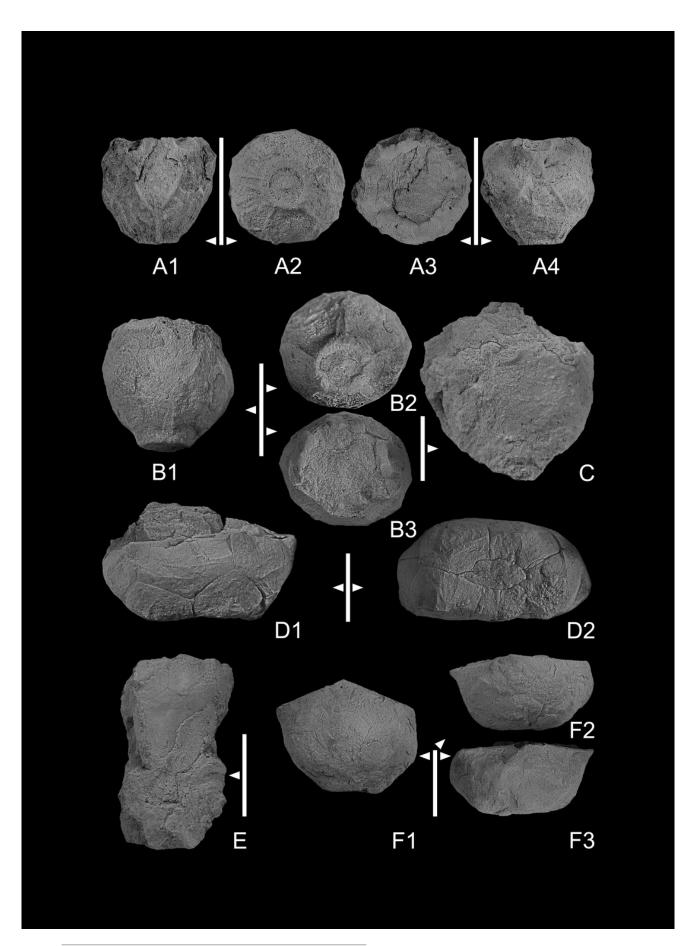


Figure 4. Plate drawing of the posterior of Bactrocrinites sp.

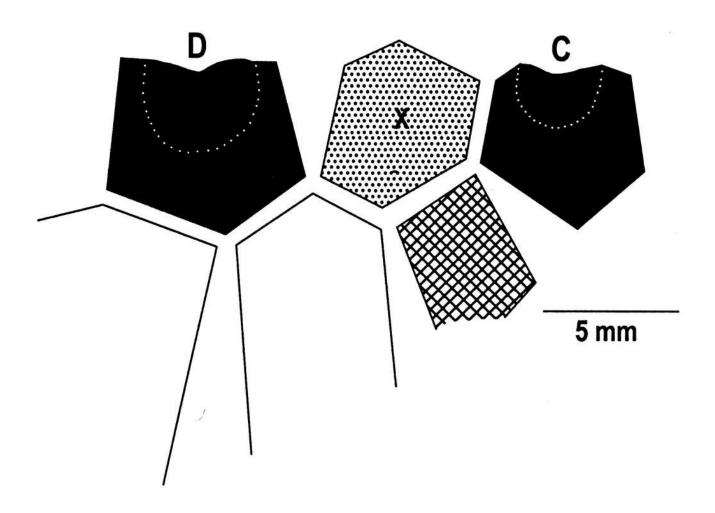


Figure 5. (A1-A3, B1-B2, C1-C2) *Halocrinites schlotheimii*. GIUS 4-3696/Hschloth2, 5 and 4 respectively; (A1, B1, C1) lateral views of aboral cup; (A2, B2, C2) basal views of aboral cup; (A3) oral view of aboral cup. (D, H) [i]Halocrinites gem

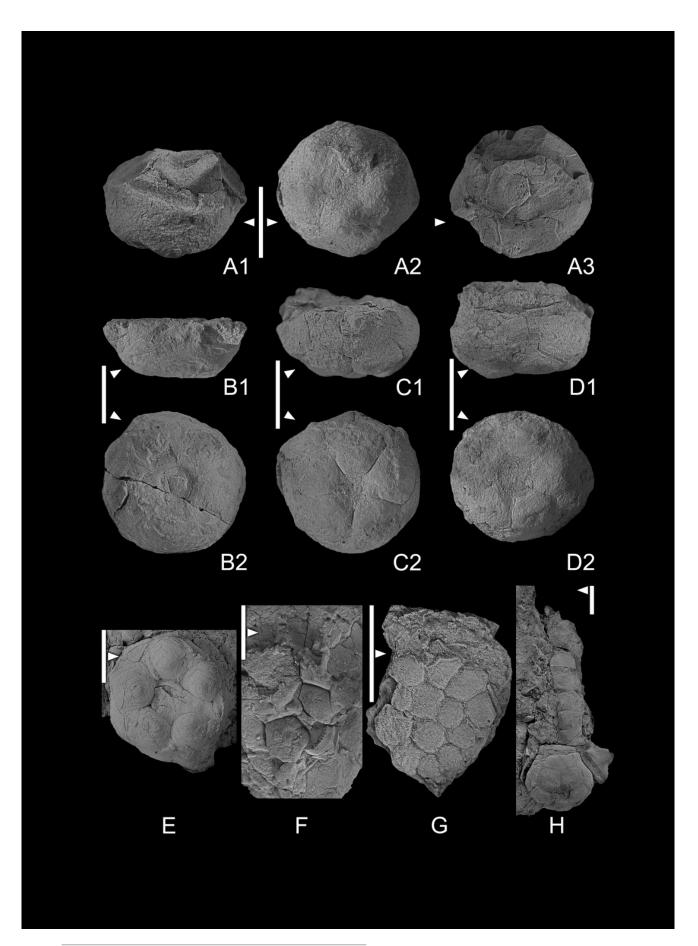


Figure 6. (A1-A2) *Halocrinites schlotheimii*; (A1) lateral view of partial crown, aboral cup plate boundaries distinct; (A2) basal view of a moderately compressed aboral cup. GIUS 4-3696/Hschloth3. (B-D) Crinoidea indeterminate; GIUS 4-3

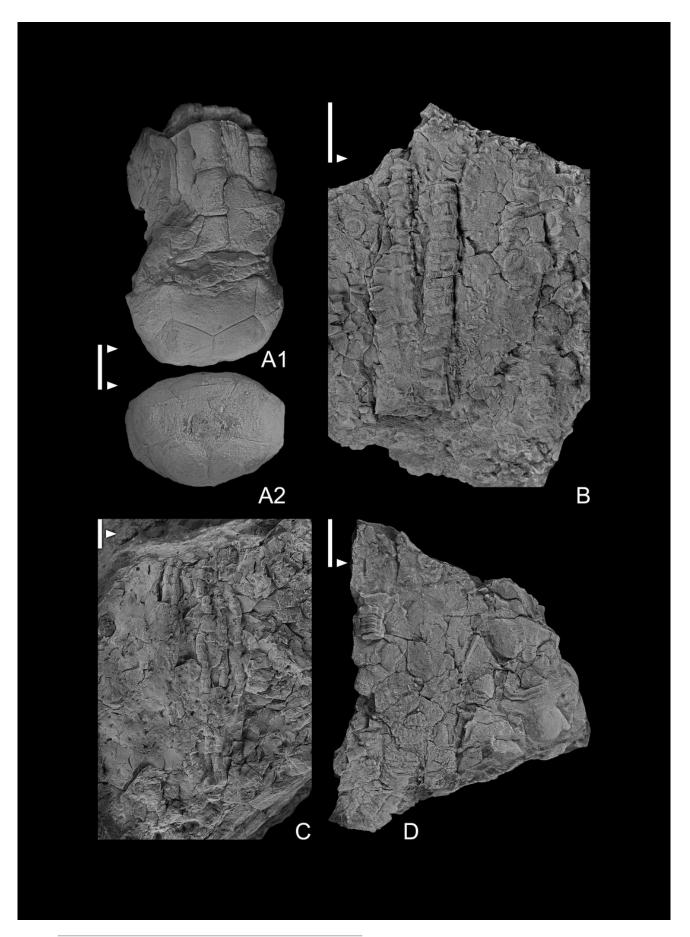


Figure 7. (A-H) crinoid pluricolumnals. GIUS 4-3696/indet6-13. (A, B) pluricolumnal with numerous nodes around the periphery of each columnal; (C), set of pluricolumnals; (D) pluricolumnal with nodes and perhaps some spines around the periphery of

All specimens are from Bukowa Góra Member (Emsian), Bukowa Góra quarry, Holy Cross Mountains, southern Poland. All scale bar equals 10 mm but in case of flexible crinoid brachial it is 1 mm.

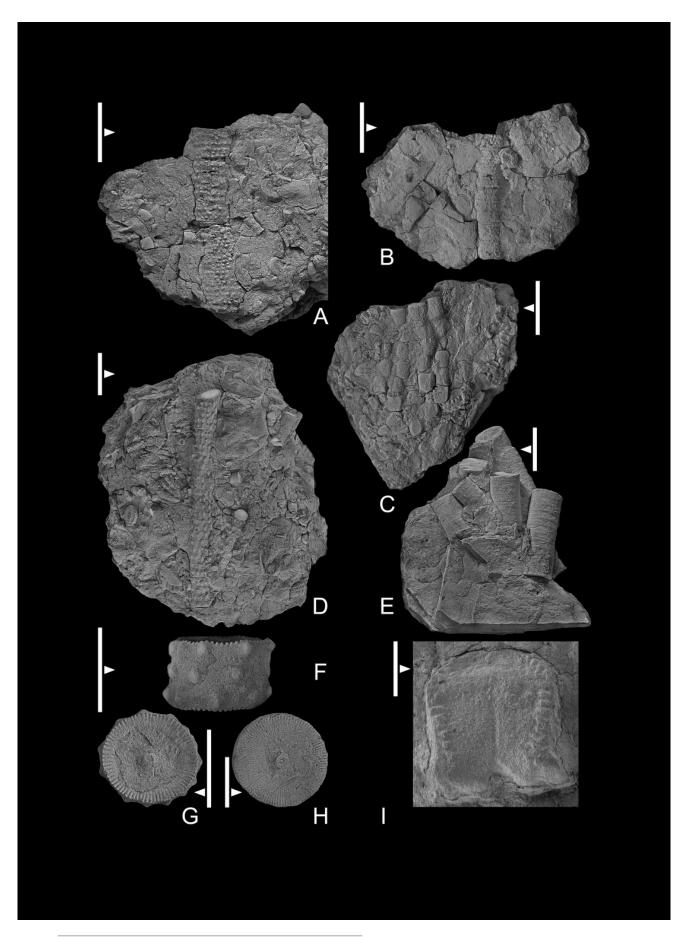
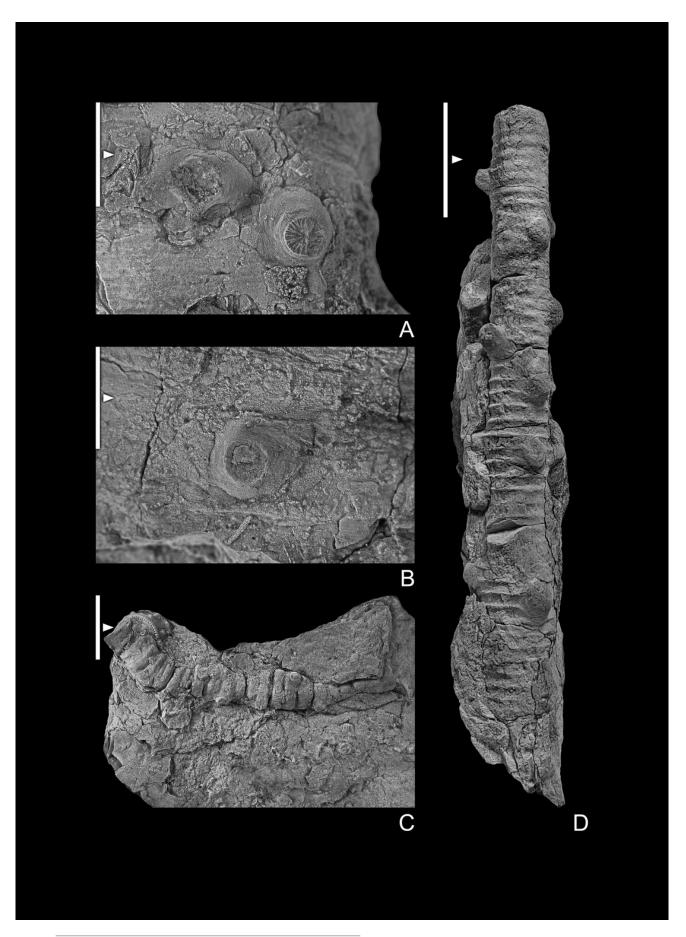



Figure 8. (A, B) crinoid holdfast on stromatoporoids. GIUS 4-3696/holdfast1 and 2 respectively. (C) crinoid pluricolumnal presumably from the dististele with broken radices; (D) pluricolumnal with elliptical columnals, presumably from a member of t

