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ABSTRACT
In spite of huge efforts, chronic diseases remain an unresolved problem in
medicine. Systems biology could assist to develop more efficient therapies through
providing quantitative holistic sights to these complex disorders. In this study,
we have re-analyzed a microarray dataset to identify critical signaling pathways
related to diabetic nephropathy. GSE1009 dataset was downloaded from Gene
Expression Omnibus database and the gene expression profile of glomeruli from
diabetic nephropathy patients and those from healthy individuals were compared.
The protein-protein interaction network for differentially expressed genes was
constructed and enriched. In addition, topology of the network was analyzed to
identify the genes with high centrality parameters and then pathway enrichment
analysis was performed. We found 49 genes to be variably expressed between the two
groups. The network of these genes had few interactions so it was enriched and a
network with 137 nodes was constructed. Based on different parameters, 34 nodes
were considered to have high centrality in this network. Pathway enrichment analysis
with these central genes identified 62 inter-connected signaling pathways related
to diabetic nephropathy. Interestingly, the central nodes were more informative
for pathway enrichment analysis compared to all network nodes and also 49
differentially expressed genes. In conclusion, we here show that central nodes in
protein interaction networks tend to be present in pathways that co-occur in a
biological state. Also, this study suggests a computational method for inferring
underlying mechanisms of complex disorders from raw high-throughput data.

Subjects Bioinformatics, Computational Biology, Nephrology
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INTRODUCTION
Chronic diseases are the leading cause of death and disability. Even with enormous

investigations, the exact mechanisms of the occurrence and progression of these disorders

are not yet fully discovered and in most cases the therapeutic options are not satisfying.

Systems biology is a promising approach to address these limitations. Using this novel
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strategy, invaluable information has been obtained on the molecular basis of various

diseases such as macular degeneration, myocardial infarction, metabolic syndrome,

and kidney fibrosis (Dumas, Kinross & Nicholson, 2014; Ghasemi et al., 2014; Jin et

al., 2012; Morrison et al., 2011). Systems biology with its global view has an exclusive

potential to extract the meaning from bulk, sometimes ambiguous data derived from omics

technologies. It can also provide a mechanistic view via generation of mathematical models

(Azeloglu et al., 2014; Cedersund et al., 2008; Swameye et al., 2003).

Chronic kidney disease (CKD) is a common debilitating disorder consuming a

considerable fraction of health budgets (Trivedi, 2010). CKD secondary to diabetes

mellitus, known as diabetic nephropathy, is the most common subtype. Although lots

of previous studies have identified the pathogenic role of individual genes and signaling

pathways in DN, a systematic holistic view has rarely been attempted for this complex

disorder. Among systematics studies in DN, Starkey et al. (2010) have shown altered

retinoic acid metabolism in diabetic mouse kidney by proteomics analysis. Similarly, using

network analysis approach, Sengupta et al. (2009) have predicted the interaction of PTPN1

with EGFR and CAV1 in DN vascular complications. However, the functional significance

of the network topology parameters has not been thoroughly assessed in this disorder.

Here, we have reanalyzed a microarray dataset originally deposited by Baelde et al.

(2004) which compares the expression profile of glomeruli from DN and normal individ-

uals. Their analyses revealed some differentially expressed genes (DE genes) among which

VEGF and Nephrin down-regulation were confirmed by real time PCR. Also, their gene

ontology (GO) analysis predicted pathways such as nucleic acid metabolism, Neuropeptide

signaling pathway and Actin binding to be related to DN. Here, we reanalyzed this dataset

with a different statistical significance detection method which resulted in a dissimilar

number of DE genes. In addition, we have constructed a protein-protein interaction

network (PPI) and employed graph theory concepts to assess the network topology.

Critical nodes were then selected for pathway enrichment analysis. This computational

approach may also be employed for other large datasets to deepen our understandings of

chronic diseases by extracting meaningful concepts from bulk raw data of high-throughput

technologies.

MATERIALS AND METHODS
Microarray data
The mRNA expression profile of GSE1009, deposited by Baelde et al. (2004), was

downloaded from the Gene Expression Omnibus (GEO) database (Barrett et al., 2009).

In this microarray experiment, the expression of genes in the glomeruli of DN patients

was compared to that of healthy individuals. For further analysis, we assessed the quality

of samples by hierarchical clustering and principle component analysis (PCA) based on

the data of the top DE genes. For hierarchical clustering, Euclidean distance measure

and average-linkage method were applied using SUMO software (Schwager. http://www.

oncoexpress.de/software/sumo/). PCA was performed using Multibase 2015 Excel Add-In

program. The dataset was re-analyzed by GEO2R tool of GEO. In analysis by GEO2R,
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three normal samples were compared to three DN samples by Student’s t-test. For p-value

correction, Benjamini–Hochberg false discovery rate method was applied. Genes with

adjusted p-value of less than 0.05 were considered as differentially expressed.

Protein-protein interaction network
Using CluePedia plugin version 1.1.3 (Bindea, Galon & Mlecnik, 2013) of Cytoscape

software version 3.1.0 (Shannon et al., 2003) a PPI network was constructed for DE

genes in the microarray dataset. STRING database with confidence cutoff 0.80 was

used for retrieving interactions. The network topology was analyzed by Cytoscape

NetworkAnalyzer tool and network topology measures such as Degree, Betweenness,

Closeness Centrality, and Clustering Coefficient were calculated.

Pathway enrichment analysis
Pathway enrichment analysis was performed using Cytoscape ClueGO plugin version

2.1.3 (Bindea et al., 2009). In this analysis, Bonferroni step down was applied for p-value

adjustment and pathways with adjusted p-value <0.05 were selected.

RESULTS
The quality of the microarray dataset was assessed and differen-
tially expressed genes were identified
In this study, we re-analyzed the microarray dataset GSE1009 which compares glomeruli

samples from DN patients and healthy individuals. Comparison of the two groups by

GEO2R revealed that 49 genes were differentially expressed with adjusted p-value <0.05

(Table S1). As different parameters such as the efficiency of RNA extraction and spot

detection can influence the validity of microarray experiments, we assessed the suitability

of this dataset for further analysis by unsupervised hierarchical clustering and PCA with

the data of the 49 genes. Both these methods could differentiate samples based on disease

state (normal or DN), indicating the acceptable quality of this dataset (Fig. 1).

The PPI network and pathway enrichment analysis of differentially
expressed genes were not informative
To investigate the interaction between the 49 selected genes from the microarray dataset,

we constructed a PPI network using Cytoscape CluPedia plugin. Although various kinds of

interactions with different evidences (activation, post-translational modification, binding,

database, experiment) were allowed to be shown, unexpectedly, only few genes revealed to

be interacting (Fig. 2A). Next, to infer pathways that are related to these 49 genes, pathway

enrichment analysis was performed which showed only 5 pathways with no overlap genes.

These pathways were not previously shown to be related to DN (Fig. 2B).

Pathway enrichment analysis of central genes in the enriched PPI
network could detect critical pathways in DN
Observation of the scarcity of interactions between the 49 genes that all were either up- or

down-regulated in DN was unexpected. It is rational to assume that in the actual network

between the genes related to DN, not all genes are regulated in the level of mRNA and
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Figure 1 The quality of microarray GSE1009 dataset is satisfying. The heat map diagram shows the
result of unsupervised hierarchical clustering for diabetic (GSM15968, GSM15969, and GSM15970) and
normal (GSM15965, GSM15966, and GSM15967) samples based on the data of the top differentially
expressed genes. GSM15969 is the technical replicate of GSM15968 and GSM15966 is the technical
replicate of GSM15965. Each row represents a gene and each column represents a sample (A). Principal
component analysis was performed on all samples based on the most up/down regulated genes. The first
principle component (PC1) separates samples into DN and normal groups (B).

hence not detected in the mRNA microarray experiment. The absence of these genes makes

the interaction network incomplete. Therefore, the PPI network was enriched by the addi-

tion of maximum 2 interacting nodes for each gene. This resulted in expansion of the net-

work from 49 nodes to 137 nodes. Indeed, the added 88 genes were predicted to be inter-

acting with the 49 initial genes based on previous knowledge. The PPI network of these 137

genes was constructed with the same parameters applied for the initial network (Fig. 3A).

Graph theory concepts such as degree, closeness centrality, and betweenness centrality

were employed to assess the topology of this network. The genes were sorted based on

each of these parameters and the top 15% genes with the highest rank were selected.

Considering the overlapping nodes between the three gene lists, a total of 34 genes were

finally chosen (Table 1). Pathway enrichment analysis was then performed starting with

either the central 34 genes or the total 137 genes. Interestingly, the central gene set resulted

in 62 pathways strongly related to DN (Fig. 3B). These pathways had several similar genes

and formed a deeply connected network (170 edges, edge/node: 2.7). In contrast, pathway
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Figure 2 Network construction and pathway enrichment analysis of differentially expressed genes
were not informative. The PPI network of the 49 differentially expressed genes has few edges as these
genes do not directly interact (A). Pathway enrichment analysis of these genes could not detect critical
pathways in DN. Pathways with adjusted p-value <0.05 are shown (B).

enrichment analysis with the total 137 genes determined 51 pathways (Fig. S1) with fewer

connections to each other (86 edges, edge/node: 1.7).

DISCUSSION
In spite of enormous studies, the current therapeutic options for most chronic diseases

are not yet satisfying. It can partly be due to the simple tools and concepts of classical

biology that are not appropriate for investigation of complex situations of chronic disease.

The recent development of high-throughput technologies, allows the assessment of gene

expression at different levels in various biological states. However, there has been a lag

between the emergence of these techniques and introduction of proper mathematical

methods to analyze bulk raw biological data. Therefore, for a while it was common to

only inspect the few most up- or down-regulated genes individually. However, with the

novel analysis methods, it is feasible to infer complex interactions at various levels from the

simultaneous alteration in the expression of a bundle of genes. Therefore, re-investigation

of the prior omics data with the current analysis tools may assist to produce valuable

biomedical knowledge. In this study, the GSE1009 microarray dataset which deals with

the comparison of mRNA expression profile of DN patients’ glomeruli with those from

healthy individuals was assessed to construct a PPI network. We found that expansion of

this network followed by selection of nodes with high centrality for pathway enrichment

analysis is an efficient strategy to infer critical signaling pathways in DN.
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Figure 3 Enrichment of the PPI network and selection of central nodes for pathway enrichment
analysis can determine pathways essentially related to DN. The 49-node network was extended with
maximum two interactive genes for each node. The initial nodes selected from the microarray experiment
are depicted with red color and enriched nodes with black (A). In this expanded network, 34 genes were
selected as nodes with high centrality. Pathway enrichment analysis with these “central genes” disclosed
62 highly connected pathways related to DN. Pathways with adjusted p-value <0.05 are shown (B).
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Table 1 Central genes in the PPI network. The top 15% genes with the highest degrees, betweenness
centrality, and closeness centrality scores in the enriched PPI network are shown.

Genes Degree Genes Betweenness
centrality

Genes Closeness
centrality

VEGFA 23 IL6 0.253 CHL1 0.667

JUN 20 JUN 0.205 FAF1 0.667

ITGB1 17 HRAS 0.153 MGAT4B 0.667

IL6 17 EZR 0.122 MGAT4A 0.667

MYC 17 MYC 0.12 JUN 0.408

IL2 13 VEGFA 0.111 MYC 0.388

BMP4 13 VIM 0.109 IL6 0.384

CSF2 12 CALM1 0.107 VEGFA 0.38

ITGA6 12 BMP4 0.074 HRAS 0.366

HRAS 11 ITGA6 0.069 ITGA6 0.36

KDR 11 CYP2C8 0.063 ITGB1 0.359

BMPR2 11 PLA2G2D 0.061 IL2 0.357

EZR 11 PLA2G2A 0.061 VIM 0.354

CALM1 11 FLNA 0.058 CSF2 0.349

FLNA 10 PLCE1 0.054 ITGA2 0.341

ITGA2 10 TUBB4A 0.051 NGF 0.337

BMPR1A 10 THBS1 0.051 TUBB4A 0.332

FGF1 9 ITGB1 0.049 EZR 0.329

BMP2 9 IL2 0.049 FLNA 0.329

FASLG 9 CSF2 0.048 FASLG 0.329

TNNT2 9 ADORA2B 0.048 CALM1 0.326

In this study, we found 49 genes to be differentially expressed between DN and normal

samples. In contrast, in the original study; Baelde et al. (2004) identified 615 DE genes.

This discrepancy can be due to the inappropriate bulk data analysis methods that were

employed in that study. For instance, they used raw p-value reported by Student’s T-test.

However, it is now publicly believed that this method of statistical significance detection

is associated with high false positive results. To address this problem, false discovery

rate methods such as Bonferroni, Benjamini–Hochberg have been proposed for p-value

adjustment (Sandrine Dudoit & Callow, 2002). Therefore, we have considered genes with

adj. p-value <0.05 as differentially expressed.

Based on DE genes in the microarray experiment, a PPI network was constructed.

Interestingly, very few interactions appeared in this network. This could be due to the

fact that we had selected genes only based on mRNA expression difference and therefore,

other critical genes regulated at other levels were missing. Therefore, to fill these gaps in

the map of interactions, the network was expanded based on previous knowledge and a

network with 137 nodes was constructed. Then we tried to determine the critical nodes

in this network but as there is no simple criterion for “biologically important genes”, we

analyzed the topology of the network and employed a combination of different measures

of centrality; some nodes such as VEGFA and JUN have high degree, so they have many
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connections and are vital for the surveillance of the network. Betweenness centrality

measures the number of shortest paths going through a node and so nodes with high

betweenness centrality such as JUN and IL6 in this network are shortcuts of the network.

In addition, nodes with highest closeness centrality such as CHL1 and FAF1 in our network

are physically nearest genes to all nodes. Using these parameters, 34 genes were assumed to

have high centrality.

Starting with a set of genes, pathway enrichment analysis allows determination of

the top affected functions in a specific disease. An interesting finding in this study was

that pathway enrichment with the set of 34 central genes was more informative than

enrichment with the initial 49 genes or even with the total 137 genes in the enriched PPI

network. It is widely believed that the functional significance of a protein is related to

its position in the PPI network as deletion of hub proteins are more lethal compared to

non-hubs, a phenomenon known as centrality-lethality rule (Hahn & Kern, 2005; He &

Zhang, 2006; Jeong et al., 2001; Yu et al., 2004). Our study demonstrates that central nodes

in PPI network tend to be present in pathways that co-occur in a given biological state

and probably make pathway cross-links. This observation provides an explanation for the

functional essentiality of the central nodes.

Pathway enrichment analysis with the central nodes had an acceptable validity as most

of the enriched pathways including TGFB, VEGF, MAPK, and BMP signaling pathways

were previously shown to be associated to DN in experimental studies (Toyoda et al.,

2004; Turk et al., 2009; Ziyadeh, 2008). With this analysis, we could also determine novel

pathways which their role in DN remains to be confirmed in future studies. For instance,

neurotrophin signaling pathway, which has been previously shown to be related to diabetic

neuropathy (Pittenger & Vinik, 2003), was among the enriched pathways. Similarly, we

detected platelet degranulation pathway as a potential role player in DN. Previous studies

have demonstrated the role of this pathway in some profibrotic disorders such as idiopathic

pulmonary fibrosis (Crooks et al., 2014; Wynn, 2007).

In conclusion, we have here introduced a systems biology approach to DN as a complex

biological state. Methods employed in this study may also be used for other chronic

diseases to suggest novel therapies via generation of a holistic multi-level insight.
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