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Disparities in cancer risk exist between ethnic groups in the United States. These
disparities often result from differential access to healthcare, differences in socioeconomic
status and differential exposure to carcinogens. This study uses cancer incidence data
from the population based Texas Cancer Registry to investigate the disparities in digestive
and respiratory cancers from 2000 to 2008. A Bayesian hierarchical regression approach is
used. All models are fit using the INLA method of Bayesian model estimation. Specifically,
a spatially varying coefficient model of the disparity between Hispanic and Non-Hispanic
incidence is used. Results suggest that a spatio-temporal heterogeneity model best
accounts for the observed Hispanic disparity in cancer risk. Overall, there is a significant
disadvantage for the Hispanic population of Texas with respect to both of these cancers,
and this disparity varies significantly over space. The greatest disparities between
Hispanics and Non-Hispanics in digestive and respiratory cancers occur in eastern Texas,
with patterns emerging as early as 2000 and continuing until 2008.
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41 1. Introduction

42 Disparities in cancer incidence and mortality exist between racial and ethnic groups in the 

43 United States and worldwide (Du et al., 2007; Elmore et al., 2005; Harper et al., 2009; Hun, 

44 Siegel, Morandi, Stock, & Corsi, 2009; McKenzie, Ellison-Loschmann, & Jeffreys, 2010; Siegel, 

45 Naishadham, & Jemal, 2012; Vainshtein, 2008).  The causes of these disparities have been 

46 suggested to be rooted in different levels of socioeconomic status (SES), access to medical care, 

47 differential exposure to carcinogenic materials and differential treatment by medical staff of 

48 racial and ethnic minorities (Krieger, 2005; Sarfati, Blakely, Shaw, Cormack, & Atkinson, 2006; 

49 Schootman et al., 2010). While these causes are often non-specific in their effects of how they 

50 directly influence cancer incidence, they do allow us to conceptualize and measure key factors 

51 related inequalities in health. Furthermore, understanding disparities in cancer risk and being 

52 able to visualize the place-based differences both in the determinants of cancer inequality can be 

53 a valuable tool to both scientist and policy maker alike. The goal of this paper is to investigate 

54 the spatial variation in cancer incidence disparities between Hispanic and non-Hispanic 

55 populations of the state of Texas between 2000 and 2008 and attempt to identify geographic 

56 clusters of disparities in cancer risk between these populations using current incidence data from 

57 a population based cancer registry. 

58 Respiratory and digestive system cancers have been identified as often having direct and 

59 identifiable causal pathways associated with them, many of which are behaviorally or 

60 environmentally influenced. Lung cancer is perhaps the most widely recognized environmentally 

61 influenced cancer type, with strong evidence to support the effects of smoking, poor diet and 

62 direct inhalation of certain carcinogens including asbestos and other indoor air pollutants 

63 (Alberg, Ford, & Samet, 2007; Alberg & Samet, 2003; Ruano-Ravina, Figueiras, & Barros-Dios, 
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64 2003). The exposure to these carcinogens generally leads to errors in somatic cell growth, such 

65 as chromosomal abnormalities, cellular mutations, and alterations in tumor suppressor cells. 

66 Gastrointestinal system cancers also have a variety of causes, with some consistency between the 

67 types of cancer, but other types also have distinct know etiologies.  For example, hepatocellular 

68 carcinoma (primary liver cancer) has been directly linked with hepatitis infection, alcoholic 

69 cirrhosis and dietary aflotoxins (El-Serag, 2012; Stuver & Trichopoulous, 2008) while other 

70 digestive system cancers, such as colorectal cancers are heavily influenced by dietary and 

71 lifestyle factors (Chao et al., 2005).  While the specific etiologies of the cancers of these two 

72 body systems sometimes have direct causal paths, they are generally thought to be influenced by 

73 both behavioral and environmental circumstances, which interact with familial and genetic 

74 pathways in complicated ways. 

75 The state of Texas is the second most populous state in the United States, with a current 

76 population estimate of 25.7 million persons. Between 2000 and 2010, Texas was the sixth fastest 

77 growing state, and the highest in total numerical population gain (Makun & Wilson, 2011).  

78 Additionally, it is consistently in the top five fastest growing states in the nation.  The Hispanic 

79 population of Texas was estimated to be 10.1 million persons, or over 38% of the population in 

80 2013 and Texas has the second largest Hispanic population, behind only California (Makun & 

81 Wilson, 2011).  In addition to being a large part of the state’s population, the Hispanic 

82 population also faces socioeconomic disadvantages compared to other ethnic groups.  The 

83 poverty rate for Texas Hispanics was 25.8% according to the 2010 American Community 

84 Survey, while non-Hispanic whites only had an 8.8% poverty rate (United States Department of 

85 Commerce, 2012).  Likewise, Hispanics are more likely to be employed in construction related 
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86 activities (18.7% compared to 6.1% for non-Hispanic Whites), which could expose this 

87 population to more risk from air-born carcinogens.

88 For such a large and dynamic state, little population-based cancer disparity research has 

89 been published for Texas. In a recent study of cancer disparities in Texas counties, Phillips et. al. 

90 (2011) found that an index of socioeconomic well-being was significantly associated with 

91 county-level ratios of metastatic to non-metastatic tumors in all-cause, female genital and lung 

92 cancers.  In a study of El Paso county, Collins et. al. (2011) found higher cancer risk for the 

93 Hispanic population of that area, and they go on to discuss how in El Paso, areas of the city that 

94 had the highest levels of Hispanic population with low levels of education had six times the risk 

95 of the more educated areas, and areas with the highest proportion of Hispanic renters had seven 

96 times the risk of cancer than other, more socioeconomically advantaged areas. Using a 

97 geographically weighted regression approach on data from the Texas Cancer Registry, Tian et al 

98 (2011) found not only that Hispanics and non-Hispanic Blacks faced disparities in breast cancer 

99 mortality, but that these disparities varied over space within the state. These studies likewise 

100 point to the placed-based inequality and increased risks that minority groups, including the 

101 Hispanic population, face in certain areas within the state. This study will add to the literature on 

102 cancer disparities by employing a spatially oriented statistical analysis for the entire state over a 

103 more inclusive time period. 

104 With respect to access-based disparities related to cancer risk, Hispanics have been 

105 shown to have lower chances of seeking preventative care (Cristancho, Garces, Peters, & 

106 Mueller, 2008; Hosain, Sanderson, Du, Chan, & Strom, 2011; Lantz et al., 2006; Shih, Zhao, & 

107 Elting, 2006; Suther & Kiros, 2009) in general, and specifically cancer screening.  Reasons for 

108 not seeking care include lack of insurance, language barriers and the high cost of health care 
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109 (Cristancho et al., 2008). In a study of colorectal cancer, Wan et. al. (2012) found significant 

110 disparities for Hispanics and non-Hispanic Blacks in access to care.

111 1.2 Visualizing disparities across space

112 From a methodological standpoint, testing for disparities in rates is a relatively 

113 straightforward task and a variety of statistical procedures are well suited for it. Specifically, a 

114 disparity in two rates can be measured as either a difference in total rates, or as a ratio of risks 

115 the groups being compared (Keppel et al., 2005). In terms of visualizing the disparities, this can 

116 be more of a challenge.  For measuring the disparity between population subgroups, the 

117 standardized risk ratio is a useful measure, but it is often subject to noise in the underlying rates, 

118 most notably in small populations or in cases of rare disease.  Maps of such relative risks, as a 

119 result of the noise caused by small populations, often lead to the reporting of unstable risk 

120 estimates. Tango (2010) describes a variety of methods for both visualizing and  detecting 

121 disease clusters.  Methods for mapping such risk ratios in a scan-statistic context have been 

122 described by Chen and co-authors (2008), and Bayesian disease mapping methods are also cited 

123 as being particularly good at mapping spatial disease risk (Anderson, Lee, & Dean, 2014; Choo 

124 & Walker, 2008; Earnest et al., 2010; Kim & Oleson, 2008; Lawson, 2013; Lawson et al., 2000; 

125 Lee & Mitchell, 2014; Lee & Shaddick, 2010). The Bayesian approach allows for smoothing of 

126 the relative risk by combining information across spatial units, as well as across time. 

127 It is the purpose of this paper to investigate the spatial variation in cancer incidence 

128 disparities between Hispanic and non-Hispanic populations of the state of Texas between 2000 

129 and 2008 using data from a population-based cancer registry.  This research adds to the literature 

130 in spatial epidemiology by examining the disparities in these two populations over time and 

131 space by using a Bayesian modeling methodology, which models the variation in cancer 
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132 disparities between these two populations within the state. The Bayesian modeling framework is 

133 used to specify a series of varying coefficient models as a method of both more accurately 

134 modeling the disparity between these two populations, but also for visualizing where the 

135 disparities between the populations exist. The goal of this process it to provide a locally accurate 

136 depiction of health disparities which state and local health officials could use in combating health 

137 inequalities. 

138 2. Data and methods

139 2.1 Data source

140 Data for this analysis come from the Texas Cancer Registry’s (www.dshs.state.tx.us/tcr/) 

141 Limited-Use data file from 2000 to 2008.  Access to these data was approved by the Texas 

142 Department of State Health Services IRB #12-030. These data consist of de-identified individual 

143 records of primary cancer diagnoses by oncologists in the state of Texas.  For the purposes of 

144 this study, relevant variables in the data include year of diagnosis, age, sex, Hispanic ethnicity, 

145 International Catalog of Disease for Oncology (ICD-O-3) codes for cancer diagnosis site and 

146 county of residence at the time of diagnosis.  Two main types of cancer were chosen: digestive 

147 system (ICD-O-3 codes C150 – C488) and respiratory system cancers (codes C300 – C399). 

148 These cancers were chosen because several of the sub-types of these cancers have been linked to 

149 environmental or behavioral influences, and several have also been shown to vary between 

150 ethnic groups in their incidence (Howe et al., 2006; Singh & Hiatt, 2006; Singh & Siahpush, 

151 2002; Wiggins, Becker, Key, & Samet, 1993; Willsie & Foreman, 2006).  These two cancers are 

152 selected for study, because they constitute 41% of all cancers in the state for this period. For the 

153 years of this study a total of n=155,652 digestive and n=124,438 respiratory system cases were in 

154 the data.  The most prevalent form of digestive system cancer was colorectal cancer, with 53% of 
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155 digestive cancers, and squamous cell carcinoma of the lung was the most prevalent respiratory 

156 cancer, representing 22% of all cases. The distributions of cancers by specific location are 

157 provided in Table 1.

158 [Table 1 Here]

159 There are thirteen different types of site-specific cancers under the digestive system and five site-

160 specific cancers under the respiratory system, according to ICD-O-3 designations within the data. 

161 Among the digestive system cancers, colon and rectum cancer was the most prevalent, at 55.1% 

162 of all cases, and lung and bronchus cancer was the most prevalent for respiratory system cancers, 

163 with 91.1% of all cases.

164 There are two dependent variables in this analysis, and they represent the count of either 

165 digestive or respiratory cancers in each of the 254 counties of Texas between 2000 and 2008. 

166 The data are stratified by ethnicity into two categories Hispanic and non-Hispanic.  The 

167 stratification of the cases is accomplished by using the Hispanic ethnicity variable in the registry. 

168 This variable was very complete in the data, and was only missing for 1.4% of cases. Thus for 

169 each year, there are two separate counts for each cancer type and for each of the 254 counties in 

170 the state. Since the dependent variables are counts, they are generally expressed as a standardized 

171 ratio of counts to expected counts. This is typically called the standardized incidence ratio (SIR), 

172 and is expressed:

173 SIRijk = yijk/eijk

174 Where yijk is the count of cases in the ith county for the jth year for the kth ethnicity and eijk is the 

175 expected number of cases in the county for each group.  Here, to estimate the expected number 

176 of cases for each county, year and ethnicity, an assumption of equal risks is used. The expected 

177 number of cases in each county, year and ethnicity, eijk, is calculated by assuming each county 
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178 has the average incidence rate for each ethnicity (Hispanic and non-Hispanic) for the whole state 

179 for the period 2000 to 2008, or:

180 eijk = Σnijk* rk

181 , where nijk is the number of residents in each county for each ethnicity, and rk is the average 

182 incidence rate for the state, for ethnicity k, for the period 2000 to 2008.  This is repeated for each 

183 type of cancer: digestive and respiratory. This generates a set of expected values for the Hispanic 

184 and non-Hispanic population of each county, using the statewide rate for each ethnic group and 

185 the county population size for each group.

186 To control for background characteristics of the counties, and to measure proxies for 

187 factors affecting cancer risk, four independent variables are constructed.  The first of these is the 

188 metropolitan status of the county, which is measured as a dummy variable indicating whether the 

189 United States Department of Agriculture’s Economic Research Service considers the county 

190 metropolitan. Metropolitan counties are coded as 1, and non-metro counties are coded as 0.  The 

191 poverty rate in each county is calculated from the US Census Bureau’s Summary File 3 for 2000, 

192 and is expressed as the proportion of all residents living below the poverty line in 1999.  The 

193 proportion of the labor force in construction is used to measure a crude proxy for occupational 

194 exposure to certain carcinogens. This is again measured using the Census’s Summary File 3 and 

195 expressed as a proportion.  Finally, the Area Resource File (US Department of Health and 

196 Human Services, 2009) for 2008 is used to measure the number of hospitals in each county per 

197 10,000 residents.  This is used as a crude proxy for healthcare access in each county.  

198 2.2 Statistical methods

199 2.2.1 Model Specification
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200 Since the dependent variable is a count, a Poisson distribution is used to model the outcome. To 

201 model this outcome, a log-linear Poisson hierarchical regression model for each county, i, year, j, 

202 ethnicity, k, and type of cancer, C, is specified as:
203

yCijk | θCijk ~ Poisson (eCijk * θCijk)
204

The relative risk function, θCijk, can be parameterized using a number of different models, the 
205

present paper considers a Bayesian model specification.  
206

In the Bayesian modeling paradigm, all model parameters are considered to be random 
207

variables and are given a prior distribution. All inference about these parameters is made from 
208

the posterior distribution of these parameters, given the observed data and the information given 
209

in the priors.  This is generally referred to as Bayes Theorem, and typically stated as:

210 p(θ|y) p(y|θ)p(θ)

211 Where p(θ|y) is the posterior distribution of the model parameter of interest, p(y|θ) is the model 

212 likelihood function, here defined as a Poisson likelihood, and p(θ) is the prior distribution for the 

213 parameters in the model. Inference for all parameters is done via their posterior distribution, 

214 which can be used to derive mean values, quantiles or other descriptive statistics. One useful 

215 method for summarizing these distributions is the Bayesian Credible Interval (BCI), which is not 

216 unlike a traditional frequentist confidence interval, which gives the values of the posterior 

217 density for each parameter that contain 100*(1-α)% of the posterior density. Inference on these 

218 BCI regions usually consists of examining if the null hypothesis value of the parameter, typically 

219 zero, is contained in the interval. 
220

Since the primary interest in this paper is the relative difference between the incidence of 
221

cancer in the Hispanic and non-Hispanic populations of each county, the simplest way to 
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222
parameterize the model is as a linear difference in the incidence rates , conditional on the 

223
background spatio-temporal random effects. This is the first model considered, and is 

224
parameterized as:

225
  

226

 

 (Model 1)

ln(Cijk ) C C *ethCi  Ck
k
 xik  uCi  vCi  tCj  Cij

C ~ U( inf, inf)
C ~ N(0,.0001)
C k ~ N (0,.0001)
vCi ~ N (0,Cv )

uCi ~ N( 1
n j

uCj
j~i
 ,Cu / ni )

tCj ~ N(0,Ct )
 Cij ~ N(0,C )

227 , which follows the standard form for spatio-temporal disease incidence models commonly used 

228 in the literature (Blangiardo & Cameletti, 2015; Blangiardo, Cameletti, Baio, & Rue, 2013; Held, 

229 Graziano, Frank, & Rue, 2006; Knorr-Held, 2000; Lawson, 2013; Lee & Mitchell, 2014; 

230 Schrodle & Held, 2011b; Ugarte, Goicoa, Ibanez, & Militino, 2009). This model specifies the 

231 relative risk as a linear function of a grand intercept for each cancer type, αC, a mean difference 

232 between the two ethnicities (eth) for each cancer type. Here, it is important to note the eth 

233 variable is binary, with 1 indicating the Hispanic rate, and 0 representing the non-Hispanic rate, 

234 or the reference group. δC, is a linear predictor effect of the independent variables for each cancer 

235 type, Σ βkC xik, a “convolution” spatial prior, corresponding to the Besag, York and Mollie 

236 (Besag, York, & Mollie, 1991) model, which incorporates an unstructured heterogeneity term for 

237 each county and cancer type, vCi, and a correlated heterogeneity term specified as a conditionally 

238 autoregressive random effect, uCi, a temporally unstructured random effect for each year and 
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239 cancer type, tCj
1
 and finally a spatio-temporal interaction random effect, ΨCij, which follows the 

240 Type 1 specification in Knorr-Held (Knorr-Held, 2000).  In this model there is a single parameter 

241 (δ) for measuring the disparity between Hispanics and non-Hispanics for each cancer type, and 

242 this is done on average for the entire state.  This model additionally captures the underlying 

243 characteristics of the counties, the overall spatial structure of cancer risk, and the temporal 

244 variation between years in the relative risk.  Priors are assigned to all parameters in a minimally 

245 informative fashion, with an improper flat prior for αC, high variance Normal distribution priors 

246 for the δC and βC and vCi, a Normal distribution prior for tj and vague Gamma priors for the 

247 precisions of the unstructured heterogeneity, correlated heterogeneity, temporal and spatio-

248 temporal components. For all models, the Normal distribution priors are specified in terms of 

249 their mean and precision, which is common in Bayesian modeling, with the precision being the 

250 inverse of the variance: τ = 1/σ2, such that low precisions equal high variances. 

251 A second model adds more flexibility to Model 1 by including a random slope for each 

252 county’s difference between Hispanic and non-Hispanic risk.  This model is specified as:

253 Model 2

ln(Cijk ) C Ci *ethCi  Ck
k
 xik  uCi  vCi  tCj  Cij

C ~ U( inf, inf)
Ci ~ C 0 Ci ,Ci ~ N (0,C )
C k ~ N (0,.0001)
vCi ~ N (0,Cv )

uCi ~ N( 1
n j

uCj
j~i
 ,Cu / ni )

tCj ~ N(0,Ct )
 Cij ~ N(0,C )

1 Other prior distributions, including a first order random walk (RW1) priors were used, but did 
not increase model fit in this case, so the simpler exchangeable random effect for time was used 
in the final model.
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254 which is similar to (1), but includes a δCi term which allows the differences between Hispanic 

255 and non-Hispanic risk to vary between counties, instead of assuming the difference between the 

256 two population is the same across the state, and is equivalent to an unstructured random-slopes 

257 model for the disparity. This is much like the spatially varying coefficient model discussed 

258 elsewhere (Banerjee, Carlin, & Gelfand, 2004; Gelfand, Kim, Sirmans, & Banerjee, 2003), 

259 except in this model, the random slope term is not spatially correlated. 

260 A final model adds a correlated slope for the disparity parameter to Model 2. This model 

261 follows the example of previous authors, who model the disparity between groups as a spatial 

262 conditionally autoregressive random slope (Tassone, Waller, & Casper, 2009; Wheeler, Waller, 

263 & Elliott, 2008). This model has the form:

264
Model 3

ln(Cijk ) C Ci *ethCi  Ck
k
 xik  uCi  vCi  tCj  Cij

C ~ U( inf, inf)

Ci  C 0 Ci ,Ci ~ N( 1
n j

Cj
j~i
 ,C / ni )

C k ~ N (0,.0001)
vCi ~ N (0,Cv )

uCi ~ N( 1
n j

uCj
j~i
 ,Cu / ni )

tCj ~ N(0,Ct )
 Cij ~ N(0,C )

265
, which smooths the disparity parameter over neighboring counties within the state. 

266 2.3 Clustering in risk

267 One of the goals of this analysis is to identify areas where the disparity in risk between 

268 these population subgroups is clustered. To identify clusters of risk for Hispanics, relative to 

269 non-Hispanics, Bayesian exceedence probabilities are used (Lawson, 2013). An exceedence 

270 probability is:
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271  Pr(Cijk 
*)

272 , where θ* is some critical level of risk that is specified. Here, the exceedence probability of the 

273 Hispanic rate being 25% higher (θ*>1.25) than the non-Hispanic rate is used. These exceedence 

274 probabilities will allow the “significance” of the disparity to be mapped. When the probability is 

275 high, then there is a statistically important difference between the risk in the Hispanic and non-

276 Hispanic cancer incidence, and that the area represents a spatial cluster of risk. 

277 For geographic modeling, neighbors are identified using a first order Queen contiguity 

278 rule. Other neighbor specifications were examined, specifically a first order rook contiguity rule, 

279 and the results were substantively robust to this other neighbor specification. Also, since the 

280 precision terms for Bayesian hierarchical models have been shown to be sensitive to prior 

281 specifications, a sensitivity analysis is performed.  The models specified above all considered 

282 proper Gamma (.5, .0005) priors for all precision terms, and to gauge the sensitivity of the 

283 results, Uniform distributions for the precisions are also considered. These prior distributions 

284 have been used by other authors, and are thought of to be a sufficiently vague prior for the 

285 precision for these parameters.  

286 2.4 Computing - INLA

287 The software R (R  Development Core Team, 2015) and the R package R-INLA 

288 (Martins, Simpson, Lindgren, & Rue, 2013; Rue, Martino, & Chopin, 2009) were used to prepare 

289 data for analysis and parameter estimation.  The Integrated Nested Laplace Approximation, or 

290 INLA, approach is a recently developed, computationally simpler method for fitting Bayesian 

291 models (Rue et al., 2009), compared to traditional Markov Chain Monte Carlo (MCMC) 

292 approaches. INLA fits models that are classified as latent Gaussian models, which are applicable 

PeerJ reviewing PDF | (2015:01:3904:3:0:NEW 8 Sep 2015)

Reviewing Manuscript



293 in many settings (Martino & Rue, 2010).  In general, INLA fits a general form of additive 

294 models such as:

295  

296 , where η is the linear predictor for a generalized linear model formula, and is composed of a 

297 linear function of some variables u, β are the effects  of covariates, z, and ε is an unstructured 

298 residual (Rue et al., 2009). As this model is often parameterized as a Bayesian one, we are 

299 interested in the posterior marginal distributions of all the model parameters. Rue and Martino 

300 (2007) show that the posterior marginal for the random effects (x) in such models can be 

301 approximated as:

302  

303 via numerical integration (Rue & Martino, 2007; Schrodle & Held, 2011a, 2011b). The 

304 posterior distribution of the hyperparameters (θ) of the model can also be approximated 

305 as:

306  

307
308 , where G is a Gaussian approximation of the posterior and x*(θ) is the mode of the conditional 

309 distribution of p(x|θ,y). Thus, instead of using MCMC to find an iterative, sampling-based 

310 estimate of the posterior, it is arrived at numerically. This method of fitting the spatio-temporal 

311 models specified above has been presented by numerous authors (Blangiardo & Cameletti, 2015; 

312 Blangiardo et al., 2013; Lindgren & Rue, 2015; Martins et al., 2013; Schrodle & Held, 2011a, 

313 2011b), with comparable results to MCMC.

314 To summarize the posterior distributions of the model parameters, posterior means and 

315 95% credible intervals are calculated.  Three models specified in 2.2.1 were examined. Model fit 
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316 and improvement is assessed between the models with the Deviance Information Criterion (DIC) 

317 (Spiegelhalter, Best, Carlin, & van der Linde, 2002). The DIC measures the penalized deviance 

318 of each model, with the penalty term representing the model’s estimated number of parameters. 

319 DIC for the INLA models is described in Rue et al. (2009) and uses the model deviance 

320  D( )  2log(p(y | )) pD

321 , plus a penalty component, pD, which is an approximate number of parameters in the model. 

322 DIC is used, here, as a measure of relative model performance, and models with lower DIC 

323 values are preferred over those with higher DIC, analogous to the standard AIC criteria. 

324

325 3. Results

326 3.1 Descriptive Results

327 Descriptive statistics for the dependent variable and the predictors are presented in Table 2. 

328 [TABLE 2 HERE]

329 A gradual increase in the average number of cases per county is observed over the nine years of 

330 data. Also, many more cases of both types of cancer (on average) occur to non-Hispanics than to 

331 Hispanics.  It should be noted that between 25% (2005) and 36% (2000) of counties had a zero 

332 count for Hispanic digestive cancer cases and between 38% (2003) and 46% (2002) had a zero 

333 count for Hispanic respiratory cancer cases2. Also presented in Table 1 are the observed average 

334 risk ratios for the state for each year. These are calculated as ratio of the observed SIR for 

335 Hispanics (SIRH) and the observed SIR for non-Hispanics (SIRNH) for each year. For digestive 

336 cancers, every year shows an elevated risk for Hispanics compared to non-Hispanics, and all 

2 The large number of zeros in the data suggests that a zero-inflated distribution be used as the 
model likelihood. A zero-inflated Poisson model was considered for the analysis (results 
available from the author), but the DIC of said models suggested the Poisson model fit the data 
better.
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337 years except 2000 show an elevated risk of respiratory cancer for Hispanics. Likewise, 

338 respiratory cancers show a consistent trend of higher risk in Hispanics, but not as high as for 

339 digestive cancers. With respect to the predictor variables, in 2000 nearly 18 percent of the 

340 population of Texas was in poverty, with a wide degree of variation as seen by the inter quartile 

341 range.  On average there were .66 hospitals per 10,000 people in each county in the state, and 

342 there were sixty-five counties with no hospitals. Slightly over 8 percent of the work force was 

343 employed in construction, and the USDA considered thirty percent of counties in the state to be 

344 metropolitan.

345 3.2 Results of Bayesian models

346 Table 2 presents the posterior means of the regression effects for the fixed effects in the three 

347 models described above. Also, 95% Bayesian credible intervals are provided for each parameter.  

348 Model DIC values are also provided at the bottom of the table for each model. Lastly, summaries 

349 for the model hyperparameters provided.

350 [Table 3 HERE]

351 Across the three models, some of the fixed predictors show similar patterns.  For digestive 

352 cancers, the poverty rate shows a negative association with overall cancer risk in Models 1 

353 through 3. This suggests that in areas of higher poverty, the average cancer risk is lower. 

354 Respiratory cancer incidence is affected consistently by two of the predictors.  The proportion of 

355 the work force in construction is positively associated with respiratory cancer risk in the three of 

356 the models, potentially suggesting an occupation-specific risk pattern. Likewise, a metropolitan 

357 disadvantage is seen, with higher total cancer risk in metropolitan areas. Both of these variables 

358 are in line with expectations in terms of respiratory cancer risk. 

PeerJ reviewing PDF | (2015:01:3904:3:0:NEW 8 Sep 2015)

Reviewing Manuscript



359 When the three models are compared using the DIC, Model 3 shows the best model fit 

360 for each cancer type, with the DIC being lowest for this model.  Strong evidence is present that 

361 Model 1 is not adequate to describe the patterns of Hispanic/non-Hispanic disparities in either 

362 cancer, as every other model shows large drops in DIC. When comparing Models 2 and 3, strong 

363 evidence also exists for adding the spatially correlated random slope term, again with a large 

364 drop in DIC. 

365 Turning to the Hispanic disparity parameters, in all models, there persists an overall 

366 average disparity between Hispanics and non-Hispanics, with the former consistently showing 

367 elevated risk for both types of disease, net of the ecological factors, and the random effects. For 

368 digestive cancers, we see an increase in risk (eδ) between 5.3 and 16.4 percent, on average and 

369 between 3.8 and 20 percent when considering the 95% credible intervals, depending on the 

370 model. For respiratory cancers, we see an increase between 11.2 and 16.4 percent on average, 

371 and 9.1 and 21.1 percent when examining the credible intervals. For Models 2 and 3, the 

372 coefficients of the models are best presented graphically, as each county has an estimate for the 

373 disparity for each cancer type.  These estimates are presented in Figure 1 as posterior mean 

374 estimates of the Hispanic disparity in relative risk (eδC) for each county for Models 2 and 3.

375 [Figure 1 Here]

376 The first column of Figure 1 shows the Hispanic disparity random effect from Model 2, for 

377 respiratory and digestive cancers, respectively, when the disparity parameter was treated as 

378 unstructured. The second column of the figure shows the same parameter, when it was treated as 

379 a spatially structured random effect (Model 3). For both respiratory and digestive system 

380 cancers, Hispanics show elevated risk in the eastern portion of the state, but they also show 

381 elevated risk in the central portion of the state for digestive system cancers, but not for 
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382 respiratory cancers. The value of these figures is that the actual disparity in risk is being 

383 visualized, which shows us where within the state public health officials might try to focus 

384 activities in order to reduce the disparity in risk between these two populations.

385 3.3 Spatio-temporal Relative Risk Estimation

386 Figure 2 displays the estimated Hispanic relative risk for digestive cancers (eθ) for each year, 

387 2000 to 2008, estimated from Model 3. 

388 [Figure 2 Here]

389 The quantity being mapped is the linear predictor of the Poisson distribution (eθ), with all 

390 random effects included, which is interpreted as the model-based standardized incidence ratio 

391 (SIR).  Each panel in the figure shows the spatial distribution for each year between 2000 and 

392 2008. We see a general concentration of elevated Hispanic digestive cancer risk in the eastern 

393 portion of the state, as evidenced by relative risks greater than one (darker blue in color). This 

394 pattern is consistent, if not increasing over time, with more counties showing greater Hispanic 

395 relative risk over time. Lower risk (eθ < 1) for Hispanics occurs in North and Western Texas, and 

396 also along the border with Mexico, except for a few counties in extreme South Texas in the latter 

397 time periods. 

398 [Figure 3 Here]

399 Figure 3 provides the complementary space-time risk map for the respiratory cancer 

400 outcome. Again, we see higher Hispanic risk in Eastern Texas, but perhaps a more concentrated 

401 pattern, compared to the digestive cancer maps.  Also present is the lower risk in North and West 

402 Texas, as seen in Figure 2 for digestive cancers. Figure 3 also highlights a consistent spatial 

403 cluster of high risk in extreme East Texas for a cluster of three to five counties located North of 

404 Harris county (city of Houston). These counties include Montgomery, Liberty, San Jacinto, 
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405 Walker, Polk and Orange. These counties are quite rural and have low proportions of Hispanic 

406 residents (average of 9.3%, or about 8,900 Hispanic persons on average per county).

407 For each cancer type, Figures 4 and 5 illustrate the exceedence probabilities for the 

408 Hispanic disparity parameter from Model 3. 

409 [Figure 4 Here]

410 Figure 4 shows the exceedence probabilities for the digestive cancers over time. There is a 

411 persistent, significant, meaning a Pr(θ>1.25) between 95 and 100% in the eastern portion of the 

412 state on the Louisiana border, with smaller areas of isolated significant risk throughout the state, 

413 which appear to emerge over time, versus being consistent across time.

414 [Figure 5 Here]

415 Similarly, the disparity in respiratory cancer risk clusters in the same areas as for digestive risk, 

416 with an apparent secondary cluster in the northeastern areas if the state. Both of these clusters are 

417 persistent across time.

418 Finally, a sensitivity analysis of alternative priors for the model hyperparameters (all τ’s) 

419 showed very close agreement between the vague Gamma (.5, .0005) and the flat prior 

420 distributions. Since Model 3 showed evidence of being the best fitting model, the sensitivity 

421 analysis focused on its estimates. The precision point estimates for the temporal random effects 

422 (τt) for the digestive and respiratory cancers, respectively were 478.0 and 1538.8 from the 

423 Gamma prior and 441.5 and 1822.5 from the flat prior. The precisions for the uncorrelated 

424 heterogeneity (τu) were 428.7 and 923.1 for the Gamma prior and 354.0 and 1095.8 for the flat 

425 prior. The precisions for the correlated heterogeneity (τv) were 92.6 and 20.8 for the Gamma 

426 prior and 92.5 and 19.9 for the flat prior. The precisions for the varying disparity parameter were 

427 15.6 and 17.9 from the Gamma and 14.9 and 17.0 from the flat prior. The precisions for the 
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428 spatio-temporal random effect (τψ) were 296.5 and 288.7 for the Gamma prior model and 298.3 

429 and 283.8 for the flat prior model. While this is only one model, the overlap between the 

430 precisions is strong enough to validate the results. The one notable difference is the random 

431 effect for the unstructured heterogeneity (τu), which showed a lower precision (higher variance) 

432 in the Gamma prior model, although the parameter’s 95% credible interval did show significant 

433 overlap between the two prior specifications (Figure 6). 

434 [Figure 6 Here]

435 4. Discussion

436 This paper illustrated the application of the Bayesian varying coefficient models to the 

437 study of cancer incidence disparities between the Hispanic and non-Hispanic population of Texas 

438 over the period 2000 to 2008. This paper adds to the literature in health disparities within the 

439 state of Texas by using advanced Bayesian statistical methods to investigate the spatial non-

440 stationarity of health disparities in two major form of cancer incidence. The primary goal of this 

441 analysis was to investigate the spatial variation in cancer incidence disparities between Hispanic 

442 and non-Hispanic populations of the state of Texas between 2000 and 2008 and attempt to 

443 identify geographic clusters of disparities in cancer risk between these populations using a 

444 spatially varying coefficient model (Banerjee et al., 2004; Gelfand et al., 2003; Tassone et al., 

445 2009; Wheeler et al., 2008). A Bayesian modeling framework was used, using a variety of model 

446 specifications, including models that included interactions between space and time.  Alternative 

447 model specifications modeled the disparity in incidence between the two subpopulations 

448 differently, from a fixed effect on the grand mean to a spatially varying coefficient model for 

449 each county in the state.  The flexibility of the Bayesian framework also allowed for the models 

450 to be compared using standard model complexity criteria (DIC).  
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451 The model that best fit the data was the space-time model with a spatially varying slope 

452 for the disparity between Hispanics and non-Hispanics, according to the minimum DIC criteria. 

453 This suggests that the disparity between Hispanics and non-Hispanics in these two cancer types 

454 is best modeled through a spatially structured model, which allows for spatially structured 

455 variation in risk.  This also suggests that there are counties within the state where the Hispanic 

456 population is at higher risk for both of these cancers, and that these counties typically occur 

457 closely to one another spatially. 

458 Overall, a general disparity in terms of both cancers for Hispanics was found, where they 

459 face higher risk for both digestive and respiratory cancers than the non-Hispanic population of 

460 the state.  Significant effects were found on cancer-specific risks consistently including the 

461 county poverty level, metropolitan status of the county and the proportion of the workforce in 

462 construction. The labor force composition finding makes sense, as workers in construction 

463 industries often face higher levels of exposure to airborne particulates that could increase cancer 

464 risk. The finding for the county poverty rate was that in areas with higher poverty, the overall 

465 relative risk of cancer was lower, and deserves more discussion.  This effect was seen for both 

466 cancer types, in all but the final model (Model 3), and is in stark contrast to findings from 

467 national data (Singh, Miller, Hankey, & Edwards, 2003) for many types of cancer, which show 

468 higher incidence and mortality in both Hispanics and non-Hispanics in areas with higher poverty. 

469 Singh et. al. did not use data from Texas, and the time period for the present study is later than 

470 those considered in their report.  It is possible that the experience of the Texas population is 

471 different from the data used in their study; such local variations are common in health research. 

472 Significant spatio-temporal clusters of excess risk for the Hispanic population were found 

473 in the eastern portion of the state for both cancer types. These clusters focused around a small 
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474 group of rural counties in Eastern and Northeastern Texas. These counties are generally located 

475 north and east of Harris county (city of Houston). For digestive cancers, clustering begins in 

476 Jasper, Liberty, Orange and Walker counties, and spreads over time to include other neighboring 

477 counties. For respiratory cancers, a similar area is covered, but also includes Bowie, Gregg, 

478 Henderson and Smith counties in northeastern Texas. These counties are quite rural and have 

479 low proportions of Hispanic residents (average of 8.5% in 2000, or about 7,450 Hispanic persons 

480 on average per county).

481 This study had several limitations. First, the cancer incidence data had no information on 

482 residential histories of the individual cases. Any environmental exposure that could have 

483 influenced cancer risk may have come from a previous residential location. Unfortunately, the 

484 cancer registry data used in this study had no information on this subject. Secondly, this was an 

485 ecological study, and no individual level covariates (besides Hispanic ethnicity) were used, and 

486 the proxy measures of environmental exposure (metro status and proportion in construction) are 

487 crude measures, and better measures could be included in future work. Thirdly, this study 

488 lumped a wide array of specific cancer sites together (see Table 1) into two broad body 

489 “systems” for the analysis. This was done to avoid cases of extremely small counts, and more 

490 information could be gained by considering more site-specific cancers. 

491 Further research is needed to investigate the specifics of the counties identified in the 

492 analysis as having excess Hispanic cancer risk.  This can be done by a more localized analysis of 

493 the individual-level data this analysis is derived, and by investigating housing conditions, access 

494 to healthcare and potential environmental contaminants in these areas directly. Such ecological 

495 analyses as that presented here are rarely truly informative for individual cancer diagnoses, but 
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496 they can be very influential in terms of public health activities to reduce cancer disparities at the 

497 population level.

498
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Table 1. Distribution of cancers by system and type.
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Table 1. Distribution of cancers by system and type.
Cancer Type Count Percent
Digestive Cancers
Gum and Mouth 506 0.3
Esophagus 7745 5.0
Stomach 14190 9.1
small intestine 4183 2.7
Colon and Rectum 85821 55.1
Anus and anal canal and anorectum 2876 1.8
Liver 14032 9.0
Gallbladder 2095 1.3
Other Biliary 2702 1.7
Pancreas 19124 12.3
Retroperitoneum 780 0.5
Peritoneum, Omentum and Mesentery 1026 0.7
Other Digestive Organs 572 0.4

Respiratory Cancers
Nose, Nasal Cavity and Middle Ear 1469 1.2
Larynx 7720 6.2
Lung and Bronchus 113357 91.1
Pleura 1295 1.0
Trachea, Mediastinum and Other Respiratory Organs 596 0.5
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Table 2. Descriptive statistics for dependent and independent variables used in the
analysis.
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1
2 Table 2. Descriptive statistics for dependent and independent variables used in the analysis.

Cancer Type and Year Mean # 
Cases IQR Mean # Cases 

(non-Hispanic)
Mean # Cases 

(Hispanic)
Mean 

SIRH/SIRNH
Digestive Cancer 
Cases per County

2000
2001
2002
2003
2004
2005
2006
2007
2008

Respiratory Cancer 
Cases per County

2000
2001
2002
2003
2004
2005
2006
2007
2008

30.9
32.2
32.9
33.7
34.4
34.8
35.2
36.1
36.1

155,652 
total cases

25.6
26.5
26.9
27.8
27.6
28.1
27.4
27.8
27.2

123,437
total cases

18
18
19

19.25
22
22
21
23
20

15
17
17
17

16.25
17
16
16
15

49.9
51.8
52.6
53.5
54.0
53.9
54.3
55.8
55.1

46.0
47.2
48.2
49.4
49.2
49.9
48.4
48.7
48.1

12.0
12.6
13.2
14.0
14.8
15.8
16.1
16.4
17.0

5.2
5.8
5.6
6.1
5.9
6.4
6.5
6.8
6.4

0.87
1.44
1.18
1.14
1.31
1.32
1.30
1.46
2.06

1.28
1.42
1.16
1.62
1.18
1.48
1.67
1.61
1.54

Predictors Mean IQR
% in Poverty 17.76 6.58

Hospitals/10,000 People 0.66 0.79
% in Construction 8.11 3.15
% Metro Counties 30.31 1.00

3 n=254 counties

4

5

6
7
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Table 3. Results for the alternative Bayesian model specification parameters.
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1 Table 3. Results for the alternative Bayesian model specification parameters.
Model 1 Model 2 Model 3

Parameter Posterior Mean
(95% Credible Interval) 

Posterior Mean
(95% Credible Interval)

Posterior Mean
(95% Credible Interval)

Digestive Respiratory Digestive Respiratory Digestive Respiratory

α -.081
(-.119 - -.043)

-.066
(-.095 - -.037)

-.098
(-.137 - -.059)

-.074
(-.103 - -.044)

-.097
(-.136 - -.057)

-.074
(-.103 - -.044)

β

% in Poverty -.031
(-.052 - -.010)

.002
(-.027 - .033)

-.034
(-.057 - -.011)

.001
(-.031 - .032)

-.033
(-.057 - -.010)

.001
(-.032 - .030)

Hospitals per capita -.016
(-.037 - .004)

-.007
(-.032 - .016)

-.015
(-.037 - .005)

-.008
(-.033 - .016)

-.016
(-.037 - .005)

-.007
(-.032 - .018)

% in Construction -.011
(-.027 - .005)

.050
(.028 - .072)

-.009
(-.026 - .008)

.050
(.027 - .072)

-.001
(-.026 – .008)

.050
(.028 - .073)

Metro County .023
(-.009 - .056)

.052 
(.007 - .095)

.023
(-.011 - .057)

.054
(.009 - .099)

.021
(-.011 - .056)

.054
(.009 - .099)

Hispanic
Disparity, δ

.052
(.038 - .066)

.107
(.087 - .126)

.138
(.106 - .171)

.146
(.109 - .184)

.152
(.122 - .183)

.152
(.112 - .192)

Model Fit
Deviance (D )

DIC
pD

21256.2
21630.2
373.9

18625.7
19004.4
378.7

20790.2
21240.7
449.9

18462.5
18888.5
426.0

20775.6
21217.2
441.6

18436.8
18859.9
423.1

Hyperparameters
τt
τu
τv
τδ
τψ

477.8
331.3
133.9

-
297.1

1552.5
555.6
24.2

-
284.8

478.6
432.3
93.7
52.3
296.2

1546.5
898.1
20.4
67.5
287.3

478.0
428.7
92.6
15.6
296.5

1538.8
923.1
20.8
17.9
288.7

2 *Parameters in bold type represent estimates whose credible intervals do not contain 0.
3
4
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Figure 1(on next page)

Hispanic relative risk from Models 2 and 3
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Hispanic Relative Risk (eδ) Estimated from Models 2 and 3
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Hispanic fitted SIR from 2000 to 2008 -Digestive Cancers
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Hispanic Fitted SIR 2000 to 2008
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Figure 3(on next page)

Hispanic fitted SIR from 2000 to 2008 -Respiratory Cancers
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Hispanic Fitted SIR 2000 to 2008
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Figure 4(on next page)

Exceedence probabilities for digestive cancer clusters
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Exceedence Probability Hispanic Disparity Pr( θ >1.25 )
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Exceedence probabilities for digestive respiratory clusters
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Exceedence Probability Hispanic Disparity Pr( θ >1.25 )
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Figure 6(on next page)

Marginal densities for model hyperparameters
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