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Disparities in cancer risk exist between ethnic groups in the United States. These
disparities often result from differential access to healthcare, differences in socioeconomic
status and differential exposure to carcinogens. This study uses cancer incidence data
from the population based Texas Cancer Registry to investigate the disparities in digestive
and respiratory cancers from 2000 to 2008. A Bayesian hierarchical regression approach is
used. Specifically, a spatially varying coefficient model of the disparity between Hispanic
and Non-Hispanic incidence is used. Results suggest that a spatio-temporal heterogeneity
model best accounts for the observed Hispanic disparity in cancer risk. Overall, there is a
significant disadvantage for the Hispanic population of Texas with respect to both of these
cancers, and this disparity varies significantly over space. The greatest disparities between
Hispanics and Non-Hispanics in digestive and respiratory cancers occur in eastern Texas,
with patterns emerging as early as 2000 and continuing until 2008.
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1. Introduction 

 Respiratory and digestive system cancers have been identified as often having 

direct and identifiable causal pathways associated with them, many of which are behavior 

or environmentally influenced. Lung cancer is perhaps the most widely recognized 

environmentally influenced cancer type, with strong evidence to support the effects of 

smoking, poor diet and direct inhalation of certain carcinogens, including asbestos and 

other indoor air pollutants (Alberg and Samet, 2003; Ruano-Ravina, Figueiras et al., 

2003; Alberg, Ford et al., 2007). The exposure to these carcinogens generally leads to 

errors in somatic cell growth, such as chromosomal abnormalities, cellular mutations, and 

alterations in tumor suppressor cells. Gastrointestinal system cancers also have a variety 

of causes, with some consistency between the types of cancer, but other types also have 

distinct know etiologies.  For example, hepatocellular carcinoma (primary liver cancer) 

has been directly linked with hepatitis infection, alcoholic cirrhosis and dietary aflotoxins 

(Stuver and Trichopoulous, 2008; El-Serag, 2012) while other digestive system cancers, 

such as colorectal cancers are heavily influenced by dietary and lifestyle factors (Chao, 

Thun et al., 2005).  While the specific etiologies of the cancers of these two body systems 

sometimes have direct causal paths, they are generally thought to be influenced by both 

behavioral and environmental circumstances, which interact with familial and genetic 

pathways in complicated ways.   

Disparities in cancer incidence and mortality exist between racial and ethnic 

groups in the United States and worldwide (Elmore, Nakano et al., 2005; Du, Fang et al., 

2007; Vainshtein, 2008; Harper, Lynch et al., 2009; McKenzie, Ellison-Loschmann et al., 

2010).  The causes of these disparities have been suggested to be rooted in different 
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levels of socioeconomic status (SES), access to medical care, differential exposure to 

carcinogenic materials and differential treatment by medical staff of racial and ethnic 

minorities (Krieger, 2005; Sarfati, Blakely et al., 2006; Schootman, Lian et al., 2010). 

While these causes are often non-specific in their effects of how they influence cancer 

incidence, they do allow us to conceptualize and measure key factors related inequalities 

in health. Furthermore, understanding disparities in cancer risk and being able to 

visualize the place-based differences both in the determinants of cancer inequality can be 

a valuable tool to both scientist and policy maker alike.   

 The state of Texas is the second most populous state in the United States, with a 

current population estimate of 25.7 million persons. Between 2000 and 2010, Texas was 

the sixth fastest growing state, and the highest in total numerical population gain (Makun 

and Wilson, 2011).  Additionally, it is consistently in the top five fastest growing states in 

the nation.  The Hispanic population of Texas was estimated to be 9.1 million persons, or 

nearly 37% of the population in 2009 and Texas has the second largest Hispanic 

population, behind only California (Makun and Wilson, 2011).  In addition to being a 

large part of the state’s population, the Hispanic population also faces socioeconomic 

disadvantages compared to other ethnic groups.  The poverty rate for Texas Hispanics 

was 25.8% according to the 2010 American Community Survey, while Non-Hispanic 

whites only had an 8.8% poverty rate (United States Department of Commerce, 2012).  

 For such a large and dynamic state, little population-based cancer disparity 

research has been published for Texas. In a recent study of cancer disparities in Texas 

counties, Phillips et. al. (2011) found that an index of socioeconomic well-being was 

significantly associated with county-level ratios of metastatic to non-metastatic tumors in 
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all-cause, female genital and lung cancers, although since a linear regression was used, no 

relative risks are available.  In a study of El Paso county, Collins et. al. (2011) found 

higher cancer risk for the Hispanic population of that area, and they go on to discuss how 

in El Paso, areas of the city that had the highest levels of Hispanic population who had 

low levels of education had six times the risk of the more educated areas, and  areas with 

the highest proportion of Hispanic renters had seven times the risk of cancer than other, 

more socioeconomically advantaged areas. Using a geographically weighted regression 

approach, (Tian, Wilson et al., 2011) on data from the Texas Cancer Registry, found not 

only that that Hispanics and Non-Hispanic Blacks faced disparities in breast cancer 

mortality, but that these disparities varied over space within the state. These studies 

likewise point to the placed-based inequality and increased risks that Hispanic 

populations face in certain areas within the state. 

With respect to access-based disparities related to cancer risk Hispanics have been 

shown to have lower chances of seeking preventative care (Lantz, Mujahid et al., 2006; 

Shih, Zhao et al., 2006; Cristancho, Garces et al., 2008; Suther and Kiros, 2009; Hosain, 

Sanderson et al., 2011) of many different varieties including cancer screening.  Reasons 

for not seeking care include lack of insurance, language barriers and the high cost of 

health care (Cristancho, Garces et al., 2008). In a study of colorectal cancer, Wan et. Al. 

(Wan, Zhan et al., 2012) found significant disparities for Hispanics and Non-Hispanic 

Blacks based accessibility to care. 

1.2 Visualizing disparities across space 

 From a methodological standpoint, testing for disparities in rates is a relatively 

straightforward task and a variety of statistical procedures are well suited for it. 
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Specifically, a disparity in two rates can be measured as either a difference in total rates, 

or as a ratio of risks the groups being compared. In terms of visualizing the disparities, 

this can be more of a challenge.  For measuring the disparity between population 

subgroups, the standardized risk ratio is a useful measure, but it is often subject to noise 

in the underlying rates, most notably in small populations or in cases of rare disease.  

Maps of such relative risks are, as a result of the noise caused by small populations, often 

lead to the reporting of unstable risk estimates. Tango (2010) describes a variety of 

methods for both visualizing and  detecting disease clusters.  Methods for mapping such 

risk ratios in a scan-statistic context have been described by Chen and co-authors (2008), 

and Bayesian disease mapping methods are also cited as being particularly good at 

mapping spatial disease risk (Lawson, Biggeri et al., 2000; Choo and Walker, 2008; Kim 

and Oleson, 2008; Lawson, 2009; Earnest, Beard et al., 2010).   

It is the purpose of this paper to investigate the spatial variation in cancer 

incidence disparities between Hispanic and Non-Hispanic populations of the state of 

Texas between 2000 and 2009 using data derived from a population-based cancer 

registry.  This research adds to the literature in spatial epidemiology by examining the 

disparities in these two populations over time and space by using a Bayesian modeling 

methodology, which models the variation in cancer disparities between these two 

populations within the state. The Bayesian modeling framework is used to specify a 

series of spatially varying coefficient models as a method of both more accurately 

modeling the disparity between these two populations, but also for visualizing where the 

disparities between the populations exist. The goal of this process it to provide a locally 
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accurate depiction of health disparities which state and local health officials could use in 

combating health inequalities.  

2. Data and methods 

2.1 Data source 

 Data for this analysis come from the Texas Cancer Registry’s 

(www.dshs.state.tx.us/tcr/) Limited-Use data file from 2000 to 2008.  Access to these 

data was approved by the Texas Department of State Health Services IRB #12-030. 

These data consist of de-identified individual records of primary cancer diagnoses by 

oncologists in the state of Texas.  For the purposes of this study, relevant variables in the 

data include year of diagnosis, age, sex, Hispanic ethnicity, International Catalog of 

Disease for Oncology (ICD-O-3) codes for cancer diagnosis site and county of residence 

at the time of diagnosis.  Two main types of cancer were chosen: digestive system (ICD-

O-3 codes C150 – C488) and respiratory system cancers (codes C300 – C399). These 

cancers were chosen because several of the sub-types of these cancers have been linked 

to environmental or behavioral influences, and several have also been shown to vary 

between ethnic groups in their incidence (Wiggins, Becker et al., 1993; Singh and 

Siahpush, 2002; Howe, Wu et al., 2006; Singh and Hiatt, 2006; Willsie and Foreman, 

2006).  For the years of this study a total of n=155,652 digestive and n=124,438 

respiratory system cases were in the data.  The most prevalent form of digestive system 

cancer was colorectal cancer, with 53% of digestive cancers, and squamous cell 

carcinoma of the lung was the most prevalent respiratory cancer, representing 22% of all 

cases. 
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 The dependent variable in the analysis is the count of either digestive or 

respiratory cancers in each of the 254 counties of Texas between 2000 and 2008. The 

data are stratified by ethnicity into two categories Hispanic and Non-Hispanic.  The 

stratification of the cases is accomplished by using the Hispanic ethnicity variable in the 

registry.  Thus for each year, there are two separate counts for each cancer type and for 

each of the 254 counties in the state. Since the dependent variables are counts, they are 

generally expressed as a standardized ratio of counts to expected counts. This is typically 

called the standardized incidence ratio (SIR), and is expressed: 

SIRijk = yijk/eijk 

Where yijk is the count of cases in the ith county for the jth year for the kth ethnicity and eijk 

is the expected number of cases in the county for each group.  Here, to estimate the 

expected number of cases for each county, year and ethnicity, an assumption of equal 

risks is used. To estimate the expected number of cases in each county, eijk, is calculated 

by assuming each county has the average incidence rate for the whole state for the period 

2000 to 2008, or: 

eijk = Σnijk* rijk 

 where nijk is the number of residents in each county for each ethnicity, and rijk is the 

average incidence rate for the state for the period 2000 to 2008.  This is repeated for each 

type of cancer: digestive and respiratory. This generates a set of expected values for the 

Hispanic and Non-Hispanic population of each county, using the statewide rate and the 

county population size for each group. 

 To control for background characteristics of the counties, and to measure proxies 

for factors affecting cancer risk, four independent variables are constructed.  The first of 
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these is the metropolitan status of the county, which is measured as dummy variable 

indicating whether the county is considered metropolitan by the United States 

Department of Agriculture’s Economic Research Service. These counties are coded as 1, 

and non-metro counties are coded as 0.  The poverty rate in each county is calculated 

from the US Census Bureau’s Summary File 3 for 2000, and is expressed as the 

proportion of all residents living below the poverty line in 1999.  The proportion of the 

labor force in construction is used to measure a crude proxy for occupational exposure to 

certain carcinogens. This is again measured using the Census’s Summary File 3 and 

expressed as a proportion.  Finally, the Area Resource File (US Department of Health and 

Human Services, 2009) for 2008 is used to measure the number of hospitals in each 

county per 10,000 residents.  This is used as a crude proxy for healthcare access in each 

county.   

2.2 Statistical methods 

2.2.1 Model Specification 

Since the dependent variable is a count, the outcome is assumed to follow a Poisson 

distribution. To model this outcome, a log-linear Poisson hierarchical regression model 

for each county, i, year, j, ethnicity, k, and type of cancer, C, is specified as: 

yCijk | θCijk ~ Poisson (eCijk * θCijk) 

The relative risk function, θCijk, can be parameterized using a number of different models, 

the present paper considers a Bayesian model specification.   

In the Bayesian modeling paradigm all model parameters are considered to be 

random variables and are given a prior distribution and all inference about these 

parameters is made from the posterior distribution of these parameters, given the 
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observed data and the information given in the priors.  This is generally referred to as 

Bayes Theorem, and typically stated as: 

p(θ|y)∝ p(y|θ)p(θ) 

Where p(θ|y) is the posterior distribution of the model parameter of interest, p(y|θ) is the 

model likelihood function, here defined as a Poisson likelihood, and p(θ) is the prior 

distribution for the parameter of interest. Inference for all parameters is done via their 

posterior distribution, which can be used to derive mean values, quantiles or other 

descriptive statistics. One useful method for summarizing these distributions is the 

Bayesian Credible Interval (BCI), not unlike frequentist confidence interval, which gives 

the values of the posterior density for each parameter that contain 100*(1-α)% of the 

posterior density. Inference on these BCI regions usually consists of examining if the null 

hypothesis value of the parameter, typically zero, is contained in the interval.  

Since the primary interest in this paper is the relative difference between the 

incidence of cancer in the Hispanic and Non-Hispanic populations of each county, the 

simplest way to parameterize the model is as a linear difference in the incidence rates 

using a simple, unstructured linear predictor. This is the first model considered, and is 

parameterized and given priors as: 

1

ln * '

~ flat
~ (0,.0001)
~ (0,.0001)
~ (0, )
~ ( , )

Cijk C C Cik C Ci Cj

C

C
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Ci uC

Cj j tC

eth X u t
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N

u N
t N t

θ α δ β
α
δ
β

τ
τ−

= + + + +
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which models the relative risk as a linear function of a grand intercept for each cancer 

type, αC, a mean difference between the two ethnicities for each cancer type, δC, a linear 

predictor effect of the independent variables for each cancer type, X’βC, an unstructured 

heterogeneity term for each county and cancer type, uCi, which is equivalent to a random-

intercept model, and a temporally correlated random effect for each year and cancer type, 

tCj.  In this model there is a single parameter for measuring the disparity between 

Hispanics and non-Hispanics for each cancer type, and this is done on average for the 

entire state.  This model additionally captures the underlying characteristics of the 

counties, and the temporal correlation between years in the relative risk.  Priors are 

assigned to all parameters in a minimally informative fashion, with an improper flat prior 

for αC, high variance Normal distribution priors for the δC and βC and ui, a random-walk 

Normal distribution prior for tj and Uniform distributions for the standard deviations of 

the unstructured heterogeneity and temporal autocorrelation components.   

A second model adds more flexibility to Model 1 by including a random slope for 

each county’s difference between Hispanic and non-Hispanic risk.  This model is 

specified as: 

1

ln * '

~ (0, )
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 Model 2 

which is similar to (1), but includes a δCi term which allows the differences between 

Hispanic and non-Hispanic risk to vary between counties, equivalent to a random-slopes 

model. This is much like the spatially varying coefficient model discussed elsewhere 
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(Gelfand, Kim et al., 2003; Banerjee, Carlin et al., 2004), but in this case the spatially 

varying coefficient measures the disparity between the two subpopulations. While this 

model itself is not new, the application of it to a health disparities outcome is new 

contribution. Again, priors are assigned to all parameters in a minimally informative 

fashion, with an improper flat prior for αC, high variance Normal distribution priors for 

the δC and βC and ui, a random-walk Normal distribution prior for tj and Uniform (0,100) 

distributions for the standard deviations of the random δ slope, unstructured 

heterogeneity and temporal autocorrelation components.   

To adequately model the spatial and temporal structure of the data, a space-time 

interaction model is also specified (Model 3).  This model was first described by 

Bernardinelli and coauthors (Bernardinelli, Clayton et al., 1995) with the model structure 

elaborated on by Knorr-Held (Knorr-Held, 2000) and used in a diverse array of settings 

by other authors (Ugarte, Goicoa et al., 2009; Lawson, Song et al., 2010; Schrodle and 

Held, 2011; Ugarte, Goicoa et al., 2012). In the present setting, two space-time 

interaction models are specified. The first uses an unstructured spatio-temporal 

interaction term and adds this to the structure in Model 2. This random interaction term 

follows the form of the Type 1 interaction discussed by Knorr-Held {Knorr-Held, 2000 

#346}. The second spatio-temporal model uses the same unstructured spatio-temporal 

interaction term and a spatially correlated random effect term to allow for spatial 

autocorrelation in overall risk between neighboring counties. These models include terms 

for the spatio-temporal heterogeneity in general risk, as compared to Models 1 and 2 

which focus more on the general disparity between Hispanics and Non-Hispanics. These 

models are referred to as Models 3 and 4 and have forms: 

PeerJ reviewing PDF | (v2015:01:3904:0:1:NEW 28 Jan 2015)

Reviewing Manuscript



 

1

ln * '

~ (0, )
~ (0,.0001)
~ (0, )
~ ( , )

~ (0, )

Cijk C Ci Cik C Ci Cj

C

Ci C

C

Ci uC

Cj j tC

Cij C

eth X u t
flat
N
N

u N
t N t

N

δ

ψ

θ α δ β
α
δ τ
β

τ
τ

ψ τ
−

= + + + +

=

Model 3 

Where a space-time interaction effect is added to the linear predictor, and given a vague 

zero-mean Normal prior distribution, and a random slope to the disparity parameter is 

also included. The final model adds a spatially varying general intercept, in contrast to 

the unstructured intercepts in the other three models to account for spatial variation in 

total cancer risk: 

~
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Model 4

 

, which is again specified with the same space-time random effect as Model 3, but 

changes the uCi to a spatially structured conditionally autoregressive (CAR) random 
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effect. The notation for the CAR prior symbolizes that each county has a random effect 

which is the mean of its spatial neighbors, not including location i, which is symbolized 

by the term j~i in the equation. 

For geographic modeling, neighbors are identified using a first order Queen 

contiguity rule. Other neighbor specifications were examined, specifically a first order 

rook contiguity rule, and the results were substantively robust to this other neighbor 

specification. Also, since the precision terms for Bayesian hierarchical models have been 

shown to be sensitive to prior specifications, a sensitivity analysis is performed.  The 

models specified above all considered Uniform distributions for the standard deviation of 

each of the precision parameters. To examine the sensitivity of the models to alternative 

specifications, proper Gamma (.5, .0005) priors are also considered for all precision 

terms. This prior distribution has been used by other authors, and is thought of to be a 

sufficiently vague prior for the precision for these parameters.   

2.3 Computing 

The software R (R  Development Core Team, 2010) and the R package 

R2OpenBUGS (Sturtz, Ligges et al., 2005) were used to prepare data for analysis and 

OpenBUGS  3.2.1 was used for parameter estimation.  To estimate the posterior densities 

of model parameters, samples were drawn from their stationary posterior distribution via 

multiple chain Markov-Chain Monte Carlo simulation in OpenBUGS.  A total of 20,000 

iterations were generated, and the first 10,000 were discarded as a burn in period for the 

Markov chains. Results were derived from another 100,000 samples from the stationary 

distribution of the parameters, using every 10th sample to avoid autocorrelation in the 

Markov Chains.  Two Markov chains were started at divergent ends of the parameter 
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space and convergence was assessed using the Gelman-Rubin diagnostic (Gelman and 

Rubin, 1992), which showed convergence by 10,000 iterations. This generated a total of 

10,000 samples for each parameter in the model from each chain.  Combining the output 

from both chains yielded 20,000 samples for each stochastic node in the model. To 

summarize the posterior distributions of the model parameters, posterior means and 95% 

credible intervals are calculated.  Five models were examined as specified in 2.2.1. 

Model fit and improvement is assessed between the models with the Deviance 

Information Criterion (DIC) (Spiegelhalter, Best et al., 2002). The DIC measures the 

penalized deviance of each model, with the penalty term representing the model’s 

estimated number of parameters. DIC is typically calculated as DIC D pD= + , where 

1
2 ( | ) /G GD l y Gθ= − ∑ is the average model deviance evaluated after the Markov Chains 

have converged, and pD is an approximate number of parameters in the model. Since the 

DIC is a measure of overall model fit and complexity, but not a real measure of model 

performance, the mean absolute prediction error or MAPE for each model is also 

computed.  This is calculated: 

MAPE = 1
n

yi − y
Pred
i    ∑  

, where yi
Pred is a simulated value from the posterior predictive distribution of cancer 

cases, based upon posterior Poisson means for each model.  MAPE serves as a general 

measure of the predictive capacity of the models, where the model with the lowest total 

error, or MAPE would be the preferred model. It is not, however, penalized for over 

parameterization, so it is feasible for a model with a higher DIC to have a lower MAPE. 
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3. Results 

3.1 Descriptive Results 

Descriptive statistics for the dependent variables and the predictors are presented in Table 

1.  

[TABLE 1 HERE] 

A gradual increase in the average number of cases per county is observed over the nine 

years in the analysis. Also, we see that many more cases of both types of cancer (on 

average) occur to Non-Hispanics than to Hispanics.  It should be noted that for digestive 

cancers, between 25 (2005) and 36% (2000) of counties had a zero count for Hispanic 

digestive cancer cases and between 38 (2003) and 46% *(2002) had a zero count for 

Hispanic respiratory cancer cases. Also presented in Table 1 are the observed average 

risk ratios for the state for each year. These are calculated as ratio of the observed SIR for 

Hispanics (SIRH) and the observed SIR for Non-Hispanics (SIRNH) for each year. For 

digestive cancers, every year shows a qualitative elevated risk for Hispanics compared to 

Non-Hispanics, and all years except 2000 show an elevated risk of respiratory cancer for 

Hispanics. Likewise, respiratory cancers show a consistent trend of higher risk in 

Hispanics, but not to the same risk level as digestive cancers. With respect to the 

predictor variables, in 2000 nearly 18 percent of the population of Texas was in poverty, 

with a wide degree of variation as seen by the inter quartile range.  On average there were 

.66 hospitals per 10,000 people in each county in the state, and there were sixty-five 

counties with no hospitals. Slightly over 8 percent of the work force was employed in 

construction, and the USDA considered thirty percent of counties in the state to be 

metropolitan. 
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3.2 Results of Bayesian models 

Table 2 presents the posterior means of the independent variables in the four models 

described above. Also, 95% Bayesian credible intervals are provided for each parameter.  

Model fit statistics are also provided at the bottom of the table for each model. Lastly, the 

model variance components are provided. 

[Table 2 HERE] 

Across the four models, some of the fixed predictors show similar patterns.  For digestive 

cancers, the poverty rate shows a negative association with Hispanic relative risk in 

Models 1 through 3, and only Model 1 shows a significant effect of hospitals per capita, 

which shows a negative association with the relative cancer risk. This suggests that in 

areas of higher poverty, the average disparity is lower.  Also, when the simpler model 

specification is considered, accessibility to medical care decreases (as measured only by 

hospitals per capita) the digestive cancer disparity.  Model 3 also shows a significant 

association between the disparity and the proportion of the workforce in construction, 

which is shown to increase the Hispanic relative risk. Interestingly, Model 4 shows no 

significant effects of the predictor variables. This suggests that the predictors used may 

just be proxies for the spatial concentration in risk measured by the spatial random effect 

in Model 4. 

Respiratory cancer incidence is affected consistently by two of the predictors.  

The proportion of the work force in construction is positively associated with respiratory 

cancer risk in three of the models, potentially suggesting an occupation-specific risk 

pattern.  Similar to the digestive cancer outcome, the county poverty rate shows a 

significant negative association with Hispanic risk in three of the four models. This 

PeerJ reviewing PDF | (v2015:01:3904:0:1:NEW 28 Jan 2015)

Reviewing Manuscript



suggests that without controlling for spatially correlated heterogeneity in risk, the poverty 

rate is protective in terms of the Hispanic disparity, or that Hispanics and Non-Hispanics 

in high poverty areas face similar levels of risk.  

When the four models are compared using the standard DIC, Model 4 shows the 

best model fit with a DIC 1,240 points lower than Model 1, 910 points lower than Model 

2 and 650 DIC points lower than Model 3.  Strong evidence is present that Model 1 is not 

adequate to describe the patterns of Hispanic/Non-Hispanic disparities in either cancer, as 

every other model shows large drops in DIC, and noticeable drops in MAPE between the 

models. When comparing Models 2 and 3, strong evidence also exists for adding the 

spatio-temporal random effect to Model 3, again with a large drop in DIC and reduction 

in MAPE.  The comparison between Model 3 and 4 again shows strong evidence, in 

terms of the DIC, for the use of the spatially structured model intercepts, but the MAPE 

shows little to no difference from Model 3. It should be noted that the model deviance in 

Model 4 is actually higher than Model 3, but the pD estimate shows Model 4 being a 

much more parsimonious model, hence generating a lower DIC.   

 Turning to the Hispanic disparity parameters, for Model 1, the Hispanic/Non-

Hispanic disparity was measured as a fixed effect in the model. For both cancer types, 

results show a significant increase in relative risk for the Hispanic population relative to 

the Non-Hispanic population, on average across the state. For the other models, the 

coefficients of the modes are best presented graphically, as each county has an estimate 

for the disparity for each cancer type.  These estimates are presented in Figure 1 as 

posterior mean estimates of the Hispanic disparity in relative risk (eδC) for each county 

for models 2 through 4. 
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[Figure 1 Here] 

Figure 1 displays the estimates of the Hispanic disparity in relative risk parameters for 

each of the three varying coefficient models (Model 2-4).  The first row of Figure 1 

shows the parameters for respiratory cancers, while the second row of the figure shows 

the estimates for digestive cancers. Model 2, which was the independent, unstructured 

disparity parameter model shows isolated counties with high excess Hispanic risk 

throughout the state, but a general West to East gradient, with higher relative risks (above 

1) in the eastern and southern portions of the state.  Model 3 is the central column of 

Figure 1 and, much like Model 2 also shows elevated risk throughout the state, with 

perhaps come clusters of counties in the central and eastern portions of the state. The 

third column of Figure 1 illustrates the disparity parameter from Model 4, and this effect 

shows less structure to the disparity parameter than either Models 2 or 3, most likely 

resulting from the addition of the spatially correlated intercept term in the model.  

The value of these figures is that the actual disparity in risk is being visualized, which 

shows us where within the state public health officials might try to focus activities in 

order to reduce the disparity in risk between these two populations. 

3.3 Spatio-temporal Relative Risk Estimation 

Figure 2 displays the estimated Hispanic relative risk for digestive cancers (eθ) generated 

from Model 4.  

[Figure 2 Here] 

The quantity being mapped is the linear predictor of the Poisson mean, with all random 

effects included, which is interpreted as the model-based standardized incidence ratio 

(SIR).  Each panel in the figure shows the spatial pattern for one year of relative risk 
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between 2000 and 2008. We see a general concentration of elevated Hispanic digestive 

cancer risk in the eastern portion of the state, as evidenced by relative risks greater than 

one (darker blue in color). This pattern is consistent, if not increasing over time, with 

more counties showing greater Hispanic relative risk over time. Lower risk for Hispanics 

occurs in North and Western Texas, and also along the border with Mexico, except for a 

few counties in extreme South Texas in the latter time periods.  

[Figure 3 Here] 

 Figure 3 provides the complementary space-time risk map for the respiratory 

cancer outcome. Again, we see higher Hispanic risk in Eastern Texas, but perhaps a more 

concentrated pattern, compared to the digestive cancer maps.  Also present is the lower 

risk in North and West Texas, as seen in Figure 2 for digestive cancers. Figure 3 also 

highlights a consistent spatial cluster of high risk in extreme East Texas for a cluster of 

three to five counties located North of Harris county (city of Houston). These counties 

include Montgomery, Liberty, San Jacinto, Walker, Polk and Orange. These counties are 

quite rural and have low proportions of Hispanic residents (average of 9.3%, or about 

8,900 Hispanic persons on average per county). 

 Finally, the sensitivity analysis of alternative priors for the model random effects 

showed very close agreement between the vague Uniform and the vague Gamma (.5, 

.0005) prior distributions. Since Model 4 showed evidence of being the best fitting 

model, the sensitivity analysis focused on its estimates. The precision point estimates for 

the temporal random effects (τt) for the digestive and respiratory cancers, respectively 

were 1,581 and 2,117 from the Gamma prior and 1,715.0 and 2,691.0 from the Uniform. 

Likewise, the precisions for the correlated heterogeneity (τu) were 53.6 and 18.9 for the 
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Gamma prior and 57.3 and 24.2 for the Uniform. The precisions for the varying disparity 

parameter were 22.4 and 25.3 from the Gamma and 142.3 and 125.5 from the Uniform 

prior. The precisions for the spatio-temporal random effect (τψ) were 177.0 and 269.5 for 

the Gamma prior model and 292.0 and 285.5 for the Uniform prior model. While this is 

only one model, the overlap between the precisions is strong enough to validate the 

results. The one notable difference is the random effect for the disparity between the two 

populations, which showed a lower precision in the Gamma prior model. 

4. Discussion 

This paper illustrated the application of Bayesian varying coefficient models to 

the study of cancer incidence disparities between the Hispanic and Non-Hispanic 

population of Texas over the period 2000 to 2008. This paper adds to the literature in 

health disparities by using advanced Bayesian statistical methods to investigate the 

spatial non-stationarity of health disparities in two major form of cancer incidence. The 

primary goal of the analysis was to examine the usefulness of the spatially varying 

coefficient model (Gelfand, Kim et al., 2003; Banerjee, Carlin et al., 2004) within the 

Bayesian modeling framework using a variety of model specifications, including models 

that included interactions between space and time.  Alternative model specifications 

structured the disparity in incidence between the two subpopulations differently, from a 

fixed effect on the grand mean to a spatially varying coefficient model for each county in 

the state.  The flexibility of the Bayesian framework also allowed for the models to be 

compared using standard model complexity criteria (DIC) and a measure of predictive 

loss (MAPE).   
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The model that best fit the data was the space-time model with a spatially varying 

intercept and an unstructured random slope for the disparity between Hispanics and Non-

Hispanics, according to the minimum DIC criteria.  Some differentiation between models 

was found using the MAPE, but as seen in Model 4, MAPE and DIC did disagree to very 

small extent, probably because the MAPE calculation does not penalize over-

parameterized models.  This suggests that the disparity between Hispanics and Non-

Hispanics in these two cancer types is best modeled through a count-specific approach, 

and an approach which allows for general spatially structured variation in risk.  This also 

suggests that there are counties within the state where the Hispanic population is at higher 

risk for both of these cancers, but these counties do not necessarily occur close to one 

another spatially. There are notable exceptions to this, however, with the a small group of 

rural counties in Eastern Texas showing a strong spatio-temporal cluster of Hispanic risk 

for the respiratory cancer outcome. 

Overall, a general disparity in terms of both cancers for Hispanics was found, 

where they face higher risk for both digestive and respiratory cancers than the Non-

Hispanic population of the state.  Significant effects were found on total cancer risk 

consistently including the county poverty level, and the proportion of the workforce in 

construction. The labor force composition finding makes sense, as workers in 

construction industries often face higher levels of exposure to airborne particulates that 

could increase cancer risk. The finding for the county poverty rate was that in areas with 

higher poverty, the overall relative risk of cancer was lower, and deserves more 

discussion.  This effect was seen for both cancer types, in all but the final model (Model 

4), and is in stark contrast to findings from national data (Singh, Miller et al., 2003) for 

PeerJ reviewing PDF | (v2015:01:3904:0:1:NEW 28 Jan 2015)

Reviewing Manuscript



many types of cancer, which show higher incidence and mortality in both Hispanics and 

Non-Hispanics in areas with higher poverty. Two important considerations need to be 

made concerning the differences reported by Singh et. al. and the present study. First, 

Singh et. al. did not use data from Texas, and the time period for the present study is later 

than those considered in their report.  It is possible that the experience of the Texas 

population is different from the national average; such local variations are common in 

health research. Secondly, since this model was formulated in terms of the relative 

disadvantage for Hispanics compared with Non-Hispanics, the poverty effect may make 

perfect sense.  If the effect is really interpreted as the effect of poverty on the difference 

in relative risk between these populations, then we can say that poverty is acting as an 

equalizer, where the differences between the two ethnic groups is smaller in areas of 

higher poverty. This would agree well with the findings from Singh et. al.’s piece, and 

again can be indicative that populations, on average, living in poverty face overall higher 

risk, but the disparity between populations is less.  Also, the effect was not found in the 

final model (Model 4), which included a spatially varying intercept, which affects the 

total cancer risk.  Thus the poverty effect may, in the non-spatial models, have been 

indicative of some general pattern of differential risk that was geographically structured, 

and modeled directly in Model 4 using the spatially correlated term. 

Further research is needed to investigate the specifics of the counties identified in 

the analysis as having excess Hispanic cancer risk.  This can be done by a more localized 

analysis of the individual-level data this analysis is derived, and by investigating housing 

conditions, access to healthcare and potential environmental contaminants in these areas 

directly. Such ecological analyses as that presented here are rarely truly informative for 
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individual cancer diagnoses, but they can be very influential in terms of public health 

activities to reduce cancer disparities at the population level. 
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Table 1. Descriptive statistics for dependent and independent variables used in the 
analysis. 

Cancer Type and Year Mean # 
Cases IQR Mean # Cases 

(Non-Hispanic) 
Mean # Cases 

(Hispanic) 
Mean 

SIRH/SIRNH 

Digestive Cancer  
Cases per County 

2000 
2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 

 
 

Respiratory Cancer 
Cases per County 

2000 
2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 

 
 

30.9 
32.2 
32.9 
33.7 
34.4 
34.8 
35.2 
36.1 
36.1 

155,652 
total cases 

 
 

25.6 
26.5 
26.9 
27.8 
27.6 
28.1 
27.4 
27.8 
27.2 

123,438 
total cases 

 
 

18 
18 
19 

19.25 
22 
22 
21 
23 
20 

 
 
 
 

15 
17 
17 
17 

16.25 
17 
16 
16 
15 

 
 

49.9 
51.8 
52.6 
53.5 
54.0 
53.9 
54.3 
55.8 
55.1 

 
 
 
 

46.0 
47.2 
48.2 
49.4 
49.2 
49.9 
48.4 
48.7 
48.1 

 
 

12.0 
12.6 
13.2 
14.0 
14.8 
15.8 
16.1 
16.4 
17.0 

 
 
 
 

5.2 
5.8 
5.6 
6.1 
5.9 
6.4 
6.5 
6.8 
6.4 

 
 

0.87 
1.44 
1.18 
1.14 
1.31 
1.32 
1.30 
1.46 
2.06 

 
 
 
 

1.28 
1.42 
1.16 
1.62 
1.18 
1.48 
1.67 
1.61 
1.54 

      
Predictors Mean IQR    

% in Poverty 17.76 6.58    
Hospitals/10,000 People 0.66 0.79    

% in Construction 8.11 3.15    
% Metro Counties 30.31 1.00    

n=254 counties 
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Table 1(on next page)

Table 2 Results for the alternative Bayesian model specification parameters.
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Table 2. Results for the alternative Bayesian model specification parameters. 
 Model 1 Model 2 Model 3 Model 4 

Parameter 95% Credible Interval  95% Credible Interval  95% Credible Interval 95% Credible Interval 

α -0.212  
(-0.274 , -0.147) 

-0.213 
(-0.277 , -0.151) 

-0.181 
(-0.248 , -0.114) 

-0.122 
(-0.188 , -0.061) 

-0.185 
(-0.257 , -0.120) 

-0.115 
(-0.178 , -0.057) 

-0.191 
(-0.263 , -0.124) 

-0.131 
(-0.195 , -0.073) 

Predictors, β Digestive Respiratory Digestive Respiratory Digestive Respiratory Digestive Respiratory 

% in Poverty -0.043 
 (-0.061 , -0.026) 

-0.027 
 (-0.051 , -0.002) 

-0.044 
 (-0.067 , -0.019) 

-0.028 
(-0.054 , -0.002) 

-0.044 
(-0.066 , -0.022) 

-0.041 
(-0.069 , -0.011) 

-0.009 
 (-0.038 , 0.020) 

0.012 
(-0.023 , 0.049) 

Hospitals per 
capita 

-0.036 
 (-0.061 , -0.011) 

-0.018 
 (-0.048 , 0.013) 

-0.026 
 (-0.055 , 0.004) 

-0.015 
(-0.047, 0.019)  

-0.026 
 (-0.056 , 0.002) 

-0.010 
(-0.045 , 0.024) 

-0.011 
(-0.040 , 0.019) 

-0.007 
(-0.404 , 0.025) 

% in Construction 0.009 
 (-0.007 , 0.013) 

0.066 
 (0.043 , 0.089) 

0.021 
 (-0.001 , 0.043) 

0.067 
(0.043, 0.091) 

0.020  
(0.000 , 0.042) 

0.076  
(0.050 , 0.104) 

0.006 
(-0.017 , 0.028) 

0.063 
(0.036 , 0.090) 

Metro County 0.026 
 (-0.011 , 0.062) 

0.040 
 (-0.011 , 0.091) 

0.004 
 (-0.001 , 0.049) 

0.036  
(-0.014, 0.087) 

0.004 
(-0.039 , 0.049) 

0.005  
(-0.052 , 0.061) 

0.010 
(-0.031 , 0.053) 

0.039  
(-0.011 , 0.090) 

Hispanic 
Disparity 

0.050 
 (0.036 , 0.064) 

0.103 
 (0.083 , 0.123) See Figure 1 See Figure 2 See Figure 3 

Model Fit 

Deviance ( ) 
DIC 
pD 

 
40,620 
40,950 
337.4 

 
39,948 
40,461 
512.3 

 
39,469 
40,360 
886.4 

 
39,490 
39,710 
225.7 

MAPE 8.776 8.501 8.025 8.027 
Variance 

Components 
τt 
τu 
τδ 
τψ 

 
 

1752.7 
113.7 

- 
- 

 
 

2486.6 
48.0 

- 
- 

 
 

1733.0 
124.5 
127.4 

- 

 
 

2470.0 
55.7 
93.6 

- 

 
 

1725.7 
131.6 
126.9 
292.6 

 
 

2774.5 
57.4 
93.5 

281.2 

 
 

1715.0 
57.35 
142.3 
292.0 

 
 

2691.0 
24.2 

125.5 
285.5 

*Parameters in bold type represent estimates whose credible intervals do not contain 0. 
 
 

!
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1
. Map showing the distribution of Hispanic/Non-Hispanic disparity parameter (δ) for
Models 2-4.
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2
Maps showing the distribution of Hispanic relative risk for digestive cancers, derived
from Model 4, 2000- 2008.
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3
Maps showing the distribution of Hispanic relative risk for respiratory cancers, derived
from Model 4, 2000- 2008.
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