
A Markovian Analysis of Bacterial Genome Sequence Constraints

The arrangement of nucleotides within a bacterial chromosome is influenced by numerous factors. The 

degeneracy of the third codon within each reading frame allows some flexibility of nucleotide 

selection; however, the third nucleotide in the triplet of each codon is at least partly determined by the 

preceding two. This is most evident in organisms with a strong G+C bias, as the degenerate codon 

must contribute disproportionately to maintaining that bias. Therefore, a correlation exists between the 

first two nucleotides and the third in all open reading frames. If the arrangement of nucleotides in a 

bacterial chromosome is represented as a Markov process, we would expect that the correlation would 

be completely captured by a second-order Markov model and an increase in the order of the model 

(e.g. third-, fourth-…order) would not capture a significant additional uncertainty in the process. In 

this manuscript, we present the results of a comprehensive study of the Markov property that exists in 

the DNA sequences of 906 bacterial chromosomes. All of the 906 bacterial chromosomes studied 

exhibit a statistically significant Markov property that extends beyond second-order, and therefore 

cannot be fully explained by codon usage. An unrooted tree containing all 906 bacterial chromosomes 

based on their transition probability matrices of third-order shares ~25% similarity to a tree based on 

sequence homologies of 16S rRNA sequences. This congruence to the 16S rRNA tree is greater than 

for trees based on lower-order models (e.g. second-order), and higher-order models result in 

diminishing improvements in congruence. A nucleotide correlation most likely exists within every 

bacterial chromosome that extends past three nucleotides. This correlation places significant limits on 

the number of nucleotide sequences that can represent probable bacterial chromosomes. Transition 

matrix usage is largely conserved by taxa, indicating that this property is likely inherited, however 

some important exceptions exist that may indicate the convergent evolution of some bacteria.
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Introduction

For more than twenty years, the nucleotide composition of bacterial genomes has been the focus of 

many studies attempting to identify patterns in nucleic acid sequences. One of the first analyses of 

nucleotide sequences by Muto and Osawa noted that nucleotide biases exist and are likely influenced 

by selection (47). Later work By Karlin and Burge proposed that a bacterial signature could be defined 

by certain statistical properties of complete sequences (34). They discovered that correlations exist 

between neighboring nucleotides (dinucleotides) in bacteria, and that dinucleotide frequencies can be 

used as a genomic signature which may result from: 1) the chemistry of dinucleotide stacking; 2) DNA 

conformational tendencies; 3) species-specific properties of DNA replication and repair mechanisms; 

4) the selection of restriction endonucleases (35); and 5) codon usage, as it effects translational 

efficiency (27, 28, 60). These and other pioneering studies were narrow in scope because, at that 

time, available data was limited to single gene sequences, partial chromosomes, and the complete 

genomes of a small number of model organisms, such as Escherichia coli K-12 (10), Haemophilus 

influenzae (21) and Bacillus subtilis (44). Nevertheless, these analyses were instrumental in laying the 

foundation for statistical genomics. In this early period, researchers were forced to focus on very 

specific phenomena or draw broad conclusions from data sets that were insignificant when compared 

to the size of the global metagenome. The situation is beginning to change. Genome sequences are 

now available for more than 2,000 bacterial species, which may represent as much as ~0.002% of all 

bacteria (15, 58). With this expanded data set we can begin to address new types of questions. For 

example, we can begin to identify sequence features that may constrain nearly all bacterial genomes, 

and thereby describe a set of heuristics that may eventually help define the statistical boundaries of 

what constitutes a bacterium.

One established method used to model genome sequences is the finite state Markov chain model 

(see Methods) (3, 6, 9, 12, 24). Markov models are defined by a transition matrix, which stores the 
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conditional probabilities of the kth symbol following the previous k-1 symbols in a word of length k; they 

are akin to word frequency counts. Applying this type of analysis to a complete genome sequence 

provides information about dynamic and stationary statistics that cannot be captured from a single 

gene or set of genes. One of the first applications of Markov models to the analysis of genetic 

sequences was their use as a method to identify sequence bias. Pioneering work by researchers 

including Phillips (50) Rocha (54), and Burge and Karlin (13) established that Markov analysis of DNA 

sequences can be useful in identifying over- and under-represented sequences. Work by Elhai (19) 

compared several different statistical methods of finding bias in the relative abundance of 

oligonucleotides in DNA sequences. All these methods were based on comparing observed 

oligonucleotide frequencies to their expectation under several models, and all concluded that Markov 

model based methods underperformed some more complex methods, when the purpose of the 

method was to determine abundance.

Determining relative abundance is not the only reason for examining DNA sequences, however, and 

when looking for other patterns an empirically derived Markov model does contain valuable 

information. For example, lateral gene transfer events produce a localized nucleotide bias that can be 

detected with variations of Markov models, although they must be recent events, as the bias tends to 

disappear in a short period of evolutionary time (45, 52). Many studies have examined this 

phenomenon and have concluded that the lateral transfer of genetic material is a very important factor 

in bacterial evolution (14, 17, 31, 41, 65). This conclusion may seem obvious now but, at the time, it 

challenged many assumptions about vertical descent, the meaning of phylogenetics, and how 

phylogenies are constructed (46). This and similar Markov model based methods have also revealed 

niche and habitat influences in the genomic composition of bacteria at the G+C content level (22), the 

amino-acid level (62), and the whole genome level (49). One of the earliest gene prediction methods 

(11) used non-homogenous Markov models to estimate the probability that a particular location along 
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the genome of an organism contains genetic information. Clearly, Markov models have a purpose in 

evaluating patterns in DNA sequences, although they may not always be the best choice.

Many studies have explored the use of Markov models to infer phylogenies, as an alternative to 

methods based on multiple sequence alignment. Höhl et.al (29) compared several alignment-free 

methods for inference of phylogeny based on bacterial amino acid sequences. They made two 

important conclusions: 1) methods based on k-mer frequencies are generally inferior to approaches 

based on maximum-likelihood distance estimates of multiply aligned sequences and; 2) there is an 

optimal word length (k) which produces a stable inferred tree, beyond which there is only a negligible 

improvement in stability. A similar conclusion was reached by Jun et. al. (33) and Dai et. al, (16) using 

proteome sequences of prokaryotes. Again, it must be noted that these studies were looking for 

optimal ways to identify a particular set of data; their conclusions do not mean that Markov methods 

are inherently inferior. There is a significant amount of information contained in the transition matrix of 

a bacterial genome beyond what these studies were looking for, and the existence of an optimal word 

length may indicate that a lower-order Markov model can capture the majority of the information 

contained in higher-order models. The application of finite state Markov chain models to identify 

patterns that exist in bacterial genomes can help in understanding molecular change, in developing 

molecular criteria for classification, and in exploring the boundaries of what may (or may not) 

constitute a viable genome sequence.

Sequenced bacterial genomes span a size range of approximately two orders of magnitude, from 

Carsonella ruddii (~0.15MB) (48) to Sorangium cellulosum (~13MB) (59), and a range of %G+C 

content from a low of ~17% in Carsonella ruddii  to ~75% in Anaeromyxobacter dehalogenans (56). If 

we consider the set of all possible bacterial chromosomes to include every closed circular DNA 

sequence that fits within these ranges, the number of distinct chromosomal sequences would be 

overwhelming. Determining the subset of probable bacterial chromosomes from the set of possible 
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bacterial chromosomes is a problem whose complexity is analogous to protein structure prediction. To 

begin addressing this problem, we can apply heuristics based on biological phenomena considered to 

be ubiquitous. For example, we might propose that a sequence must contain codons, open reading 

frames, regulatory sequences, and a certain set of “essential” genes in order for it to be included in the 

probable subset. Applying these kinds of heuristics renders the subset of probable chromosomes 

much smaller that the set of possible chromosomes, but it would still be an overwhelmingly large 

number. Also, the boundaries of the subset would not be hard, since consensus on parameters such 

as the number of open reading frames and the list of essential genes would be impossible.

An independent and complementary approach to developing heuristics to limit the subset of probable 

bacterial chromosomes would be to base them on sequence patterns identified either as ubiquitous or 

extremely rare. This type of heuristic would not rely on a biological interpretation of sequence data, but 

rather on definable sequence patterns that are highly likely or unlikely to occur in the population based 

on their appearance within a representative sub-population. A few heuristics have already been 

proposed. For example, Lawrence and Ochman summarized four salient features of prokaryotic 

genomes (45): 1) base composition varies widely among bacterial species; 2) base composition is 

related to phylogeny; 3) base composition is relatively homogeneous over the entire bacterial 

chromosome; and 4) within each species, the first, second, and third positions of codons, as well as 

the genes for structural RNAs, have characteristic base compositions. Once defined, these features 

can be explored and parameterized into models capturing certain properties.. 

Despite limited available data, early studies made some very important observations. Karlin et al. 

identified correlations between neighboring nucleotides (34) (i.e., the probability of appearance of the 

nth nucleotide depends on the (n-1)th nucleotide), and concluded that dinucleotide frequencies carry a 

phylogenic signal. Goldman and others discovered that tri- and tetranucleotide correlations exist in 

bacterial sequences (26, 36, 38) . Tetranucleotide frequencies have also been found to carry a 
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phylogenetic signal, and to reflect high-order information beyond third codon biases that are not 

present in the analysis of single genes (51). The study by Pride et. al (51) looked at tetranucleotide 

usage conservation in 27 microbial genomes, and compared a tree based on tetranucleotide usage 

departures to that of 16S rRNA trees. They concluded that tetraucleotide usage patterns are 

conserved by taxa, and that usage departure is a measure of how far tetranucleodide frequencies 

diverge from the expectations under a null-model, which in their case was designed to remove any 

sequence bias. This approach has been useful in identifying under- and over-represented 

olglionucleotides (3, 37, 57). 

Materials and Methods

The complete DNA sequences and 16S ribosomal DNA sequences were collected for 906 closed 

bacteria from GenBank (8) (for a complete list see S1). For organisms having multiple chromosomes, 

the major chromosome was selected as representative of the genomic sequences of the respective 

organism. Our analysis indicates that the DNA sequence of the major chromosome in bacteria has 

similar statistical properties in regards to nucleotide probabilities as a sequence constructed by 

appending all the chromosomes for that organism, excluding plasmids (data not shown). All software 

developed for this work was written in C++, except where otherwise noted.

Constructing the 16S rRNA tree 

The ribosomal DNA sequences for each of the 906 bacteria were obtained from GenBank, and the 

DNA sequence corresponding to the 16S ribosome was written to a single FASTA file. In organisms 

having multiple copies of 16S rRNA, the first copy relative to the 5' direction was chosen as 

representative of the organism (2). The 16S rRNA sequences were aligned using MUSCLE (18). 

Aligned 16S rRNA sequences were bootstrapped with 100 replicates and transformed into distances 

using the F84 (40) model available in the Phylip package (Felsenstein, J. 1993). We chose to use the 

F84 distance method because, unlike other methods (e.g. Jukes and Cantor's (32) and K80 (39)), it 
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allows for both unequal base frequencies and unequal transition/transversion probabilities. The base 

frequencies and transition/transversion probabilities are estimated from the data, and the distances 

can be interpreted as a maximum likelihood estimate of the divergence time; this provides an accurate 

representation of bacterial sequence dynamics. Each replicated distance matrix was clustered using 

the Neighbor-joining method (55). Neighbor-joining was used because of its speed and accuracy when 

given a correct distance matrix. A majority-rule consensus tree was calculated using Phylip (Phylip 

formatted tree available as S2). Tree visualizations shown in this paper were produced using 

Dendroscope (30) and ladderized right.

Constructing the transition tree

The frequency of each genomic subsequence and its reverse complement (3'  5') of length n 

appearing in each bacterial genome was explicitly counted. The transition probabilities were estimated 

for the kth-order transition matrix (k = n-1), for 0 ≤ k ≤ 5, from the subsequence frequencies. The 

Euclidean distance was computed between each transition matrix describing each of the 906 bacterial 

sequences for a given order of Markov chain model. The Euclidean distances were clustered using the 

Neighbor-joining method available in the Phylip package (Phylip formatted tree available as S3). Tree 

visualizations were produced using Dendroscope (30) and ladderized right.

Determination of tree similarity

A direct method of assessing tree similarity comes from set theory and is referred to as the symmetric 

difference (53). The symmetric difference of a tree structure is the total number of partitions that differ 

between the two trees. We used the percent symmetric difference, which is the symmetric difference 

(Ds) divided by the maximum symmetric difference (Dmax), with Dmax ≈ 2n-6 for n-number of taxa. The 

significance of Ds for a given number of taxa can be estimated empirically, and is shown to be 

asymptotic, with a convergence rate dependent on n (61).  For n = 30, any Ds < (Dmax - 2) is significant, 
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with p < 0.01. The symmetric difference method as implemented in the Phylip package was used for 

the data presented in figures 1 and 2.

Markov models of bacterial chromosomes 

A chromosome sequence can be modeled as a finite state space Markov chain, with each of the four 

nucleotides (A,T,G,C) represented by a single state with transition probabilities PA, PT, PG and PC 

respectively. This representation is memoryless, in that the appearance of any nucleotide at any 

position is completely independent of any other. This is also referred to as a 0th order Markov model, 

and in this context can only capture biases in the relative frequency of appearance of the nucleotides 

(e.g., G+C bias and A/T fraction bias). The transition matrix, θ, for the 0th order Markov model 

describing the finite state space Markov chain is:

[ ].,,, CGTA PPPP=θ

In higher-order Markov models, transition probabilities are conditional on the previous k bases (for 

k>0). For example, we can consider a 1st order Markov model with transition probabilities PA|A, PT|A, 

PG|A, PC|A ... PG|C, PC|C, where Pi|j is the probability of the ith nucleotide following the jth nucleotide. We can 

easily generalize this to describe the transition matrix for a k-order Markov model representing a 

genomic sequence, with [ ] .44, 1×= kjiθ

Testing for Markovity

We adapted an existing framework that is rooted in information theory to estimate the significance of a 

Markov property of order k. The framework tests for contingency tables and calculates the value of the 

Χ2 statistic (4,  43), which tests the null hypothesis that the sequence is a realization of a stationary 

Markov chain of order k-1, against the alternative hypothesis that it  is it  a realization of a k-order 

stationary Markov chain. The application of this method to DNA sequences is discussed by Avery et. al 
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(7). For very long sequences, such as chromosomal DNA, the resulting Χ2 statistic for lower-order 

Markov models is almost guaranteed to be significant (p-value near zero).  However, what can be 

assessed is the change in value of the statistic as the order and degrees of freedom increases. In 

other words, for increasing order k, we can observe the change in uncertainty between k and k-1 order 

models in terms of the X2 statistic, and look for asymptotic behavior in its value. A constant X2 value 

becomes less significant as the degrees of freedom increase. When the statistic’s value is asymptotic 

in the presence of increasing degrees of freedom, the static value will inevitably become insignificant. 

For these data in this paper, the value of the X2 statistic is significant for all sequences with k≤3 (see 

S4 for a table of the statistics for each chromosome considered in this work) and nearly asymptotic at 

k=3 for the majority. Any violations to the second observation are because of sequences with relatively 

short lengths, high G+C bias, or some combination of the two.

Results and Discussion

The goal of this work is not to devise a new or improved method of phylogenetic inference, or to imply 

that Markov models are superior to other methods. Rather, our goal is to address the following three 

questions 1) is there a universal Markov property present in whole bacterial DNA sequences; 2) to 

what  extent  (order)  does this  property hold  true;  and 3)  is  the existence of  the Markov property 

biologically relevant.

Using the complete nucleotide sequences of 906 bacteria, including its complement, and excluding 

plasmids and minor chromosomes (8) (see S1 for a complete list or organisms), we estimated the 0th - 

5th  order transition matrices, describing the respective order Markov chain model for each. The 5th 

order model intersects at least two codons and, given the length of bacterial genomes, it is still short 

enough to allow sufficient oligonucleotide frequencies to avoid sparse transition matrices. We then 

calculated the Euclidean distance between each pair of transition matrices for each order model (one 

distance matrix for each order Markov chain model for all chromosomes) and produced a cladogram 
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from the distances based on the Neighbor Joining method (55). We refer to this kind of tree as a 

“transition tree”.

Branching patterns of trees based on alignments of 16S ribosomal RNAs are an accepted method to 

represent phylogeny (23, 66). To see if this is also a characteristic of the transition tree, we performed 

a comparison between each transition tree and a 16S rRNA tree constructed in similar fashion (see 

Methods for a detailed description). Briefly, 16S rRNA sequences for each of 906 bacteria were 

collected from GenBank and aligned against one another using MUSCLE (18). Alignments were 

bootstrapped with replacement (20), transformed into a distance matrix, clustered using the Neighbor 

Joining method, and a cladogram was produced for visual comparison. 

Comparisons between the 16S rRNA and transition tree topologies

Using the symmetric difference method (53) of comparing tree topologies, we calculated the percent 

symmetric difference of each transition tree (1st - 5th order) relative to the16S rRNA tree (fig 1, right) 

and to the 0th order transition tree (fig 1, left). Previous research on the distribution of Ds from 

simulation data has shown it to be asymptotic in nature, with convergence dependent on the number 

of taxa. These findings are summarized in Steel and Penny (61), and suggests that for trees with more 

than a moderate number of taxa, any Ds < Dmax is significant, (e.g., for n = 30, any similarity of more 

than a few partitions is very unlikely). Therefore, no similarity in topology is predicted between 

randomly placed nodes in trees with a large number of taxa. As shown in figure 1 (left panel), the 

congruence, (1- (Ds/Dmax))x100, between the 0th order tree, which is a function of G+C content alone, 

and the 16S rRNA tree is low (Ds/Dmaxx100=96.7%). However, as summarized by Steel and Penny, 

even this small difference from Dmax is significant, and this suggests that there is some influence of 

G+C content reflected in the 16S rRNA tree. A similar conclusion can be reached by examining figure 

1 (right panel). The percent symmetric difference between the 0th order transition tree and the 

higher-order transition trees is large (90.7% - 93.5%), but even this small degree of congruence is 

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

PeerJ reviewing PDF | (v2013:04:431:1:1:NEW 22 Jun 2013) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



considered significant, and it reflects the influence of the 0th order model on the higher-order models. 

Interestingly, the effects of G+C content are rather stable beyond the 2nd order model, in that the 

percent symmetric difference between the 0th order model and higher order models (beyond 2nd order) 

does not change by a large amount (93.0% - 93.5%). These observations lead us to conclude that 

G+C content bias has a real but relatively small influence on both the 16S rRNA tree and the transition 

tree. 

The symmetric difference between the 16S rRNA tree and each of the transition trees decreases most 

between the 0th and 3rd orders (96.7% - 75.5%), with little additional decrease between the 3rd and 5th 

order (75.2% - 74.8%). These data lead us to conclude the following: 1) the 3rd order transition tree 

shares ~25% similarity to the 16S rRNA tree; 2) this congruence is greater than for trees based on 

lower-order models; 3) this congruence is similar to trees based on higher-order models. These 

conclusions are further supported by data presented in figure 2. We calculated the percent symmetric 

difference between subsequent orders of transition trees and observed that from 3rd until 5th order, 

each order transition tree shares approximately 65% of its partitions with its previous and subsequent 

order trees. This leads us to conclude that large decreases in symmetric difference between 

subsequent orders of transition trees stop after the 3rd order. Of course, if we continued to increase the 

order of the Markov models indefinitely, the subsequent tree topologies produced by k-1 and k order 

models would eventually converge. This is due to the increasingly sparse transition matrices. For a 

given sequence, the transition matrix would approach the null set, with only two elements populated 

(that corresponding to (1…n-1) and to (2…n) for a sequence of length n) with a frequency count of 

1.The resulting distance matrix, based on the sparse transition matrices, will reach steady-state.  For 

any particular sequence, the complexity of the model necessary to achieve this convergence depends 

on many factors, including sequence length and G+C content bias. Convergence is inevitable, 

however, because it is inherent in the model. In other words, in the most extreme case, we can always 

find a model of order equal to the sequence length -1.
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Data bias

Bias must be considered because it exists in the collection of sequenced bacteria. Some Genera (e.g. 

Escherichia, Streptococcus, and Bacillus) are overrepresented, while others are underrepresented. 

We must therefore consider the possibility that the 16S rRNA tree and the transition tree show a 

greater degree of congruence in more closely related species, so that the overrepresented genera 

would inflate the overall congruence in topology between the transition trees and the 16SrRNA tree. To 

determine if this effect exists, four overrepresented genera, Escherichia (29 species), Streptococcus 

(43 species), Bacillus (24 species) and Burkholderia (23 species), totaling 119 species (~13% of the 

data collection) were chosen, and 16S rRNA and 3rd order transition trees were constructed. This 

subset of species was selected to represent an exaggerated sequencing bias so that, if the observed 

congruence between 16S rRNA trees and transition trees is partly due to this bias, it should be 

amplified in this subset. Instead, the symmetric difference between these trees was calculated as 

76.7%, which very close to the 75.5% measured using the entire 906 bacteria. We therefore conclude 

that sequence bias has no significant impact on these results.

Topology of 16S rRNA tree versus 3rd order transition tree

The symmetric difference between the 16S rRNA tree and the 3rd order transition tree is presented in 

figure 3 as the 16S rRNA tree, with branches in red representing disagreement between it and the 3rd 

order transition tree. The 16S rRNA tree and 3rd order transition tree from which figure 3 is derived are 

provided in supplementary materials (S2 and S3, respectively). In figures 4 – 6, the taxa of interest are 

shown in red, with the 16S rRNA tree on the left and the transition tree on the right. Comparisons are 

made relative to the transition tree, with all organisms of a particular genera of interest accounted for 

in both trees (as either a group member or outlier in the transition tree).

There is good agreement between the 16S rRNA tree and the 3rd order transition tree in several 

places; figure 4 presents a large collection of Enterobacteriaceae as an example. This grouping 

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

PeerJ reviewing PDF | (v2013:04:431:1:1:NEW 22 Jun 2013) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



includes Salmonella, Escherichia and Shigella, and the transition tree shows consistent grouping of 

each genus as compared to the 16S rRNA tree. The 16S rRNA sequences of Shigella and Escherichia 

are very homologous, and this results in some species from each genus being shuffled within the 16S 

rRNA tree as opposed to the transition tree, which is more sensitive to sequence bias. This shuffling is 

not observed in the transition tree. 

Figure 5 illustrates differences in how the genus Streptococcus clusters in the 16S rRNA tree versus 

the transition tree. In the 16S rRNA tree, all of the Streptococci form one cluster, whereas in the 

transition tree there are two separate clusters. The two clusters do not divide based on hemolytic 

properties, serogroup or habitat, however each group has a distinct G+C content (p<0.05 with 

Students t-test) with group one μ=40.43%, σ2=1.05%, n=21 and group two μ= 37.92%, σ2= 1.43%, 

n=22, where μ is the mean G+C content, σ2 is the variance about the mean, and n is the number of 

samples. There is a distinct difference in nucleic acid content between the two groups of Streptococci 

that does not appear to follow the typical physiological traits used to define these organisms. In this 

case, the transition tree is detecting clear molecular differences between otherwise similar organisms.

Figure 6 highlights a group of bacteria that cluster tightly in the transition tree (with outliers in boldface 

type), but are separated into distinct groups in the 16S rRNA tree. This group includes members of the 

Polynucleobacter, Psychrobacter, Marinomonas, Shewanella and Vibrio genera, with a G+C content 

range of approximately 40% - 49%. Most of these organisms are associated with a cold-water aquatic 

habitats. It is known that thermophiles exhibit preferences in the first codon for G+C, due to the higher 

melting temperatures (42, 63); the converse of this is a similarly reasonable explanation. 

Thermophobic bacteria may prefer A+T at the first codon due to lower separation energies required 

during replication.  Although members of Yersinia and six species of Lactobacillus may initially appear 

to contradict this observation, this may not be the case. Yersinia pseudotuberculosis is a soil- and 

waterborne human pathogen, and the closest known ancestor of Yersinia pestis (1), and many species 
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of Lactobacillus can be found in marine sediment. There is further evidence in support of our aquatic 

hypothesis within the other genera. Two species of Shewanella are located outside the cluster, S. 

amazonensis and S. loihica. Both of these organisms are psychrophobic, whereas the Shewanella 

species within the cluster grow well at low to moderate temperatures. Also, Vibrio is a genus of 

proteobacteria that are a common cause of food-borne illness resulting from infected seafood. V. 

fischeri, which is the only Vibrio outlier, is unique among Vibrio species because it is apathogenic and 

found predominantly in symbiosis with various marine animals. We hypothesize that these species 

represent outliers on the transition tree because they occupy different habitats from their 16S nearest 

neighbors.

Habitat has been shown to influence genomic composition (22). Perhaps the difference between the 

16S rRNA tree and 3rd order transition tree illustrated in Figure 4 is an example of that influence.
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Conclusions

These data and analyses lead us to the following three observations: 1) in nearly all bacterial 

chromosomes there is a significant long-range nucleotide correlation that extends beyond the 

2nd order;  2) similarity trees constructed on matrices derived from these correlations have a 

statistically significant overlap with 16S RNA trees and, when divergent, may reveal functional 

differences between species; 3) the apparent ubiquity of these correlations may place practical 

limitations on what will or will not evolve to become a bacterium. 

These observations cannot easily be explained by our understanding of biology. Overall G+C 

bias is a 0th order property, so that its influence is completely defined by the independent 

probabilities of each of the four nucleotides. A codon is three nucleotides long, so codon bias 

within open reading frames is a1st order (binucleotide) or 2nd order (trinucleotide) correlation. Any 

correlations that extend beyond 2nd order reflect a mechanism or mechanisms that drive the 

nucleic acid order beyond the length of a codon.

We have also shown that the transition matrices for a large number of chromosomes exhibit a 

phylogenetic correlation. From the matrices we can build transition trees that are statistically 

similar to 16S rRNA trees, and we propose that some of the differences between transition and 

16S trees may be due to influences from ecological niche and/or habitat. Proximity would 

present organisms that occupy similar habitats, such as cold water, with the opportunity to share 

genetic material that increases their likelihood for survival, such as anti-freeze genes (25). 

Although transfer of small bits of genetic material would not account for similarity of transition 

matrices between whole chromosomes of distantly related organisms, DNA sharing has been 

previously observed on a much larger scale. Specialized bacteria that occupy the same habitat 

or ecological niche also may experience convergent evolution (5, 64). Horizontal gene transfer 

(HGT) is known to play a major role in how bacteria acquire new genetic material. It seems 
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logical that organisms within the same habitat might acquire similar genomic characteristics via 

HGT. 

The Markov property we have described appears to be ubiquitous. We were able to identify the 

property in all of the 906 chromosomes we studied, and it has been estimated that there are 

~108 bacterial species on the Earth (15, 58). Using the statistical “rule of three”, we can be 95% 

confident that the rate of this phenomenon is no less frequent than 301 in 302 bacterial 

chromosomes. We therefore conclude that the majority of all of the bacterial species will have 

this Markov property in their chromosomes, and this likely represents a statistical heuristic that 

limits the sequence space of probable bacterial chromosomes.

What, if any effect this conclusion has on our ability to select the probable from the much larger 

number of possible bacterial chromosomes is impossible to quantify, but we may be able to 

illustrate some of its impact and provide context through example. If any one of the set of 

possible bacterial chromosomes can be represented as a random closed circle of nucleotides, 

and if we assume one biology-based heuristic –that it can be any integral length between the 

smallest (0.15Mb) and the longest (15Mb) sequenced chromosome, then there are 

( ) ≈−= −

=
∑ 144

3

4
4 αβ

β

αn

n

109,000,000 possible bacterial chromosomes (α=0.15M and β=15M) each 

with an equal probability of occurrence. If we now consider that most bacterial chromosomes 

have a compositional bias (e.g. G+C content ), some of the possible combinations become 

more or less probable. If we then consider higher-order compositional biases, say an A/T 

fractional bias in addition to a G+C content bias, then we can be even more specific about 

probable and improbable chromosomes. 

With the existence of a high-order Markov process, the number of variables (states) increases 

exponentially with each increase in model order. This allows a more precise determination of the 
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probability of a particular sequence (i.e. greater resolution of transition probabilities), and 

thereby the identification of more sequences that are unlikely to be bacterial chromosomes. Let 

K
LX define a sequence of K letters over an alphabet of L characters, then the probability of 

sequence 
K
LX is:

)|()(
1

∏
=

−− ===
K

j

Lj
L

Lj
Ljj

K
L xXxXPxP

, where Xj represents the nucleotide at position j with xj as 

its realization. For a DNA sequence (and assuming a 3rd-order Markov Model), L=K=4. In the 

trivial case, where each character (nucleotide) is equally likely to occur, it can be easily shown 

that )( K
LxP =

KL

1

and the expected frequency 
KK

K
L L

N

L

KN
xf ≈−−= 1

)(
for K << N. For any 

sequence that is the result of a 3rd-order Markov process and modeled as such, we get LK = 44 

times more states than with a 0-order model. In other words, we get 256 times greater 

resolution of transition probabilities than if we just consider limitations of G+C bias and 

chromosome length.

We know that many of the biological constraints placed on an organism limit the number of 

possible combinations that can result in a viable genomic sequence, but these constraints seem 

difficult to quantify. Now that we have a significant sample size of sequenced bacterial 

chromosomes, we can identify some of the constraints through statistical methods, and perhaps 

also uncover new biological phenomena.
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Figure 1

Percent symmetric difference of each order transition tree relative to the16S rRNA tree (left) and 

the zero-order transition tree (right).

The greatest change in symmetric difference between the 16S rRNA tree and that based on transition 

matrices occurs between 0th order and 3rd order, with only a very small change thereafter. Similarly, 

the greatest the symmetric difference between the 0th order transition tree and higher-order trees 

becomes relatively asymptotic after the 3rd order.
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Figure 2

Percent symmetric difference between subsequent orders of transition trees.

T he symmetric difference between the subsequent order transition trees becomes relatively asymptotic 

after the 3rd | 4th order.
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Figure 3

The symmetric difference between the 16S rRNA tree and the third-order transition tree.

Branches marked in red represent disagreement in topology between the trees.
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Figure 4

A collection of Enterobacteriaceae consisting of Salmonella, Escherichia and Shigella as 

example of taxa which cluster similarly in the 16SrRNA and third-order transition trees.

The genus of interest appear in red in the radial cladogram. A list of the organisms is given, with 

species that are not included in the transition tree, but are included in the 16S rRNA tree in boldface 

type. A.macleodii__Deep_ecotype, H.baltica_ATCC_49814, I.loihiensis_L2TR, 

K.koreensis_DSM_16069, L.acidophilus_NCFM, L.brevis_ATCC_367, L.casei_ATCC_334, 

L.delbrueckii_bulgaricus, L.delbrueckii_bulgaricus_ATCC_BAA-365, L.fermentum_IFO_3956, 

L.gasseri_ATCC_33323, L.helveticus_DPC_4571, L.johnsonii_FI9785, L.johnsonii_NCC_533, 

L.plantarum, L.plantarum_JDM1, L.reuteri_DSM_20016, L.reuteri_F275_Kitasato, 

L.rhamnosus_GG, L.rhamnosus_Lc_705, L.sakei_23K, L.salivarius_UCC118, 

Marinomonas_MWYL1, M._mobilis_JLW8, P.profundum_SS9, 

P.necessarius_asymbioticus_QLW_P1DMWA_1, P.necessarius_STIR1, P.atlantica_T6c, 

P.haloplanktis_TAC125, P.arcticum_273-4, P.cryohalolentis_K5, Psychrobacter_PRwf-1, 

S.degradans_2-40, S.amazonensis_SB2B, Shewanella_ANA-3, S.baltica_OS155, S.baltica_OS185, 

S.baltica_OS195, S.baltica_OS223, S.denitrificans_OS217, S.frigidimarina_NCIMB_400, 

S.halifaxensis_HAW_EB4, S.loihica_PV-4, Shewanella_MR-4, Shewanella_MR-7, S.oneidensis, 

S.pealeana_ATCC_700345, S.piezotolerans_WP3, S.putrefaciens_CN-32, S.sediminis_HAW-EB3, 

Shewanella_W3-18-1, S.woodyi_ATCC_51908, T.crunogena_XCL-2, T.denitrificans_ATCC_33889, 

V.cholerae, V.cholerae_M66_2, V.cholerae_MJ_1236, V.cholerae_O395, Vibrio_Ex25, 

V.fischeri_ES114, V.harveyi_ATCC_BAA-1116, V.parahaemolyticus, V.splendidus_LGP32, 

V.vulnificus_CMCP6, V.vulnificus_YJ016, Y.enterocolitica_8081, Y.pestis_Angola, Y.pestis_Antiqua, 

Y.pestis_biovar_Microtus_91001, Y.pestis_CO92, Y.pestis_Nepal516, Y.pestis_Pestoides_F, 

Y.pseudotuberculosis_IP_31758, Y.pseudotuberculosis_IP32953, Y.pseudotuberculosis_PB1, 

Y.pseudotuberculosis_YPIII 
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Figure 5

Genus Streptococcus appear in two distinct clusters in the third-order transition tree, but are 

assigned one cluster in the 16SrRNA tree.

The genus of interest appears in red in the radial cladogram. A list of the organisms is given. Group 1 

: S.equi_4047, S.equi_zooepidemicus, S.equi_zooepidemicus_MGCS10565, 

S.gordonii_Challis_substr_CH1, S.sanguinis_SK36, S.pneumoniae_70585, S.pneumoniae_JJA, 

S.pneumoniae_D39, S.pneumoniae_R6, S.pneumoniae_P1031, S.pneumoniae_G54, 

S.pneumoniae_Taiwan19F_14, S.pneumoniae_ATCC_700669, S.pneumoniae_CGSP14, 

S.pneumoniae_Hungary19A_6, S.pneumoniae_TIGR4, S.suis_05ZYH33, S.suis_98HAH33, 

S.suis_SC84, S.suis_P1_7, S.suis_BM407 Group 2: S. agalactiae_2603, S.agalactiae_NEM316, 

S.agalactiae_A909, S.dysgalactiae_equisimilis_GGS_124, S.pyogenes_M1_GAS, 

S.pyogenes_MGAS9429, S.pyogenes_MGAS10270, S.pyogenes_NZ131, S.pyogenes_MGAS10750, 

S.pyogenes_MGAS10394, S.pyogenes_MGAS8232, S.pyogenes_MGAS315, S.pyogenes_MGAS5005, 

S.pyogenes_MGAS6180, S.pyogenes_MGAS2096, S.pyogenes_Manfredo, S.pyogenes_SSI-1, 

S.thermophilus_CNRZ1066, S.thermophilus_LMG_18311, S.thermophilus_LMD-9, S.uberis_0140J, 

S.mutans
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Figure 6

A group of mostly Aquatic Bacteria that cluster together in the third-order transition tree, but are 

dispersed in the 16S rRNA tree.

The genus of interest appear in red in the radial cladogram. A list of the organisms is given with those 

that appear outside the cluster in the transition tree in boldface type. 

Shewanella_sediminis_HAW-EB3, Shewanella_woodyi_ATCC_51908, 

Alteromonas_macleodii__Deep_ecotype_, Saccharophagus_degradans_2-40, 

Pseudoalteromonas_haloplanktis_TAC125, Methylotenera_mobilis_JLW8, 

Psychrobacter_arcticum_273-4, Psychrobacter_cryohalolentis_K5, Psychrobacter_PRwf-1, 

Pseudoalteromonas_atlantica_T6c, Shewanella_ANA-3, Shewanella_MR-4, Shewanella_MR-7, 

Shewanella_baltica_OS155, Shewanella_baltica_OS185, Shewanella_baltica_OS195, 

Shewanella_baltica_OS223, Shewanella_oneidensis, Shewanella_putrefaciens_CN-32, 

Shewanella_W3-18-1, Shewanella_denitrificans_OS217, Shewanella_halifaxensis_HAW_EB4, 

Shewanella_pealeana_ATCC_700345, Shewanella_piezotolerans_WP3, 

Shewanella_frigidimarina_NCIMB_400, Photobacterium_profundum_SS9, Vibrio_cholerae, 

Vibrio_cholerae_M66_2, Vibrio_cholerae_O395, Vibrio_cholerae_MJ_1236, 

Vibrio_vulnificus_CMCP6, Vibrio_vulnificus_YJ016, Vibrio_Ex25, 

Vibrio_harveyi_ATCC_BAA-1116, Vibrio_parahaemolyticus, Vibrio_splendidus_LGP32, 

Marinomonas_MWYL1, Hirschia_baltica_ATCC_49814, 

Polynucleobacter_necessarius_asymbioticus_QLW_P1DMWA_1, 

Polynucleobacter_necessarius_STIR1, Idiomarina_loihiensis_L2TR, Yersinia_enterocolitica_8081, 

Yersinia_pestis_Angola, Yersinia_pestis_Nepal516, Yersinia_pestis_Antiqua, 

Yersinia_pestis_biovar_Microtus_91001, Yersinia_pestis_CO92, 

Yersinia_pseudotuberculosis_IP32953, Yersinia_pseudotuberculosis_PB1_, 

Yersinia_pseudotuberculosis_IP_31758, Yersinia_pseudotuberculosis_YPIII, 

Yersinia_pestis_Pestoides_F, Lactobacillus_brevis_ATCC_367, Lactobacillus_plantarum, 

Lactobacillus_plantarum_JDM1, Lactobacillus_casei_ATCC_334, Lactobacillus_rhamnosus_GG, 
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Lactobacillus_rhamnosus_Lc_705, Kangiella_koreensis_DSM_16069, 

Thiomicrospira_crunogena_XCL-2 Vibrio_fischeri_ES114, Lactobacillus_sakei_23K, 

Lactobacillus_reuteri_DSM_20016, Shewanella_amazonensis_SB2B, Shewanella_loihica_PV-4, 

Lactobacillus_delbrueckii_bulgaricus, Thiomicrospira_denitrificans_ATCC_33889, 

Lactobacillus_acidophilus_NCFM

PeerJ reviewing PDF | (v2013:04:431:1:1:NEW 22 Jun 2013) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t


