
A Markovian Analysis of Bacterial Genome Sequence Constraints

The arrangement of nucleotides within a bacterial chromosome is influenced by numerous factors. The 

degeneracy of the third codon within each reading frame allows some flexibility of nucleotide 

selection; however, the third nucleotide in the triplet of each codon is at least partly determined by the 

preceding two. This is most evident in organisms with a strong G+C bias, as the degenerate codon 

must contribute disproportionately to maintaining that bias. Therefore, a correlation exists between the 

first two nucleotides and the third in all open reading frames. If the arrangement of nucleotides in a 

bacterial chromosome is represented as a Markov process, we would expect that the correlation would 

be completely captured by a second-order Markov model and an increase in the order of the model 

(e.g. third-, fourth-…order) would not capture a significant additional uncertainty in the process. In 

this manuscript, we present the results of a comprehensive study of the Markov property that exists in 

the DNA sequences of 906 bacterial chromosomes. All of the 906 bacterial chromosomes studied 

exhibit a statistically significant Markov property that extends beyond second-order, and therefore 

cannot be fully explained by codon usage. An unrooted tree containing all 906 bacterial chromosomes 

based on their transition probability matrices of third-order shares ~25% similarity to a tree based on 

sequence homologies of 16S rRNA sequences. This congruence to the 16S rRNA tree is greater than 

for trees based on lower-order models (e.g. second-order), and higher-order models result in 

diminishing improvements in congruence. A nucleotide correlation most likely exists within every 

bacterial chromosome that extends past three nucleotides. This correlation places significant limits on 

the number of nucleotide sequences that can represent probable bacterial chromosomes. Transition 

matrix usage is largely conserved by taxa, indicating that this property is likely inherited, however 

some important exceptions exist that may indicate the convergent evolution of some bacteria.
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Introduction 9 

For more than twenty years, the nucleotide composition of bacterial genomes has been the focus of many 10 

studies attempting to identify patterns in nucleic acid sequences. One of the first analyses of nucleotide 11 

sequences by Muto and Osawa noted that nucleotide biases exist and are likely influenced by selection 12 

(35). Later work By Karlin and Burge  proposed that a bacterial signature could be defined by certain 13 

statistical properties of complete sequences (27). They discovered that correlations exist between 14 

neighboring nucleotides (dinucleotides) in bacteria, and that dinucleotide frequencies can be used as a 15 

genomic signature which may result from: 1) the chemistry of dinucleotide stacking; 2) DNA 16 

conformational tendencies; 3) species-specific properties of DNA replication and repair mechanisms; 4) 17 

the selection of restriction endonucleases (28); and 5) codon usage, as it affects translational efficiency 18 

(23, 24, 46). These and other pioneering studies were narrow in scope because, at that time, available 19 

data was limited to single gene sequences, partial chromosomes, and the complete genomes of a small 20 

number of model organisms, such as Escherichia coli K-12 (8), Haemophilus influenzae (17) and Bacillus 21 

subtilis (32). Nevertheless, these analyses were instrumental in laying the foundation for statistical 22 

genomics. In this early period, researchers were forced to focus on very specific phenomena or draw 23 

broad conclusions from data sets that were insignificant when compared to the size of the global 24 

metagenome. The situation is beginning to change. Genome sequences are now available for more than 25 

2000 bacterial species, which may represent as much as ~0.002% of all bacteria (13, 44). With this 26 

expanded data set we can begin to address new types of questions. For example, we can begin to 27 

identify sequence features that may constrain nearly all bacterial genomes, and thereby describe a set of 28 

heuristics that may eventually help define the statistical boundaries of what constitutes a bacterium. 29 

One established method used to model genome sequences is the finite state Markov chain model (see 30 

Methods) (3, 5, 7, 10, 20). Applying this type of analysis to a complete genome sequence provides 31 

information about dynamic and stationary statistics that cannot be captured from a single gene or set of 32 

genes. For example, a lateral gene transfer event produces a localized nucleotide bias that can be 33 

detected with variations of this method, although it must be a recent event, as the bias tends to disappear 34 

in a short period of evolutionary time (33, 39). Many studies have examined this phenomenon and have 35 

concluded that the lateral transfer of genetic material is a very important factor in bacterial evolution (11, 36 
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14, 26, 31, 50). This conclusion may seem obvious now but, at the time, it challenged many assumptions 37 

about vertical descent, the meaning of phylogenetics, and how phylogenies are constructed (34). This 38 

method has also revealed niche and habitat influences in the genomic composition of bacteria at the G+C 39 

content level (18), the amino-acid level (48) and the whole genome level (37). One of the earliest gene 40 

prediction methods (9) uses non-homogenous Markov models to estimate the probability that a particular 41 

location along the genome of an organism contains genetic information. The application of finite state 42 

Markov chain models to identify patterns that exist in bacterial genomes can help in understanding 43 

molecular change, in developing molecular criteria for classification, and in exploring the boundaries of 44 

what may (or may not) constitute a viable genome sequence. 45 

Sequenced bacterial genomes span a size range of approximately two orders of magnitude, from 46 

Carsonella ruddii (~0.15MB) (36) to Sorangium cellulosum (~13MB) (45), and a range of %G+C content 47 

from a low of ~17% in Carsonella ruddii  to ~75% in Anaeromyxobacter dehalogenans (42). If we consider 48 

the set of all possible bacterial chromosomes to include every closed circular DNA sequence that fits 49 

within these ranges, the number of distinct chromosomal sequences would be overwhelming. 50 

Determining the subset of probable bacterial chromosomes from the set of possible bacterial 51 

chromosomes is a problem analogous to protein structure prediction. To begin addressing this problem, 52 

we can apply heuristics based on biological phenomena considered to be ubiquitous. For example, we 53 

might propose that a sequence must contain codons, open reading frames, regulatory sequences, and a 54 

certain set of “essential” genes in order for it to be included in the probable subset. Applying these kinds 55 

of heuristics renders the subset of probable chromosomes much smaller that the set of possible 56 

chromosomes, but it would still be an overwhelmingly large number. Also, the boundaries of the subset 57 

would not be hard, since consensus on parameters such as the number of open reading frames and the 58 

list of essential genes would be impossible. 59 

An independent and complementary approach to developing heuristics to limit the subset of probable 60 

bacterial chromosomes would be to base them on sequence patterns identified either as ubiquitous or 61 

extremely rare. This type of heuristic would not rely on a biological interpretation of sequence data, but 62 

rather on definable sequence patterns that are highly likely or unlikely to occur in the population based on 63 
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their appearance within a representative sub-population. A few have already been proposed. For 64 

example, Lawrence and Ochman summarized four salient features of prokaryotic genomes (33): base 65 

composition varies widely among bacterial species; base composition is related to phylogeny; base 66 

composition is relatively homogeneous over the entire bacterial chromosome; within each species, the 67 

first, second, and third positions of codons, as well as the genes for structural RNAs, have characteristic 68 

base compositions. Once defined, these features can be explored and parameterized into models 69 

capturing certain properties of bacterial chromosomes.  70 

The study of sequence biases in bacteria is not new. Despite limited available data, early studies made 71 

some very important observations. Karlin et al. identified correlations between neighboring nucleotides 72 

(27) (i.e., the probability of appearance of the nth nucleotide depends on the (n-1)th nucleotide), and 73 

concluded that dinucleotide frequencies carry a phylogenic signal. Goldman and others discovered that 74 

tri- and tetranucleotide correlations exist in bacterial sequences (22, 29) and for a review (28). 75 

Tetranucleotide frequencies have also been found to carry a phylogenetic signal, and to reflect high-order 76 

information beyond third codon biases that are not present in the analysis of single genes biases (38). 77 

The study by Pride et.al (38) looked at tetranucleotide usage conservation in 27 microbial genomes and 78 

compared a tree based on tetranucleotide usage departures to that of 16S rRNA trees. They concluded 79 

that tetrenucleotide usage patterns are conserved by taxa, and that usage departure is a measure of how 80 

far tetranucleodide frequencies diverge from the expectations under a null-model, which in their case was 81 

designed to remove any sequence bias. This approach has been useful in identifying under- or over-82 

represented olglionucleotides (3, 29, 43). Some of the conclusions in this manuscript provide compelling 83 

confirmation of previously stated hypotheses, and the authors are not aware of another study that covers 84 

both the breadth and depth of bacteria that are covered in this study. We are able to conclude that 1) The 85 

existence of a third-order Markov process in bacterial chromosomes in most likely universal and 2) 86 

transition matrix usage is conserved by taxa. 87 

Materials and Methods 88 

The complete DNA sequences and 16S ribosomal DNA sequences were collected for 906 closed bacteria 89 

from GenBank (6) (for a complete list see S1). For organisms having multiple chromosomes, the major 90 

PeerJ reviewing PDF | (v2013:04:431:0:0:CHECK 26 Apr 2013) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



 

5 
 

chromosome was selected as representative of the genomic sequences of the respective organism. Our 91 

analysis indicates that the DNA sequence of the major chromosome in bacteria has similar statistical 92 

properties in regards to nucleotide probabilities as a sequence constructed by appending all the 93 

chromosomes for that organism, excluding plasmids (data not shown). All software developed for this 94 

work was written in C++, except where otherwise noted. 95 

Constructing the 16S rRNA tree  96 

The Ribosomal DNA sequences for each of the 906 bacteria were obtained from GenBank, and the DNA 97 

sequence corresponding to the 16S Ribosome was written to a single file in FASTA format. In organisms 98 

having multiple copies of 16S rRNA, the first copy relative to the 5' direction was chosen as 99 

representative of the organism (2). The 16S rRNA sequences were aligned using Muscle (15). Aligned 100 

16S rRNA sequences were bootstrapped with 100 replicates and transformed into distances using the 101 

F84 (30) model available in the Phylip package (Felsenstein, J. 1993). Each replicated distance matrix 102 

was clustered using the Neighbor-joining method (41) and a majority-rule consensus tree calculated using 103 

Phylip (Phylip formatted tree available as S2). Tree visualizations shown in this paper were produced 104 

using Dendroscope (25) and ladderized right. 105 

Constructing the transition tree 106 

The frequency of each genomic subsequence and its reverse complement (3'  5'), of length n 107 

appearing in each bacterial genome was explicitly counted. The transition probabilities were estimated for 108 

the kth-order transition matrix (k = n-1), for 0 ≤ k ≤ 5, from the subsequence frequencies. The Euclidean 109 

distance was computed between each transition matrix describing each of the 906 bacterial sequences 110 

for a given order of Markov chain model. The Euclidean distances were clustered using the Neighbor-111 

joining method available in the Phylip package (Phylip formatted tree available as S3). Tree visualizations 112 

were produced using Dendroscope (25) and ladderized right. 113 

Determination of tree similarity 114 

A direct method of assessing tree similarity comes from set theory and is referred to as the symmetric 115 

difference (40). The symmetric difference of a tree structure is the total number of partitions that differ 116 
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between the two trees.  We used the percent symmetric difference, which is the symmetric difference (Ds) 117 

divided by the maximum symmetric difference (Dmax), with Dmax ≈ 2n-6 for n-number of taxa. The 118 

significance of Ds for a given number of taxa can be estimated empirically, and is shown to be asymptotic, 119 

with a convergence rate dependent on n (47).  For n = 30, any Ds < (Dmax - 2) is significant, with p < 0.01. 120 

The symmetric difference method as implemented in the Phylip package was used for the data presented 121 

in figures 1 and 2. 122 

Markov models of bacterial chromosomes  123 

A chromosome sequence can be modeled as a finite state space Markov chain, with each of the four 124 

nucleotides (A,T,G,C) represented by a single state with transition probabilities PA, PT, PG and PC 125 

respectively. This representation is memoryless, in that the appearance of any nucleotide at any position 126 

is completely independent of any other. This is also referred to as a 0th order Markov model, and in this 127 

context can only capture biases in the relative frequency of appearance of the nucleotides (e.g., G+C bias 128 

and A/T fraction bias). The transition matrix, θ, for the 0th order Markov model describing the finite state 129 

space Markov chain is: 130 

      .,,, CGTA PPPP  131 

In higher-order Markov models, transition probabilities are conditional on the previous k bases (for k>0). 132 

For example, we can consider a 1st order Markov model with transition probabilities PA|A, PT|A, PG|A, PC|A ... 133 

PG|C, PC|C, where Pi|j is the probability of the ith nucleotide following the jth. We can easily generalize this to 134 

describe the transition matrix for a k-order Markov model representing a genomic sequence, with 135 

  .44, 1 kji  136 

Results and Discussion 137 

Using the complete nucleotide sequences of 906 bacteria, including its complement, excluding plasmids 138 

and minor chromosomes (6) (see S1 for a complete list or organisms), we estimated the 0th - 5th order 139 

transition matrices, describing the respective order Markov chain model for each. The 5th order model 140 

intersects at least two codons and, given the length of bacterial genomes, it is still short enough to allow 141 
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sufficient oligonucleotide frequencies to avoid sparse transition matrices (except in those cases of 142 

extreme sequence bias or unusually short sequence length). We then calculated the Euclidean distance 143 

between each pair of transition matrices for each order model (one distance matrix for each order Markov 144 

chain model for all chromosomes) and produced a cladogram from the distances based on the Neighbor 145 

Joining method (41). We refer to this kind of tree as a “transition tree”. 146 

Branching patterns based on alignments of 16S ribosomal RNAs are an accepted trace of phylogeny (19, 147 

51). To see if this is also a characteristic of the transition tree, we performed a comparison between each 148 

of the transition trees and a 16S rRNA tree constructed in similar fashion (see Methods for a detailed 149 

description). Briefly, 16S rRNA sequences for each of 906 bacteria were collected from GenBank and 150 

aligned against one another using MUSCLE (15). Alignments were bootstrapped with replacement (16), 151 

transformed into a distance matrix, clustered using the Neighbor Joining method, and a cladogram was 152 

produced for visual comparison.  153 

Comparisons between the 16S rRNA and transition tree topologies 154 

Using the symmetric difference method (40) of comparing tree topologies, we calculated the percent 155 

symmetric difference of each transition tree (1st - 5th order) relative to the16S rRNA tree (fig 1, right) and 156 

to the 0th order transition tree (fig 1, left). Previous research on the distribution of Ds from simulation data 157 

has shown it to be asymptotic in nature, with convergence dependent on the number of taxa. These 158 

findings are summarized in Steel and Penny (47), and suggests that for trees with more than a moderate 159 

number of taxa, any Ds < Dmax is significant, (e.g., for n = 30, any similarity of more than a few partitions is 160 

very unlikely). Therefore, no similarity in topology is predicted between randomly placed nodes in trees 161 

with a large number of taxa. As shown in figure 1 (left panel), the congruence, (1- (Ds/Dmax))x100, 162 

between the 0th order tree, which is a function of G+C content alone, and the 16S rRNA tree is low 163 

(Ds/Dmaxx100=96.7%). However, as summarized by Steel and Penny, even this small difference from Dmax 164 

is significant, and this suggests that there is some influence of G+C content reflected in the 16S rRNA 165 

tree. A similar conclusion can be reached by examining figure 1 (right panel). The percent symmetric 166 

difference between the 0th order transition tree and the higher-order transition trees is large (90.7% - 167 

93.5%), but even this small degree of congruence is considered significant, and it reflects the influence of 168 
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the 0th order model on the higher-order models. Interestingly, the effects of G+C content are rather stable 169 

beyond the 2nd order model, in that the percent symmetric difference between the 0th order model and 170 

higher order models (beyond 2nd order) does not change by a large amount (93.0 - 93.5%). These 171 

observations lead us to conclude that G+C content bias has a real but relatively small influence on both 172 

the 16S rRNA tree and the transition tree.  173 

The symmetric difference between the 16S rRNA tree and each of the transition trees decreases most 174 

between the 0th and 3rd orders (96.7% - 75.5%), with little additional decrease between the 3rd and 5th 175 

order (75.2 - 74.8%). These data lead us to conclude the following: the 3rd order transition tree shares 176 

~25% similarity to the 16S rRNA tree, this congruence is greater than for trees based on lower-order 177 

models, and it is similar to trees based on higher-order models. This result is further verified by the data 178 

presented in figure 2. We calculated the percent symmetric difference between subsequent orders of 179 

transition trees and observed that from 3rd until 5th order, each order transition tree shares approximately 180 

65% of its partitions with its previous and subsequent order trees. This leads us to conclude that large 181 

decreases in symmetric difference between subsequent orders of transition trees stop after the 3rd order. 182 

Of course, if we continued to increase the order of the Markov models indefinitely, the subsequent tree 183 

topologies produced would eventually converge. For any particular sequence, the complexity of the model 184 

necessary to achieve convergence depends on many factors, including sequence length and G+C 185 

content bias. Convergence is inevitable, however, because it is inherent in the model. 186 

Data bias 187 

Bias must be considered because it exists in the collection of sequenced bacteria. Some Genera (e.g. 188 

Escherichia, Streptococcus, and Bacillus) are overrepresented, while others are underrepresented. We 189 

must therefore consider the possibility that the 16S rRNA tree and the transition tree show a greater 190 

degree of congruence in more closely related species, so that the overrepresented genera would inflate 191 

the overall congruence in topology between the transition trees and the 16SrRNA tree. To determine if 192 

this effect exists, four overrepresented genera, Escherichia (29 species), Streptococcus (43 species), 193 

Bacillus (24 species) and Burkholderia (23 species), totaling 119 species (~13% of the data collection) 194 

were chosen, and 16S rRNA and 3rd order transition trees were constructed. This subset of species was 195 
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selected to represent an exaggerated sequencing bias so that, if the observed congruence between 16S 196 

rRNA trees and transition trees is partly due to this bias, it should be amplified in this subset. Instead, the 197 

symmetric difference between these trees was calculated as 76.7%, which very close to the 75.5% 198 

measured using the entire 906 bacteria. We therefore conclude that sequence bias has no significant 199 

impact on these results. 200 

Topology of 16S rRNA tree versus 3rd order transition tree 201 

The symmetric difference between the 16S rRNA tree and the 3rd order transition tree is presented in 202 

figure 3 as the 16S rRNA tree, with branches in red representing disagreement between it and the 3rd 203 

order transition tree. The 16S rRNA tree and 3rd order transition tree from which figure 3 is derived are 204 

provided in supplementary materials (S2 and S3, respectively). In figures 4 – 6, the taxa of interest are 205 

shown in red, with the 16S rRNA tree on the left and the transition tree on the right. Comparisons are 206 

made relative to the transition tree, with all organisms of a particular genera of interest accounted for in 207 

both trees (as either a group member or outlier in the transition tree). 208 

There is good agreement between the 16S rRNA tree and the 3rd order transition tree in several places; 209 

figure 4 presents a large collection of Enterobacteriaceae as an example. This grouping includes the 210 

genus of Salmonella, Escherichia and Shigella, and the transition tree shows consistent grouping of each 211 

genus as compared to the 16S rRNA tree. The 16S rRNA sequences of Shigella and Escherichia are very 212 

homologous, and this results in some species from each genera being shuffled within the tree 16S rRNA 213 

tree. This shuffling is not observed in the transition tree.  214 

Figure 5 illustrates the difference in how the genus Streptococcus clusters in the 16S rRNA tree and the 215 

transition tree. In the 16S rRNA tree, all of the Streptococci form one cluster, whereas in the transition 216 

tree there are two separate clusters. The two clusters do not divide based on hemolytic properties, 217 

serogroup or habitat, however each group has a distinct G+C content (p<0.05 with Students t-test) with 218 

group one μ=40.43%, σ2=1.05%, n=21 and group two μ= 37.92%, σ2= 1.43%, n=22, where μ is the mean 219 

G+C content and σ2 is the variance about the mean and n is the number of samples. There is a distinct 220 

difference in nucleic acid content between the two groups of Streptococci that does not appear to follow 221 
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the typical physiological traits used to define these organisms. In this case, the transition tree is detecting 222 

clear molecular differences between otherwise similar organisms. 223 

Figure 6 highlights a group of bacteria that cluster tightly in the transition tree (with outliers in boldface 224 

type), but are separated into distinct groups in the 16S rRNA tree. This group includes members of the 225 

Polynucleobacter, Psychrobacter, Marinomonas, Shewanella and Vibrio genera, with a G+C content 226 

range of approximately 40 - 49%. Most of these organisms are associated with a cold-water aquatic 227 

habitat. Although members of Yersinia and six species of Lactobacillus may initially appear to contradict 228 

this observation, this may not be the case. Yersinia pseudotuberculosis is a soil- and waterborne human 229 

pathogen and the closest known ancestor of Yersinia pestis (1), and many species of Lactobacillus can 230 

be found in marine sediment. There is further evidence in support of our aquatic hypothesis within the 231 

other genera. Two species of Shewanella are located outside the cluster, S. amazonensis and S. loihica. 232 

Both of these organisms are psychrophobic, whereas the Shewanella species within the cluster grow well 233 

at low to moderate temperatures. Also, Vibrio is a genus of proteobacteria that are a common cause of 234 

food-borne illness resulting from infected seafood. V. fischeri, which is the only Vibrio outlier, is unique 235 

among Vibrio species because it is apathogenic and found predominantly in symbiosis with various 236 

marine animals. 237 

As has been previously stated, habitat has been shown to influence genomic composition (18). Perhaps 238 

the difference between the 16S rRNA tree and 3rd order transition tree illustrated in Figure 4 is an 239 

example of that influence. 240 

Conclusions 

We have observed a significant long-range nucleotide correlation in all 906 sequenced bacterial 

chromosomes that extends beyond the 2nd order. These observations cannot easily be explained by our 

understanding biology. Overall G+C bias is a 0th order property, so that its influence is completely defined 

by the independent probabilities of each of the four nucleotides. A codon is three nucleotides long, so 

codon bias within open reading frames is a1st order (binucleotide) or 2nd order (trinucleotide) correlation. 

Any correlations that extend beyond 2nd order reflect a mechanism or mechanisms that drive the nucleic 

acid order beyond the length of a codon. 
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These data and analyses lead us to the following three conclusions: In nearly all bacterial chromosomes 

there is a significant long-range nucleotide correlation that extends beyond the 2nd order; similarity trees 

constructed on matrices derived from these correlations are in good agreement with 16S RNA trees and, 

when divergent, may reveal functional differences between species; the apparent ubiquity of these 

correlations may place practical limitations on what will or will not evolve to become a bacterium.  

It is very challenging to determine the statistical significance of Markovidity in large datasets. Existing 

methods based on the analysis of contingency tables (49) treat the statistic as a chi-square random 

variable. The disadvantage of such methods is that the shape of the chi-squared distribution is sensitive 

to sample size, and for large smaples significance is almost guaranteed. Other methods based on 

Shannon information theory (12) assess the change in uncertainty of the model as the complexity is 

increased. The authors carried out such an analysis on the data present in this manuscript (data not 

shown). For every chromosome, the decrease in uncertainty from a 2nd order to a 3rd order model was 

significant. However, a rigorous statistical analysis is again challenged by the length of the chromosomal 

sequences, which demand models of impractically high orders to discover the point of diminishing 

returns. 

We have also shown that the transition matrices for a large number of chromosomes exhibit a 

phylogenetic correlation, as they form transition trees that are [statistically] significantly similar to 16S 

rRNA trees. Some of the differences between the two trees may be due to influences from ecological 

niche and/or habitat. Proximity would present organisms that occupy similar habitats, such as cold water, 

with the opportunity to share genetic material that increases their likelihood for survival, such as anti-

freeze genes (21). Although transfer of small bits of genetic material would not account for similarity of 

transition matrices between distantly related organisms, gene sharing has been previously observed on a 

much larger scale. Specialized bacteria that occupy the same habitat or ecological niche may experience 

convergent evolution (4, 49). Horizontal gene transfer is known to play a major role in how bacteria 

acquire new genetic material, so it would seem logical that organisms within the same habitat might 

acquire similar genomic characteristics.  
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The Markov property described in this paper appears to be ubiquitous. We were able to identify the 

property in all of the 906 chromosomes we studied, and it has been estimated that there are ~108 

bacterial species on the Earth (13, 44). Using the statistical “rule of three”, we can be 95% confident that 

the rate of this phenomenon is no less frequent than 301 in 302 bacterial chromosomes. We therefore 

conclude that the majority of all of the bacterial species will have this Markov property in their 

chromosomes, and this likely represents a statistical heuristic that limits the sequence space of probable 

bacterial chromosomes. 

The reduction in the size of the bacterial sequence space is impossible to quantify, however we can 

examine some extreme examples to put it in context.  If a bacterial chromosome is a random collection of 

nucleotides, with the appearance of any nucleotide independent of the appearance of any other, and we 

assume a bacterial sequence can be any integral length between the smallest (0.15Mb) and the longest 

(15Mb), then there would be   



 144
3

4
4 



n

n
109,000,000 possible bacterial chromosomes 

(α=0.15M and β=15M) each equally likely to occur. If we now consider that most bacterial chromosomes 

have a compositional bias (e.g. G+C content ≠ 50%), some of the possible combinations become more or 

less probable. Keeping the assumption that the appearance of any nucleotide is independent of the 

appearance of any neighboring nucleotides, we can impose bias. Take the hypothetical case of a 5 Mbp 

long chromosome with a 65% G+C content bias. Nucleotides A and T appear with a mean probability of 

0.35 at any position along the sequence. The probability of the hypothetical sequence consisting if all of 

A’s and T’s is therefore 0.355,000,000  as opposed to 0.655,000,000 for G’s and C’s. Now if we allow for higher-

order compositional biases, say A/T fractional bias in addition to G+C content bias, as in a 0-order 

Markov Model, we can be more specific about which nucleotide combinations are more or less probable. 

Revisiting the previous example, let’s consider that G’s occur 15% more frequently than C’s. We can view 

this as a zero-oder transition matrix θ[A T G C] = [0.175 0.175 0.475 0.175]. The probability of the 

hypothetical chromosome consisting of all A’s and T’s is the same as before, but now we can also say 

that the probability of the chromosome consisting of all C’s is ≈ 0.1755,000,000. An example of this follows: 

Take the 12 bp long sequence, X=[AAGTCGTTACGC], with θ[A T G C] = [0.25 0.25 0.25 0.25]. It can be 

easily shown this particular sequence has a probability of P(X) = 0.2512 ≈ 5.96x10-8. Now let θ[A T G C] = 
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[0.175 0.175 0.475 0.175] and P(X)=(0.1758)*(0.4754) ≈ 4.48x10-8 , and the probabilities become more 

extreme for longer sequences. With the existence of a high-order Markov process, the number of 

variables (states) increases exponentially with each increase in model order. This allows to more 

precisely determine the probability of a particular sequence (i.e. greater resolution of transition 

probabilities), and thereby identifying more sequences as unlikely to be a bacterial chromosome. Let 

K

LX define a sequence of K letters over an alphabet of L characters, then the probability of sequence 

K

LX is: 

)|()(
1




 
K

j

Lj

L

Lj

Ljj

K

L xXxXPxP , where Xj represented the nucleotide at position j with xj as its 

realization. For a DNA sequence and assuming a 3rd-order Markov Model, L=K=4. In the trivial case, 

where each character (nucleotide) is equally likely to occur, it can be easily shown that )( K

LxP =
KL

1
and 

the expected frequency 
KK

K

L
L

N

L

KN
xf 




1
)( for K << N. For any sequence that is the result of a 

3rd-order Markov process and modeled as such, we get LK = 44 times more states than with a 0-order 

model. That is to say, we get 256 times greater resolution of transition probabilities than if we just 

consider limitations of G+C bias and chromosome length. 

We know that many of the biological constraints placed on an organism limit the number of possible 

combinations that can result in a viable genomic sequence, but these constraints seem difficult to 

quantify. Now that we have a significant sample size of sequenced bacterial chromosomes, we can 

identify some of these constraints through statistical methods, and perhaps uncover new biological 

phenomena. 
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Figure 1

Percent symmetric difference of each order transition tree relative to the16S rRNA tree (left) and 

the zero-order transition tree (right).

The greatest change in symmetric difference between the 16S rRNA tree and that based on transition 

matrices occurs between 0th order and 3rd order, with only a very small change thereafter. Similarly, 

the greatest the symmetric difference between the 0th order transition tree and higher-order trees 

becomes relatively asymptotic after the 3rd order.
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Figure 2

Percent symmetric difference between subsequent orders of transition trees.

T he symmetric difference between the subsequent order transition trees becomes relatively asymptotic 

after the 3rd | 4th order.
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Figure 3

The symmetric difference between the 16S rRNA tree and the third-order transition tree.

Branches marked in red represent disagreement in topology between the trees.
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Figure 4

A collection of Enterobacteriaceae consisting of Salmonella, Escherichia and Shigella as 

example of taxa which cluster similarly in the 16SrRNA and third-order transition trees.

The genus of interest appear in red in the radial cladogram. A list of the organisms is given, with 

species that are not included in the transition tree, but are included in the 16S rRNA tree in boldface 

type. A.macleodii__Deep_ecotype, H.baltica_ATCC_49814, I.loihiensis_L2TR, 

K.koreensis_DSM_16069, L.acidophilus_NCFM, L.brevis_ATCC_367, L.casei_ATCC_334, 

L.delbrueckii_bulgaricus, L.delbrueckii_bulgaricus_ATCC_BAA-365, L.fermentum_IFO_3956, 

L.gasseri_ATCC_33323, L.helveticus_DPC_4571, L.johnsonii_FI9785, L.johnsonii_NCC_533, 

L.plantarum, L.plantarum_JDM1, L.reuteri_DSM_20016, L.reuteri_F275_Kitasato, 

L.rhamnosus_GG, L.rhamnosus_Lc_705, L.sakei_23K, L.salivarius_UCC118, 

Marinomonas_MWYL1, M._mobilis_JLW8, P.profundum_SS9, 

P.necessarius_asymbioticus_QLW_P1DMWA_1, P.necessarius_STIR1, P.atlantica_T6c, 

P.haloplanktis_TAC125, P.arcticum_273-4, P.cryohalolentis_K5, Psychrobacter_PRwf-1, 

S.degradans_2-40, S.amazonensis_SB2B, Shewanella_ANA-3, S.baltica_OS155, S.baltica_OS185, 

S.baltica_OS195, S.baltica_OS223, S.denitrificans_OS217, S.frigidimarina_NCIMB_400, 

S.halifaxensis_HAW_EB4, S.loihica_PV-4, Shewanella_MR-4, Shewanella_MR-7, S.oneidensis, 

S.pealeana_ATCC_700345, S.piezotolerans_WP3, S.putrefaciens_CN-32, S.sediminis_HAW-EB3, 

Shewanella_W3-18-1, S.woodyi_ATCC_51908, T.crunogena_XCL-2, T.denitrificans_ATCC_33889, 

V.cholerae, V.cholerae_M66_2, V.cholerae_MJ_1236, V.cholerae_O395, Vibrio_Ex25, 

V.fischeri_ES114, V.harveyi_ATCC_BAA-1116, V.parahaemolyticus, V.splendidus_LGP32, 

V.vulnificus_CMCP6, V.vulnificus_YJ016, Y.enterocolitica_8081, Y.pestis_Angola, Y.pestis_Antiqua, 

Y.pestis_biovar_Microtus_91001, Y.pestis_CO92, Y.pestis_Nepal516, Y.pestis_Pestoides_F, 

Y.pseudotuberculosis_IP_31758, Y.pseudotuberculosis_IP32953, Y.pseudotuberculosis_PB1, 

Y.pseudotuberculosis_YPIII 

PeerJ reviewing PDF | (v2013:04:431:0:0:CHECK 26 Apr 2013) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



PeerJ reviewing PDF | (v2013:04:431:0:0:CHECK 26 Apr 2013) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



Figure 5

Genus Streptococcus appear in two distinct clusters in the third-order transition tree, but are 

assigned one cluster in the 16SrRNA tree.

The genus of interest appears in red in the radial cladogram. A list of the organisms is given. Group 1 

: S.equi_4047, S.equi_zooepidemicus, S.equi_zooepidemicus_MGCS10565, 

S.gordonii_Challis_substr_CH1, S.sanguinis_SK36, S.pneumoniae_70585, S.pneumoniae_JJA, 

S.pneumoniae_D39, S.pneumoniae_R6, S.pneumoniae_P1031, S.pneumoniae_G54, 

S.pneumoniae_Taiwan19F_14, S.pneumoniae_ATCC_700669, S.pneumoniae_CGSP14, 

S.pneumoniae_Hungary19A_6, S.pneumoniae_TIGR4, S.suis_05ZYH33, S.suis_98HAH33, 

S.suis_SC84, S.suis_P1_7, S.suis_BM407 Group 2: S. agalactiae_2603, S.agalactiae_NEM316, 

S.agalactiae_A909, S.dysgalactiae_equisimilis_GGS_124, S.pyogenes_M1_GAS, 

S.pyogenes_MGAS9429, S.pyogenes_MGAS10270, S.pyogenes_NZ131, S.pyogenes_MGAS10750, 

S.pyogenes_MGAS10394, S.pyogenes_MGAS8232, S.pyogenes_MGAS315, S.pyogenes_MGAS5005, 

S.pyogenes_MGAS6180, S.pyogenes_MGAS2096, S.pyogenes_Manfredo, S.pyogenes_SSI-1, 

S.thermophilus_CNRZ1066, S.thermophilus_LMG_18311, S.thermophilus_LMD-9, S.uberis_0140J, 

S.mutans
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Figure 6

A group of mostly Aquatic Bacteria that cluster together in the third-order transition tree, but are 

dispersed in the 16S rRNA tree.

The genus of interest appear in red in the radial cladogram. A list of the organisms is given with those 

that appear outside the cluster in the transition tree in boldface type. 

Shewanella_sediminis_HAW-EB3, Shewanella_woodyi_ATCC_51908, 

Alteromonas_macleodii__Deep_ecotype_, Saccharophagus_degradans_2-40, 

Pseudoalteromonas_haloplanktis_TAC125, Methylotenera_mobilis_JLW8, 

Psychrobacter_arcticum_273-4, Psychrobacter_cryohalolentis_K5, Psychrobacter_PRwf-1, 

Pseudoalteromonas_atlantica_T6c, Shewanella_ANA-3, Shewanella_MR-4, Shewanella_MR-7, 

Shewanella_baltica_OS155, Shewanella_baltica_OS185, Shewanella_baltica_OS195, 

Shewanella_baltica_OS223, Shewanella_oneidensis, Shewanella_putrefaciens_CN-32, 

Shewanella_W3-18-1, Shewanella_denitrificans_OS217, Shewanella_halifaxensis_HAW_EB4, 

Shewanella_pealeana_ATCC_700345, Shewanella_piezotolerans_WP3, 

Shewanella_frigidimarina_NCIMB_400, Photobacterium_profundum_SS9, Vibrio_cholerae, 

Vibrio_cholerae_M66_2, Vibrio_cholerae_O395, Vibrio_cholerae_MJ_1236, 

Vibrio_vulnificus_CMCP6, Vibrio_vulnificus_YJ016, Vibrio_Ex25, 

Vibrio_harveyi_ATCC_BAA-1116, Vibrio_parahaemolyticus, Vibrio_splendidus_LGP32, 

Marinomonas_MWYL1, Hirschia_baltica_ATCC_49814, 

Polynucleobacter_necessarius_asymbioticus_QLW_P1DMWA_1, 

Polynucleobacter_necessarius_STIR1, Idiomarina_loihiensis_L2TR, Yersinia_enterocolitica_8081, 

Yersinia_pestis_Angola, Yersinia_pestis_Nepal516, Yersinia_pestis_Antiqua, 

Yersinia_pestis_biovar_Microtus_91001, Yersinia_pestis_CO92, 

Yersinia_pseudotuberculosis_IP32953, Yersinia_pseudotuberculosis_PB1_, 

Yersinia_pseudotuberculosis_IP_31758, Yersinia_pseudotuberculosis_YPIII, 

Yersinia_pestis_Pestoides_F, Lactobacillus_brevis_ATCC_367, Lactobacillus_plantarum, 

Lactobacillus_plantarum_JDM1, Lactobacillus_casei_ATCC_334, Lactobacillus_rhamnosus_GG, 
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Lactobacillus_rhamnosus_Lc_705, Kangiella_koreensis_DSM_16069, 

Thiomicrospira_crunogena_XCL-2 Vibrio_fischeri_ES114, Lactobacillus_sakei_23K, 

Lactobacillus_reuteri_DSM_20016, Shewanella_amazonensis_SB2B, Shewanella_loihica_PV-4, 

Lactobacillus_delbrueckii_bulgaricus, Thiomicrospira_denitrificans_ATCC_33889, 

Lactobacillus_acidophilus_NCFM
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