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As generalized linear mixed-effects models (GLMMs) have become a widespread tool in
ecology, the need to guide the use of such tools is increasingly important. One common
guideline is that one needs at least five levels of a random effect. Having such few levels
makes the estimation of the variance of random effects terms (such as ecological sites,
individuals, or populations) difficult, but it need not muddy one's ability to estimate fixed
effects terms – which are often of primary interest in ecology. Here, I simulate ecological
datasets and fit simple models and show that having too few random effects terms does
not influence the parameter estimates or uncertainty around those estimates for fixed
effects terms. Thus, it should be acceptable to use fewer levels of random effects if one is
not interested in making inference about the random effects terms (i.e. they are
"nuisance" parameters used to group non-independent data). I also use simulations to
assess the potential for pseudoreplication in (generalized) linear models (LMs), when
random effects are explicitly ignored and find that LMs do not show increased type-I errors
compared to their mixed-effects model counterparts. Instead, LM uncertainty (and p
values) appears to be more conservative in an analysis with a real ecological dataset
presented here. These results challenge the view that it is never appropriate to model
random effects terms with fewer than five levels – specifically when inference is not being
made for the random effects, but suggest that in simple cases LMs might be robust to
ignored random effects terms. Given the widespread accessibility of GLMMs in ecology and
evolution, future simulation studies and further assessments of these statistical methods
are necessary to understand the consequences of both violating and blindly following
simple guidelines.
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11 Abstract

12 As generalized linear mixed-effects models (GLMMs) have become a widespread tool in 

13 ecology, the need to guide the use of such tools is increasingly important. One common 

14 guideline is that one needs at least five levels of a random effect. Having such few levels makes 

15 the estimation of the variance of random effects terms (such as ecological sites, individuals, or 

16 populations) difficult, but it need not muddy one's ability to estimate fixed effects terms – which 

17 are often of primary interest in ecology. Here, I simulate ecological datasets and fit simple 

18 models and show that having too few random effects terms does not influence the parameter 

19 estimates or uncertainty around those estimates for fixed effects terms. Thus, it should be 

20 acceptable to use fewer levels of random effects if one is not interested in making inference 

21 about the random effects terms (i.e. they are 'nuisance' parameters used to group non-

22 independent data). I also use simulations to assess the potential for pseudoreplication in 

23 (generalized) linear models (LMs), when random effects are explicitly ignored and find that LMs 

24 do not show increased type-I errors compared to their mixed-effects model counterparts. Instead, 

25 LM uncertainty (and p values) appears to be more conservative in an analysis with a real 

26 ecological dataset presented here. These results challenge the view that it is never appropriate to 

27 model random effects terms with fewer than five levels – specifically when inference is not 

28 being made for the random effects, but suggest that in simple cases LMs might be robust to 

29 ignored random effects terms. Given the widespread accessibility of GLMMs in ecology and 

30 evolution, future simulation studies and further assessments of these statistical methods are 

31 necessary to understand the consequences of both violating and blindly following simple 

32 guidelines.

33
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37 Introduction

38 As ecological datasets are inherently messy and researchers gain increased access to data, 

39 statistical analyses in ecology are becoming more complex (Low-Décarie, Chivers & Granados, 

40 2014), and advances in computing power and freely available statistical software are increasing 

41 the accessibility of such analyses to non-statisticians (Bates et al., 2007; Patil, Huard & 

42 Fonnesbeck, 2010; Gabry & Goodrich, 2016; Salvatier, Wiecki & Fonnesbeck, 2016; Bürkner, 

43 2017; Carpenter et al., 2017; Magnusson et al., 2017; Rue et al., 2017). As these methods have 

44 become more complex and accessible to ecologists, fisheries and wildlife managers, and 

45 evolutionary biologists the need to guide the use of such tools is becoming increasingly 

46 important (Bolker, 2008; Bolker et al., 2009; Zuur, Ieno & Elphick, 2010; Kéry & Royle, 2015; 

47 Kass et al., 2016; Zuur & Ieno, 2016; Harrison et al., 2018; Arnqvist, 2020; Silk, Harrison & 

48 Hodgson, 2020). The use of generalized linear mixed-effects models (GLMM), for example, has 

49 become a widespread tool that allows one to build hierarchical models that can estimate, and thus 

50 account for, imperfect detection in biological surveys (e.g. occupancy, N-mixture, mark-

51 recapture, etc.) and can model correlations among data that come from non-independent groups 

52 or populations (i.e. random effects; also known as varying effects) (Bolker, 2008; Kéry & Royle, 

53 2015; Powell & Gale, 2015; Harrison et al., 2018; McElreath, 2020).

54

55 Generalized linear mixed-effects models are a regression type analysis that are flexible in that 

56 they can handle a variety of data generating processes such as binomial (e.g. presence / absence 

57 of a species, alive / dead individuals) and Poisson (e.g. wildlife counts). When the sampling 

58 distribution is Gaussian (also known as normal; e.g. mean-centered continuous data such as: tree 
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59 diameter, vocalization frequency, or body condition residuals), this is a special case of a GLMM 

60 that is referred to as simply a linear mixed-effects model (LMM). GLMMs (and LMMs) differ 

61 from their simpler counterparts, (generalized) linear models (GLMs and LMs), in that they 

62 include random effects, in addition to the fixed effects (hence mixed-effects). 

63

64 Fixed effects are also often called predictors, covariates, explanatory or independent variables in 

65 ecology and include both variables of interest (e.g. average temperature in climate change 

66 studies or sound pressure levels in anthropogenic noise research) and other variables that are 

67 only included to control for unexplained variation but often not directly useful to understanding 

68 the research question at hand (e.g. date or time of sampling in the above studies). Fixed effects 

69 are fixed in that the model parameters (  in equation 1 below) are assumed to be fixed, or non-𝛽
70 random, and are not drawn from a hypothetical distribution. 

71

72 Random effects, on the other hand, allow one to combine information (e.g. in a meta-analysis), 

73 deal with spatiotemporal autocorrelation, use partial pooling to borrow strength from other 

74 populations or groups, account for grouping or blocked designs (e.g. repeat-measures data from 

75 sites or individuals), and estimate population-level parameters, among others (Kéry & Royle, 

76 2015). Thus, the random effects structure should be decided by the experimental design (Barr et 

77 al., 2013; Arnqvist, 2020). Random effects are random in that they are assumed to be drawn 

78 randomly from a distribution – often a Gaussian distribution – during the data-generating 

79 process. This is most often done by fitting a random intercept for each group (see equation 1 

80 below), but one can, and should, also assign random slopes to variables, where the slopes of 
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81 variables (not just the intercepts) are allowed to vary by group (see Bolker, 2008; Schielzeth & 

82 Forstmeier, 2009; Kéry & Royle, 2015; Harrison et al., 2018). If we are interested in the 

83 variability of a population (of individuals, groups, sites, or populations), it is difficult to estimate 

84 this variation with too few levels of individuals, groups, sites, or populations (i.e. random effects 

85 terms). 

86 “When the number of groups is small (less than five, say), there is typically not enough 

87 information to accurately estimate group-level variation” (Gelman & Hill, 2006).

88 “...if interest lies in measuring the variation among random effects, a certain number is 

89 required...To obtain an adequate estimate of the among-population heterogeneity – that 

90 is, the variance parameter  – at least 5 - 10 populations might be required” (Kéry & 

91 Royle, 2015).

92 “With <5 levels, the mixed model may not be able to estimate the among-population 

93 variance accurately” (Harrison et al., 2018).

94 “Strive to have a reasonable number of levels (at the very least, say, four to five subjects) 

95 of your random effects within each group” (Arnqvist, 2020).

96 This guideline that random effects terms should have at least five levels (i.e. groups) is backed 

97 by only limited empirical evidence (Harrison, 2015), but it is intuitive that too few draws from 

98 distribution will hinder one’s ability to estimate the variance of that distribution. Indeed, in each 

99 of the above segments of quoted text, the authors suggest that five levels are needed for 

100 estimation of group-level, or among-population, variance. However, this rule is often adhered to 

101 out of context, where authors or reviewers of ecological journals suggest that one cannot use 

102 random effects terms if they do not contain at least five levels, in any case. 
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103

104 Simulations by Harrison (2015) demonstrate that random effects variance can be biased more 

105 strongly when the levels of random effects terms are low, yet in this work it appears that slope 

106 (beta) estimates for fixed effects terms are generally not more biased with only three random 

107 effects levels compared to five. There are many cases (and some would argue that in most cases, 

108 see below) in which the variance of random effects is not directly of interest to the ecological 

109 research question at hand.

110 “...in the vast majority of examples of random-effects (or mixed) models in ecology, the 

111 random effects do not have a clear ecological interpretation. Rather, they are merely 

112 abstract constructs invoked to explain the fact that some measurements are more similar 

113 to each other than others are – i .e., to model correlations in the observed data” (Kéry & 

114 Royle, 2015).

115 Thus, it is unclear whether or not it is appropriate to use random effects when there are fewer 

116 than five grouping levels in situations where one does not directly care about the ‘nuisance’ 

117 among-population variance, but instead is interested in estimates and uncertainty of predictor 

118 variables (i.e. fixed effects). The current state of practice in ecology is to drop the random effects 

119 terms such that we are now using generalized linear models where we are not grouping 

120 observations (we drop the Mixed-effects from the GLMM to become GLM). I question whether 

121 we are choosing to accept pseudoreplication in ecology (Hurlbert, 1984; Kéry & Royle, 2015; 

122 Arnqvist, 2020), rather than inaccurate estimates of among-population variance. In cases where 

123 one does not care about among-population variance, this tradeoff may be non-existent, but little 

124 research exists to support this. 
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125

126 Here, I simulate ecological datasets to assess whether fixed effects estimates are more biased 

127 when the accompanying random effects consist of fewer than five levels; I also ask whether 

128 using an alternative model without random effects (LMs) leads to higher type I errors 

129 (demonstrating a ‘significant’ effect when in fact one does not exist). I also analyze a real dataset 

130 within a similar framework to understand how the number of random effects levels and model 

131 structure (random effects or not) might change ecological inference.

132

133

134 Methodology

135 All simulation of datasets and model fitting was done in R v4.0.4 (R Core Team, 2017), all 

136 visualizations were accomplished with the aid of R package `ggplot2` (Wickham, 2011).

137

138 Data generation

139 I used a modified version of code from Harrison (2015), to explore the importance of varying 

140 two parameters in a linear mixed-effect model (LMM): the number of observations in a dataset 

141 (30, 60, or 120), and the number of levels of the random intercept term (3, 5, or 20). We can 

142 think of the latter as the number of individuals in an experiment or the number of field sites in a 

143 study. This was done by generating a response variable  from the following equation:𝑦𝑖
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144 𝑦𝑖 = 𝛼𝑗(𝑖) + 𝛽
1
𝑋

1𝑖 + 𝛽
2
𝑋

2𝑖 + 𝜀𝑖
145 [1]

146 𝛼𝑗~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇,𝜎)
147 [2]

148 Where  is the intercept for site (or individual) j to which observation i belongs. Thus, each 𝛼𝑗(𝑖)
149 observation shared a site-level intercept, which were drawn from a normal distribution with 

150 mean (μ) = 0 and standard deviation (σ) = 0.5.  and  are the slope parameters for two 𝛽
1

𝛽
2

151 generic predictor variables (  and  respectively), which were both randomly generated from 𝑋
1𝑖 𝑋

2𝑖
152 a normal distribution with μ = 0 and σ = 0.5, which mimics standardized variables that are 

153 centered by their mean and scaled by two standard deviations (Gelman, 2008). Note that while 

154  and  were drawn from a normal distribution during data generation, their associated 𝑋
1𝑖 𝑋

2𝑖
155 parameters  and  are not (these are the fixed effects). For all simulated datasets, parameter 𝛽

1
𝛽

2

156 values were fixed at  = 2 and  = 0, meaning  does not have a linear relationship with, or 𝛽
1

𝛽
2

𝑋
2𝑖

157 is only randomly related to, the response variable . This allows for an assessment of type-I 𝑦𝑖
158 error rate, since any significant p values for this  slope parameter are erroneous. The error term 𝛽

2

159  is unique to each observation i that is drawn from a normal distribution with = 0 and  = 𝜀𝑖 𝜇𝜀 𝜎𝜀
160 0.25 (same as equation 2 above); this term is simply adding noise to our system during the data 

161 generating process, but is modelled implicitly as residual variance in many generic GLMM 

162 functions.

163
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164 As an ecological example, you might think of the above equations as

165 𝑡𝑟𝑒𝑒 ℎ𝑒𝑖𝑔ℎ𝑡𝑖 = 𝑆𝑖𝑡𝑒𝑗(𝑖) + 2 ∗ 𝑠𝑢𝑛𝑙𝑖𝑔ℎ𝑡
1𝑖 + 0 ∗ 𝑜𝑐𝑒𝑎𝑛 𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦

2𝑖 + 𝜀𝑖
166 [2.1]

167 𝑆𝑖𝑡𝑒𝑗~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇,𝜎)
168 [2.1]

169 Data from each site or forest patch (Site1, Site2, …, Siten) are grouped by their own site-level 

170 intercept, which is randomly drawn from a normal distribution; some sites have shorter trees on 

171 average and other sites have taller trees on average, but the entire forest (where all sites were 

172 randomly selected from; equation 2.1) has a mean height of  and a variance . We might expect 𝜇 𝜎
173 sunlight to have a positive relationship with tree height (  = 2) and ocean salinity to reasonably 𝛽

1

174 have no relationship with tree height (  = 0). We could just leave the ocean salinity term out of 𝛽
2

175 the equation entirely, but this explicitly demonstrates that the parameter coefficient that we 

176 estimate with the model should = 0.

177

178 Model fitting simulations

179 For each of the nine combinations of scenarios (30, 60, or 120 observations by 3, 5, or 20 sites), I 

180 simulated 10,000 datasets. Each dataset was fit with a linear mixed-effect model (LMM) and a 

181 linear model (LM). All model fitting was done with R functions `lmer` (LMM) or `lm` (LM) in 

182 the package `lme4` or in `base` R, respectively (Bates et al., 2007; R Core Team, 2017), and p 

183 values for `lme4` models were calculated with `lmerTest` (Kuznetsova, Brockhoff & 

184 Christensen, 2017), see note in discussion about this.
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185 #LMM:

186 m1 <- lmer(y ~ x1 + x2 + (1|Site))

187 m1 <- lmer(tree.height ~ sunlight + ocean.salinity + (1|Site))

188 R Code

189 Where x1 and x2 are fixed effects (see equation 1), and (1|Site) is the syntax for specifying a 

190 random intercept (  in equation 1). In ecology, we often fit independent sites as unique levels 𝛼𝑗(𝑖)
191 of a random effect, so I use site here for demonstration purposes. But site can be replaced with 

192 individual, group, population, etc. Often the recommendation, if one has fewer than 5 levels of 

193 random effects terms (j < 5 in ), is to fit the random effects as fixed effects (LMM becomes 𝛼𝑗(𝑖)
194 LM), specified in R as:

195 #LM:

196 m2 <- lm(y ~ x1 + x2 + Site)

197 m2 <- lm(tree.height ~ sunlight + ocean.salinity + Site)

198 R Code

199 and mathematically defined as:

200 𝑦𝑖 = 𝛽
1
𝑋

1𝑖 + 𝛽
2
𝑋

2𝑖 + 𝛽
3
𝑆𝑖𝑡𝑒1(𝑖) + 𝛽

4
𝑆𝑖𝑡𝑒2(𝑖) + …𝛽𝑛 + 2

𝑆𝑖𝑡𝑒𝑛(𝑖) + 𝜀𝑖
201 [3]

202 Now a  term is estimated for each site (or population) level independently. Site effects no 𝛽
203 longer come from a normal distribution (as in equation 2), but instead are considered fixed, 

204 hence fixed effects. Thus, both a LMM and a LM were fit to each simulated dataset (n = 10,000) 
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205 of each of the nine combinations of data-generation (30, 60, or 120 observations by 3, 5, or 20 

206 sites; 90,000 total simulated datasets and 180,000 models fit to data). This allowed for a 

207 comparison of the type-I error rates of LMMs and LMs, the latter of which ignores the blocked 

208 structure of data (i.e. site-level grouping).

209

210 Type-I error calculation and p values

211 Type-I error rate was calculated as the proportion of 10,000 models that a ‘significant’ p value of 

212 ≤ 0.05 was obtained for the  parameter estimate (e.g. ocean salinity) in which the true value of 𝛽
2

213 that parameter was set to be 0. I sampled (with replacement) 10,000 p value ‘observations’ from 

214 each group of 10,000 models to produce a new proportion of type-I error; this process was 

215 repeated 1,000 times, and the bootstrapped 95% confidence intervals were calculated as the 

216 0.025 and 0.975 quantiles of those 1,000 replications (see code; modified from Harrison, 2015).

217

218 Case study: spider body condition and noise

219 I used orb-weaving spider body condition data from a previous experiment (Gomes, Hesselberg 

220 & Barber, 2021). In short, speakers were used to experimentally broadcast whitewater river noise 

221 (predictor variable: sound pressure level) over the course of multiple summers. Orb-weaving 

222 spiders (Tetragnatha versicolor) were then weighed and measured (femur length), and body 

223 condition (response variable) was calculated from a residual index, using these measurements 

224 (Jakob, Marshall & Uetz, 1996; Gomes, 2020).

225
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226 Here, I randomly sampled this dataset to create 30,000 new datasets, such that each new dataset 

227 contained three random observations from each of 3, 5, or 10 sites (10,000 datasets for each level 

228 of random effects terms). Thus, each dataset contained 9, 15, or 30 total observations when there 

229 were 3, 5, or 10 sites, respectively. While it would have been ideal to separate sample size from 

230 the number of random effects (as in the simulated datasets above), this simply wasn’t possible to 

231 do with this real dataset (i.e. obtaining 30 total observations from three sites was not possible, 

232 while easily done for ten sites). Each dataset was fit with a linear mixed-effect model (LMM) 

233 and a linear model (LM) for comparison. Similar to the simulations above, all model fitting was 

234 done with R functions `lmer` (LMM) or `lm` (LM) in the package `lme4` or in `base` R, 

235 respectively (Bates et al., 2007; R Core Team, 2017) with the formulae:

236 m3 <- lmer(body.condition ~ sound.pressure.level + (1|Site)) # LMM

237 m4 <- lm(body.condition ~ sound.pressure.level + Site) # LM

238 R Code

239 I used the same methodology as above in ‘Type-I error calculation’ to calculate the proportion of 

240 10,000 models in which p < 0.05, which corresponds to rejecting the null hypothesis that sound 

241 pressure level is not related to spider body condition. In this case, we are not assessing a type-I 

242 error, because we do not truly know if this variable should be significant or not, but instead it 

243 serves as a point of comparisons across methods (LMM vs LM) with real data rather than 

244 simulated. 

245

246 Results
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247 Estimating model parameters and uncertainty

248 Linear mixed models and linear models were able to resurrect simulated fixed effect 

249 relationships with no noticeable patterns in bias, regardless of number of levels of random effects 

250 or sample size. That is, both mean model parameter estimates (  and ) were centered on their 𝛽
1

 𝛽
2

251 true values (2 and 0, respectively; Table 1; Figure 1, S1). The uncertainty around these estimates 

252 generally decreased as sample size increased. For example, doubling the sample size from 30 

253 observations to 60 observations lead to a decrease by 36.6% and 35.5% in parameter estimate 

254 uncertainty (for  and  respectively; Table 1; Figure 1). Another doubling to 120 𝛽
1

𝛽
2

255 observations lead to a further decrease in uncertainty by 33.4% and 32.9%, respectively. The 

256 number of levels of random effects appears to be relatively non-important in resurrecting model 

257 parameter estimates within these simulation scenarios (Table 1; Figure 1); instead there were 

258 small, likely negligible, increases in uncertainty around fixed effect parameter estimates as the 

259 number of levels of random effects increased.

260

261 All LMM estimates of the distribution mean (μ) were unbiased, regardless of number of levels of 

262 random effects or sample size (Table 1; Figure 2A). The random effects variance (σ) estimates, 

263 however, were not centered at the true value, and estimates were more biased with fewer levels 

264 of random effects, whereas sample size did not affect this bias (Table 1; Figure 2B). That is, with 

265 only three levels of random effects the magnitude of the bias was 12.2% of the true value. 

266 Increasing to five levels of random effects nearly halved this bias to 6.4%, and increasing to 10 

267 levels halved the bias again to 3.2% of the true value. Averaged across numbers of random 

PeerJ reviewing PDF | (2021:04:60006:0:0:NEW 17 Apr 2021)

Manuscript to be reviewed



268 effects terms, estimates were biased by about 7% regardless of sample size (7.1%, 7.4%, and 

269 7.2% for N = 30, 60, and 120 respectively). 

270

271 The uncertainty around random effects estimates (μ and σ) generally decreased with an increased 

272 number of random effects levels, whereas sample size did little to alleviate this uncertainty 

273 (Table 1; Figure 2). Increasing the number of random effects levels from 3 to 5, and then from 5 

274 to 10, decreased the uncertainty for μ by 22.4% and 29.1%, respectively, and for σ by 26.6% and 

275 29.8% respectively.

276

277 Type-I errors

278 For all simulated datasets, both LMM and LM produced type-I error rates around the typical α = 

279 0.05, with 95% confidence intervals overlapping this value. Neither sample size, nor the number 

280 of random effects levels seemed to influence the type-I error rate. Furthermore, dropping the 

281 random effects structure (using a LM instead of a LMM) did not increase the probability type-I 

282 errors (Figure 3), nor the ability of the model to accurately estimate fixed effects parameters 

283 (fixed effects estimates appear the same as they do in Figure 1, see Figure S1).

284

285 Case study results

286 Linear mixed models (LMM) and linear models (LM) both consistently estimated the fixed 

287 effect parameters for sound pressure level to be very weakly positive, with large overlap with 

288 zero (or no relationship). Linear model estimates are slightly shrunk towards zero, compared to 
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289 LMMs (Figure 4A), but it is impossible to assess bias, since we do not know truth with these 

290 biological data. The uncertainty around these estimates decreases with LMMs, compared to 

291 LMs, and decreases as the sample size and number of sites increases (in tandem).

292  

293 Output from 10,000 LMs suggests that the null hypothesis (no effect) would be rejected by a 

294 proportion of approximately 0.05 (Figure 4B), which is around the typical type-I error alpha 

295 level (i.e. suggesting that sound pressure level is not a significant predictor of spider body 

296 condition). LMMs, on the other hand, experienced null hypothesis rejection rates at nearly 

297 double that of their LM counterparts, which is consistent with the reduced uncertainty around the 

298 LMM estimates in Figure 4A. The rate of rejecting the null hypothesis, however, did not appear 

299 to be related to the number of sites (and thus total observations).

300

301 Discussion

302 The work presented here demonstrates that i) fixed effects estimates are not more biased when 

303 the levels of an accompanying random effect have fewer than five (n < 5) levels, but population-

304 level (random effects) variance estimates are and ii) type-I error rates are not increased by using 

305 linear models (LM) instead of linear mixed-effects models (LMM).

306

307 Fixed effects parameter estimation does not appear to be strongly influenced by, nor biased by, 

308 the number of levels of random effects terms. Instead, uncertainty in those estimates is much 

309 more strongly influenced by sample size. While this pattern may appear to contradict the 
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310 decreased uncertainty (with more random effects levels) around beta estimates in Figure 2 of 

311 Harrison (2015) and in Figure 4 of the current work, this instead is due to differences in the way 

312 that sample size relates to the number of random effects levels. Harrison (2015) coded each 

313 random effect level to be associated with a fixed number of observations (N=20), such that each 

314 additional random effect level yielded an increased sample size – as is also the case in the spider 

315 case study presented here. However, in the simulations here (Figure 1), sample size (i.e. number 

316 of observations) has been separated from the number of random effects terms (e.g. sites or 

317 individuals). 

318

319 Despite these differences in coding, the estimation of random effects terms (μ and σ) in the 

320 simulations here suggest consistent patterns with Harrison (2015) in that variance (σ) is more 

321 biased with fewer levels. This seems to support previous suggestions and simulations suggesting 

322 that few levels of random effects terms can make estimation of population-level variance 

323 difficult (Gelman & Hill, 2006; Harrison, 2015; Kéry & Royle, 2015; Harrison et al., 2018), but 

324 the cutoff at five random effects levels appears quite arbitrary. The combination of these results 

325 suggest that using fewer than five levels of random effects is acceptable when one is only 

326 interested in estimating fixed effects parameters (i.e. predictors, independent variables); in other 

327 words, when inference about the variance of random effects terms (e.g. sites, individuals, 

328 populations) is not of direct interest, but instead are used to group non-independent data. In these 

329 cases, however, caution should be taken in reporting the variance estimates for such population-

330 level parameters – as this information can later be taken out of context of the question at hand 

331 and may result in the propagation of biased estimates.
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332

333 Those following the “less than five levels” guideline typically drop random effects from 

334 analyses, turning a LMM into a LM. In both the simulations and the case study, LMMs and LMs 

335 did not appear to give drastically different parameter estimates for fixed effects. In the spider 

336 case study, LMMs gave more consistent results, leading to increased parameter certainty when 

337 compared to LMs, which was also reflected in a higher probability of ‘significant’ p values 

338 (around 10% of the models), when compared to LMs (around 5% of the models, which is to be 

339 expected to due chance). That is, results from LMs here suggest that there is no significant effect 

340 of the predictor (sound pressure level) on the response (body condition). While misspecified 

341 mixed-effects models can be overconfident in their estimates (Schielzeth & Forstmeier, 2009), in 

342 this case we do not know what ‘truth’ is. That is, we do not know if we should be rejecting the 

343 null hypothesis since the biological data here are real. However, this highlights that the p values 

344 might not always be very informative. For both model types in the case study (LMM vs LM), the 

345 magnitude of the parameter estimates (i.e. effect sizes) were consistently small. Interpreting the 

346 estimates directly will likely lead to a more consistent understanding of the results, rather than 

347 focusing on whether p values pass an arbitrary threshold. 

348

349 The use, and abuse, of p values, in general, is highly debated and controversial (Yoccoz, 1991; 

350 Schervish, 1996; Wagenmakers, 2007; Murdoch, Tsai & Adcock, 2008; Gelman, 2013; 

351 Murtaugh, 2014; Leek & Peng, 2015; Greenland et al., 2016; Ho et al., 2019), but is further 

352 complicated by mixed-effects models (Luke, 2017). Douglas Bates, and other authors of the R 

353 package `lme4` (Bates et al., 2007) which I use here, does not include a p value ‘baked in’ to the 
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354 output for a reason (in short how one should calculate this is not straightforward or as obvious as 

355 it sounds). While my personal approach is generally to rely more on probabilistic (i.e. Bayesian) 

356 approaches or effect sizes and ignore p values wherever possible, I use p values here because 

357 they are still widely used across ecology and evolutionary studies and by fish and wildlife 

358 managers. The R package `lmerTest` (Kuznetsova, Brockhoff & Christensen, 2017) allows many 

359 users to get around this apparent limitation of `lme4` by calculating p values as if they were a 

360 part of the original package. Despite my recommendation to focus more on effect size and other 

361 model outputs in analyses of real data, understanding the consequences of type-1 errors in terms 

362 of p values is relevant so long as ecologists continue to use them.

363

364 Interestingly, type-I errors were not more likely in any of the LMs of simulated data. This 

365 possibly suggests that misspecified linear models (theoretically missing a random effect) are 

366 relatively robust to this omission – at least in some simple cases such as the scenarios presented 

367 here. While this perhaps alleviates some concern over inflated type-I errors due to 

368 pseudoreplication while ignoring the grouped nature of repeat-measures studies and non-

369 independent data (Arnqvist, 2020), this should not be taken as evidence to purposefully omit 

370 random effects when such a structure is appropriate. Instead, it warrants future investigation and 

371 further simulation studies with more thorough scenarios (especially with varying degrees of 

372 random effect variance) and more complex data structures (e.g. including correlations and link 

373 functions).

374
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375 Often researchers (sometimes nudged by peer-reviewers) cite this guideline of needing 5 levels 

376 before random effects inclusion as a reason why they were unable to use a mixed-effects model 

377 (Bain, Johnson & Jones, 2019; Bussmann & Burkhardt-Holm, 2020; Evans & Gawlik, 2020; 

378 Gomes & Goerlitz, 2020; Zhao, Johnson-Bice & Roth, 2021). Although there is confusion over 

379 this recommendation, as some opt to use mixed-effects models despite this suggestion (Latta et 

380 al., 2018; Fugère, Lostchuck & Chapman, 2020; Gomes, Appel & Barber, 2020; Allen et al., 

381 2021), likely because of the numerous advantages that mixed-effects models offer (Bolker, 2008; 

382 Kéry & Royle, 2015; Harrison et al., 2018), or fear of the consequences of pseudoreplication 

383 (although this can easily occur in mixed-effects models as well: Schielzeth & Forstmeier, 2009; 

384 Arnqvist, 2020). The trend to automatically follow this rule is likely exacerbated by the fact that 

385 authors or peer-reviewers can easily point out that this rule exists (Gelman & Hill, 2006; 

386 Harrison, 2015; Kéry & Royle, 2015; Harrison et al., 2018; Arnqvist, 2020), but may find it more 

387 difficult or time-consuming to make a nuanced argument against following such a rapidly 

388 growing rule. Hopefully the results presented here will challenge that view, and allow the fitting 

389 of random effects when inference is not being made for the random effects. More importantly, I 

390 hope it sparks further conversation and debate over this issue. Given the widespread accessibility 

391 of GLMMs, future simulation studies and further assessments of these statistical methods are 

392 necessary to understand the consequences of both violating and blindly following 

393 methodological rules.

394

395
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Table 1(on next page)

Model estimates from 10,000 simulated datasets.

The number of levels of random effects (RE) was varied (3, 5, or 10), as was the number of
observations in the dataset (N = 30, 60, or 120). The true (T) values for the data generation
process (equation 1) are indicated in the second header row underneath the estimated
parameter labels (fixed effects: β1, β2; random effects: μ, σ). The mean of 10,000 model

estimates (β1, β2, μ, σ) are indicated for the respective models below the true values. Lower

and upper bounds on 95% confidence intervals for each parameter is calculated as the 0.025
and 0.975 quantiles, respectively, of 1,000 bootstrapped replications (see methods).
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RE β1 β1 95% CI β2 β2 95% CI μ μ 95% CI σ σ 95% CI

levels N T = 2 Lower Upper T = 0 Lower Upper T = 0 Lower Upper T = 0.5 Lower Upper

3 30 1.999 1.792 2.202 0.001 -0.199 0.205 0.000 -0.580 0.589 0.443 0.000 0.982

5 30 2.001 1.790 2.217 0.001 -0.207 0.211 0.001 -0.450 0.454 0.468 0.147 0.846

10 30 2.002 1.764 2.241 -0.003 -0.237 0.230 -0.001 -0.322 0.324 0.482 0.245 0.739

3 60 2.001 1.864 2.139 0.000 -0.135 0.134 0.002 -0.573 0.569 0.437 0.053 0.964

5 60 2.000 1.865 2.136 0.000 -0.140 0.135 0.001 -0.443 0.441 0.466 0.161 0.831

10 60 2.001 1.858 2.143 0.000 -0.144 0.142 -0.002 -0.314 0.305 0.485 0.265 0.736

3 120 2.000 1.910 2.090 0.000 -0.093 0.091 -0.001 -0.565 0.568 0.438 0.067 0.954

5 120 2.000 1.907 2.093 0.000 -0.091 0.093 -0.001 -0.442 0.443 0.469 0.164 0.838

10 120 2.000 1.905 2.093 0.000 -0.094 0.096 0.000 -0.318 0.311 0.485 0.267 0.735

1
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Figure 1
Fixed effects model estimates for simulated data.

Each point is the mean estimate for 10,000 models (and datasets), whereas error bars are
95% confidence intervals. N = the number of observations (i.e. number of rows) in each
dataset. Dashed lines indicate the true value. In all scenarios the bias in parameter estimates
are negligible. As the sample size increases, our certainty around the parameter estimates
(β) increases, but the number of random effects has a relatively minor effect on estimating β.
When sample sizes (N) are low, parameter uncertainty increases with increasing levels of
random effects (assuming a consistent N).
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Figure 2
Random effects model estimates for simulated data.

Each point is the mean estimate for 10,000 models (and datasets), whereas error bars are
95% confidence intervals. N = the number of observations (i.e. number of rows) in each
dataset. Dashed lines indicate the true value. A) As the number of random effects levels
increases, the uncertainty around the mean (μ) decreases. Sample size has a relatively minor
effect on estimating μ. B) As the number of random effects levels increases, the bias and
uncertainty around the random effects variance (σ) decreases. Sample size has a small, but
relatively minor effect on estimating σ. The bias in σ starts to approach the starting
(simulated) σ = 0.5 as the number of random effects reaches 10.
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Figure 3
Type-I error for various linear models (LM) and linear mixed-effects models (LMM).

Type-I error rate was calculated as the proportion of models (n = 10,000) in which a
‘significant’ p value of ≤ 0.05 was obtained for a parameter estimate in which the true value
of that parameter was set to be 0 (Figure 1B); each point represents this proportion. To
generate error bars as 95% confidence intervals, I used bootstrapping to replicate this
process 1,000 times (see methods). N = the number of observations (i.e. number of rows) in
each dataset. Symbols indicate model type (LM vs LMM). Dashed lines indicate the true alpha
value (0.05).
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Figure 4
Analyses for real dataset (spiders in noise case study).

(A): Fixed effects model estimates do not differ strongly across number of sites or model
types, but estimates from linear models are slightly pulled toward zero. Each point in is the
mean estimate for 10,000 models (and datasets), whereas error bars are 95% confidence
intervals. N = the number of observations (i.e. number of rows) in each dataset. Dashed line
at zero indicates the hypothesis that there is no effect of sound pressure level on spider body
condition. As the sample size and the number of sites increases, our certainty around the
parameter estimates increases. This is likely due to sample size rather than the number of
sites (see Figure 3). Estimates from linear models (LM) are slightly more uncertain than
estimates from linear mixed-effects models (LMM). (B): The probability for rejecting the null
(p < 0.05) is higher for LMMs than LMs, suggesting that LMs are more conservative in this
scenario. The probability of rejecting the null model for LMs overlaps alpha = 0.05,
suggesting there is no effect of sound pressure level on spider body condition. Of course we
do not know if rejecting the null model is “truth” here, since these are real biological data
(see Figure 3 for simulated data). The probability of rejecting the null model was calculated
as the proportion of models (n = 10,000) in which a ‘significant’ p value of ≤ 0.05 was
obtained for the fixed effect parameter estimate; each point represents this proportion. To
generate error bars as 95% confidence intervals, I used bootstrapping to replicate this
process 1,000 times (see methods).

PeerJ reviewing PDF | (2021:04:60006:0:0:NEW 17 Apr 2021)

Manuscript to be reviewed



PeerJ reviewing PDF | (2021:04:60006:0:0:NEW 17 Apr 2021)

Manuscript to be reviewed


