Sixteenth-century tomatoes in Europe: who saw them, how they looked like, and where they came from

3

1

2

5 Tinde van Andel^{1,2,3}, Rutger Vos¹, Ewout Michels^{1,2}, Anastasia Stefanaki^{1,3}

6 7

- ¹ Naturalis Biodiversity Center, Leiden, the Netherlands.
- 8 ² Institute for Biology, Leiden University, Leiden, the Netherlands.
- 9 ³ Biosystematics group, Wageningen University, Wageningen, the Netherlands

10

- 11 Corresponding Author:
- 12 Tinde van Andel
- Darwinweg 2, 2333 CR Leiden, the Netherlands
- 14 Email address: tinde.vanandel@naturalis.nl

1516

Abstract

- 18 **Background**. Soon after the Spanish conquest of the Americas, the first tomatoes were presented
- as curiosities to the European elite and drew the attention of sixteenth-century Italian naturalists.
- 20 Despite of their scientific interest in this New World crop, most Renaissance botanists did not
- 21 specify where these 'golden apples' or 'pomi d'oro' came from. The debate on the first European
- 22 tomatoes and their origin is often hindered by erroneous dating, botanical misidentifications and
- 23 inaccessible historical sources. The discovery of a tomato specimen in the sixteenth-century 'En
- 24 Tibi herbarium' kept at Leiden, the Netherlands led to claims that its DNA would reveal the
- 25 'original' taste and pest resistance of early tomatoes.
- Methods. Recent digitization efforts greatly facilitate research on historic botanical sources.
- Here we provide an overview of the ten remaining sixteenth-century tomato specimens, early
- descriptions and 13 illustrations. Several were never published before, revealing what these
- 29 tomatoes looked like, who saw them, and where they came from. We compare our historical
- 30 findings with recent molecular research on the ancient chloroplast and nuclear DNA of the 'En
- 31 Tibi' specimen.
- Results. Our survey shows that the earliest tomatoes in Europe came in a much wider variety of
- 33 colors, shapes and sizes than previously thought, with both simple and fasciated flowers, round
- 34 and segmented fruits. Pietro Andrea Matthioli gave the first description of a tomato in 1544, and
- 35 the oldest specimens were collected by Ulisse Aldrovandi and Francesco Petrollini in c. 1551,
- 36 possibly from plants grown in the Pisa botanical garden by their teacher Luca Ghini. The oldest
- 37 tomato illustrations were made in Germany and Switzerland in the early 1550s, but the Flemish
- 38 Rembert Dodoens published the first image in 1553. The names of early tomatoes in
- 39 contemporary manuscripts suggest both a Mexican and a Peruvian origin. The 'En Tibi'

Recent molecular research on the ancient nuclear and chloroplast DNA of the En Tibi specimen clearly shows that it was a fully domesticated tomato, and genetically close to three Mexican landraces and two Peruvian specimens that probably also had a Mesoamerican origin. Molecular research on the other sixteenth-century tomatospecimens may reveal other patterns of genetic similarity, past selection processes, and geographic origin. Clues on the 'historic' taste and pest resistance of the sixteenth-century tomatoes will be difficult to predict from their degraded DNA, but should be rather sought in those landraces in Central and South America that are genetically close to them. The indigenous farmers growing these traditional varieties should be supported to conserve these heirloom varieties *in-situ*.

Introduction

- 52 Soon after Christopher Columbus' first voyage to the Americas, the first New World crops were
- 53 taken to Europe as curiosities and presented to the royal courts (Pardo Tomás & López Terrada,
- 54 1993; Katz, 2009). Seeds of maize, marigold and chili peppers were planted in noblemen's
- gardens as exquisite novelties, where they attracted the interest of early sixteenth-century
- scholars (Daunay, Laterrot & Janick, 2007; Egmond, 2016). One of the American crops that
- 57 travelled from indigenous gardens through the hands of Spanish colonizers to European elite was
- 58 the tomato (Solanum lycopersicum L.). The first tomatoes were transferred to Europe soon after
- 59 the Spanish conquistador Hernán Cortés seized the Aztec city of Tenochtitlan (now Mexico City)
- 60 in 1521 (Gentilcore, 2010). Decades later, the Franciscan friar Bernardino de Sahagún (c. 1577:
- 49) reported that the Aztecs cultivated a great variety of tomatoes of different sizes, shapes and
- 62 colors. The Spanish later adopted their Nahuatl term *tomatl* as *tomate* (Long, 1995).

63

51

- The port of Seville was the principal point of entry for products from the New World (Jenkins,
- 65 1948; Rotelli, 2018). Still, there is no record of the introduction of the tomato in this Spanish
- port, or its cultivation in the royal Iberian gardens (Jenkins, 1948), as plant transfers were rarely
- 67 considered important enough to document (Long, 1995). Due to the many Italian merchants
- sailing under Portuguese and Spanish flags, and the fact that the Kingdom of Naples was under
- 69 Spanish rule, these new exotic plants quickly reached Italy (Rotelli 2018). Soon after the first
- tomato seeds sprouted in the gardens of Italian aristocrats in the 1540s, they became the object of
- study by Renaissance naturalists, who described and depicted these 'golden apples' with great
- 72 interest (Daunay, Laterrot & Janick, 2007; Egmond, 2018). From an unknown aphrodisiac to an
- essential ingredient in national dishes, the subsequent European history of the tomato has been
- extensively studied (e.g., Sturtevant, 1919; McCue, 1952; Gentilcore 2010; Metro-Roland,
- 75 2013).

76

- 77 Despite their scientific interest in this recently introduced crop, most sixteenth-century botanists
- did not specify where their tomatoes came from. An exception was the Venetian naturalist Pietro
- Antonio Michiel, who mentioned that the fruits were known as 'love apples' by some and as
- 80 'Peruvian apples' by others (*Poma amoris da alcuni et del Peru*, De Toni, 1940). Although
- Jenkins (1948) classified the latter name as dubious, it gave rise to the alternative hypothesis that
- 82 the first European tomatoes were brought from Peru, shortly after Francisco Pizarro's conquest
- of the Inca emperors in 1531 (Bailey, 1886; Peralta, Spooner & Knapp, 2008).

- The geographic origin of tomato domestication has been debated for at least two centuries (Klee
- and Resende, 2020). Evidence for the 'South American theory' was provided early on by the
- discovery of wild relatives of tomato along the coastline between Ecuador and northern Chile
- 88 (Jenkins, 1948; Peralta, Spooner & Knapp, 2008). Molecular studies have demonstrated a high
- 89 genetic and morphological diversity of traditional tomato varieties on the eastern slopes of the
- Andes in Ecuador and Peru (Blanca et al., 2015; Knapp & Peralta, 2016). The current model for

91 tomato domestication is that the small-fruited Solanum lycopersicum var. cerasiforme (Dunal)

92 D.M.Spooner, G.J.Anderson & R.K.Jansen evolved from the red-fruited wild species S.

93 pimpinellifolium L, which spread slowly northwards from the Peruvian desert to Mesoamerica,

94 adapting itself gradually to wetter environments, unrelated to human activity (Blanca et al.,

95 2021). Later, indigenous people took the wild Mexican cherry-sized tomato to South America,

96 where it was domesticated, and brought it back to Mesoamerica, where they further domesticated

97 this cherry-sized tomato into the very variable S. lycopersicum L. var. lycopersicum (Blanca et

98 al., 2021). Details on the exact time and place of domestication of the tomato are still not known

with certainty for either Mexico, Ecuador or Peru (Bai & Lindhout, 2007), but there is a

100 diminishing genetic diversity from Ecuador to Mexico (Lin et al., 2014; Blanca et al., 2015).

101 102

103

104

105

106

107

108

109

110

99

In 1989, Sergio Toresella, an expert on medieval herbals, examined a well-preserved tomato specimen in a sixteenth-century book herbarium kept at Naturalis Biodiversity Center in Leiden, the Netherlands. He claimed that this plant collection was made in Ferrara (Italy) between 1542 and 1544 and therefore was the oldest existing herbarium (Toresella, 1992). This meant that the anonymous Italian maker of this 'En Tibi herbarium' had collected the earliest European tomato specimen (Houchin, 2010; Thijsse, 2012; Egmond, 2016). As such, the collector would have predated compatriots Pietro Andrea Matthioli, who described a 'new species' in his section on mandrake in 1544 (McCue, 1952), and naturalist Ulisse Aldrovandi, who collected in 1551 a specimen of a cultivated tomato, preserved at the Bologna Herbarium, that was considered as the earliest extant specimen (Peralta, Spooner &Knapp, 2008).

111 112 113

The Leiden specimen was also thought to be older than a tomato in a herbarium in Rome, dated

114 pre-1553 (De Toni, 1910), which was attributed first to the painter Gherardo Cibo (Penzig, 1905)

115 and later to the physician Francesco Petrollini (Chiovenda, 1909). However, the 'En Tibi

116 tomato', with its simple flowers and round fruit (see

117 https://data.biodiversitydata.nl/naturalis/specimen/L.2111092), did not resemble the well-known

sixteenth-century woodcut illustration of a tomato plant with double flowers and elongated, 118

segmented fruits, claimed as typical for the early European tomatoes (Sturtevant, 1919; Daunay, 119

120 Laterrot & Janick, 2007). This woodcut is often inaccurately attributed to Matthioli (e.g.,

121 Houchin, 2010), but was published eight years after his death by Camerarius in his commentaries

122 on Matthioli, first in black and white (1586) and four years later in color (Camerarius, 1586: 821;

123 1590: 378). In the Aldrovandi manuscripts, kept at the University of Bologna, there is an undated 124

list of seeds sent by Aldrovandi to Camerarius that mentions 'Pomum amoris flore rubro non

125 compressum' (Aldrovandi manuscripts 136 VII, c. 26).

126

127 The finding of the 'oldest extant tomato' in the Netherlands led to claims in the popular media

128 that the DNA of this 'primitive tomato' could reveal ancient resistance to pests and diseases

129 lacking in modern crops. It was suggested that the En Tibi tomato could help plant breeders

130 develop new cultivars with the 'original taste' of the sixteenth-century tomatoes (Van Santen,

131 2012; De Boer, 2013). The genomic diversity stored in herbarium specimens creates ample 132 opportunities for genome-scale population and domestication studies (Staats et al., 2013). 133 Comparing the DNA of traditional crop specimens to the increasingly available online genetic 134 information on crop accessions worldwide can also provide detailed information on geographic 135 origins, past selection processes and historic migration routes of plants and people (van Andel et 136 al., 2016; Larranaga, van Zonneveld & Hormaza, 2021). Unfortunately, the sampling of 137

historical collections has had limited success due to their highly degraded DNA, although

138 significant progress is being made with new 'ancient genomics' methods (Bakker et al., 2020).

139 140

141 142

143

144

145

146

At the same time, ongoing digitization efforts greatly facilitate the research on sixteenth-century herbaria, illustrations, publications and manuscripts (Koning et al., 2008; Van Andel, 2017). However, the literature on early tomato descriptions and depictions often lacks detailed links to the original sources. The latter can now be directly inspected online and sometimes reveal other authors, editions, dates and species than previously thought. Our recent revision of the En Tibi herbarium uncovered that it was not made in Ferrara in 1542-3 as had been suggested, but in Bologna around 1558 by the Italian botanist Francesco Petrollini, who also made the so-called 'Erbario Cibo' kept in Rome (Stefanaki et al., 2018; 2019).

147 148 149

150

151

152

153

154

155

This paper aims to provide a more accurate overview of early sixteenth-century descriptions, illustrations and particularly herbarium specimens of the tomato. Some of the published sources have been digitally available for some years, but several images and most of the herbarium specimens have never been published so far. We show that the earliest tomatoes in Europe came in a variety of colors, shapes and sizes, and reveal that some 'early tomatoes' were, in fact, misidentified and represent other, related species. We compare these findings with recent molecular research on 'En Tibi' specimen's nuclear DNA (Michels, 2020) and choloroplast DNA (Kakakiou, 2021), which shed new light on it's geographic origin.

156 157 158

159

160

161

162

163

164

165

Materials & Methods

We performed a literature review, starting with studies on the introduction of the tomato in Europe (e.g., Jenkins, 1948. McCue, 1952, Daunay, Laterrot & Janick, 2007; Gentilcore, 2010) and on early modern naturalists in Italy, France, Central Europe and the Low Countries (e.g., De Toni, 1907, 1910, 1940; Findlen, 1994, 2017; Egmond, 2016, 2018, Rotelli, 2018.). We also reviewed modern taxonomic and molecular studies on the origin of the tomato (e.g., Peralta, Spooner & Knapp, 2008; Lin et al., 2014; Blanca et al., 2021). We consequently traced the original sixteenth-century manuscripts cited in these works via online repositories (e.g., google

166 books, the Biodiversity Heritage Library, https://www.europeana.eu).

167

168 We searched for tomato specimens in sixteenth-century herbaria (for an overview, see Thijsse 169 (2016) by reviewing scientific studies on these historical collections (e.g., Kessler, 1870; Caruel, 170 1858; Camus & Penzig, 1885; Penzig, 1905; Speta & Grims, 1980; Soldano, 2000). Where

171 available, we checked the published species lists, and otherwise the indices and specimens of

172 these herbaria, for references to 'pomo', 'mala', 'lycopersicon', 'Lycopersicum', 'Solanum', etc.

173 We approached several libraries and museums in Italy, France, Germany, Poland and

174 Switzerland to request digital images of specimens and illustrations in manuscripts that had not

175 yet been published. We provided links to digital sources of the historical specimens, literature,

176 manuscripts and images that we reviewed for this study. We listed the local and pre-Linnaean

scientific names for tomatoes mentioned in the original published sources, manuscripts, and

178 handwritten texts on botanical vouchers, illustrations or herbarium labels. We checked each

179 historical specimen, description and depiction for visible or written evidence of different shapes,

sizes and colors of flowers and fruits. We scrutinized all historical material for possible clues of

181 the geographical origins of the tomatoes. Finally, we report on two recent molecular studies on

182 the genetic affinities of the sixteenth-century tomato specimen in the En Tibi herbarium

(Michels, 2020; Kakakiou, 2021).

183 184 185

186

194

177

180

Results

The first mention of a tomato (1544)

187 In 1544, the Italian physician and botanist Pietro Andrea Matthioli (1501-1578) was the first

188 person to mention the tomato in Europe, in the first edition of his commentary in Italian on the

189 famous classical herbal De Materia Medica by Pedanius Dioscorides (c. 60 AD), entitled: 'Di

190 Pedacio Dioscoride Anazarbeo libri cinque della historia, et materia medicinale trodotti in

191 lingua volgare Italiana'. In his chapter on mandrake (Mandragora), he adds: "Another species

192 [of eggplant, Solanum melongena L.] has been brought to Italy in our time, flattened like the

193 mele rose [a type of apple] and segmented, green at first and when ripe of a golden color, which

is eaten in the same manner [as the eggplant: fried in oil with salt and pepper, like mushrooms]"

195 (Matthioli, 1544: 326). Matthioli's first publication is not available online, so we relied on the

196 translation by McCue (1952). Unfortunately, there is no illustration. The second edition

197 (Matthioli, 1548) had the same text and still did not mention any local name for the tomato.

198 Matthioli's work became a bestseller, selling over 30,000 copies, and he constantly enlarged the

199 book with augmented editions (Palmer, 1985). In 1554, Matthioli translated his commentary in

200 Latin, expanding his text about the tomato, which he described after the eggplant: "Another

201 species has already begun to be imported, flattened, round like apples, ribbed like melons, at first

202 green, in some plants turning gold and in others red. They are colloquially called *pomi d'oro*,

203 that is, mala aurea. Eaten in the same way [as eggplant with oil, salt and pepper, like

204 mushrooms. That said by Hermolao]" (Matthioli, 1554: 479). The same text appears after the

205 description of the *melanzane* (eggplant) in many of the later versions of his book, named *pomi*

206 d'oro in the Italian and mala aurea in the Latin editions. Unfortunately, Matthioli has never

207 produced or commissioned an image of a tomato during his life (Table 1).

208

209 But where did Matthioli see his first tomato? According to Ubriszy Savoia (1993), his (former) 210

teacher Luca Ghini (c. 1490-1556) had obtained the seeds from the Venetian patrician and

- 211 naturalist Pietro Antonio Michiel (1510-1576). Next to his house in Venice, Michiel cultivated
- 212 numerous exotic plants from faraway places, including the Americas, the Near East and northern
- 213 Africa. His objective was to spread these botanical novelties among his network, so he sent seeds
- and sprouts of plants to his friends (De Toni, 1940). Michiel was given the charge to curate the
- 215 Padua garden from 1551 to 1555 when Luigi Squalermo (1512-1570), better known as
- 216 Anguillara, was prefect. Anguillara had followed Ghini's classes and worked in his teacher's
- 217 private garden in Bologna, and in 1546 became the first prefect of the Padua garden (Minelli,
- 218 2010). In 1543, Anguillara assisted Ghini in amassing materials for the Pisa garden (Findlen,
- 219 2017), so it is more likely that Anguillara (and not Michiel) provided Ghini with tomato seeds,
- also because the Padua garden was founded in 1545 (Palmer, 1985), a year after Matthioli
- described the first European tomato. Michiel apparently started to expand his Venice garden
- 222 upon his return from Padua in 1555 (De Toni, 1940).

223

- 224 Ghini taught medical botany in Pisa from 1544 to 1555, where he founded the first university
- botanical garden supported by the Grand Duke of Tuscany, Cosimo I de' Medici (De Toni,
- 226 1907). Cosimo attempted to import and acclimatize various American plants (Gentilcore, 2010),
- and Ghini enriched the garden with exotic species and taught his many pupils to press and dry
- botanical specimens between paper (Findlen, 2017). According to McCue (1952: 292), the Pisa
- garden catalogue manuscript from 1548 'does not include any plant identifiable as the tomato'.
- However, the inventory of this catalogue brought to light by De Toni (1907: 439) lists a plant
- named 'Thumatulum pomum vulgo dictum rubrum et luteum' (Table 1) and suggests that the
- catalogue with 620 species could have been started already in 1545.

233

- Matthioli did not travel much after he reached his forties (from 1541 onwards he stayed in the
- small town of Gorizia, near the current border with Slovenia) and simply sent lists of
- Dioscoridean plants that he had not yet seen or identified to his colleagues (Palmer, 1985). He
- often included the knowledge of his fellow scientists or local people in the many editions of his
- books without citing them (Arber, 1986). Ghini had sent many dried specimens to Matthioli,
- accompanied by written opinions on their identification (De Toni, 1907; Palmer, 1985). If Ghini
- had already planted his first tomato seeds in the Pisa garden in 1544 (Ubriszy Savoia, 1993), it
- 241 was likely his description of the tomato that ended up in Matthioli's first edition of his
- 242 Commentaries on Dioscorides in 1544.

- The first tomato specimen (1551)
- One of Ghini's best-known disciples was Ulisse Aldrovandi (1522-1605), who became famous
- for his 16-volume herbarium with over 4000 specimens kept at the botanical garden in Bologna.
- 247 The tomato specimen is preserved in the first volume (Fig. 1A), which Aldrovandi started in
- 248 1551, and is therefore considered the oldest extant botanical voucher of this New World crop
- (Table 1). Thorough work has been carried out to trace the origin of Aldrovandi's specimens, but
- 250 unfortunately for the tomato specimen this information has not survived (Soldano, 2000).

Aldrovandi kept an extensive correspondence with other naturalists. From his letters, we know that around 1551, plants were sent to him by Michiel, then employed in the Padua botanical garden (Minelli, 2010), by Ghini from the Pisa garden (Ubriszy Savoia, 1993) and by his companion and guide in the field Francesco Petrollini (Soldano, 2000; Stefanaki et al., 2019).

Petrollini, whose birth and death dates remain unknown, also attended classes by Ghini and graduated in Bologna in 1551. Two of his tomato specimens have survived: one in his extensive work herbarium, which is known to have consisted of several book volumes by 1553 (De Toni, 1910) and is kept in the Bibliotheca Angelica in Rome, and one in the En Tibi herbarium (c. 1558) that was made on commission, possibly for the Habsburg emperor Ferdinand I (Stefanaki et al., 2019). The tomato specimen in the Rome herbarium has immature fruits. A separate fruit glued on top of the page, partly destroyed by insects, is an immature eggplant and belongs to another specimen (Fig. 1B). We know that Petrollini graduated two years before Aldrovandi and guided him in his early steps in the field. It is, therefore, likely that he started his work herbarium earlier than Aldrovandi (De Toni, 2010), but the tomato appears only in the third volume. The tomato in the En Tibi herbarium is thus not the oldest preserved tomato specimen in the world, although it is the earliest surviving specimen with (the remains of) a mature fruit (Fig. 1C).

We traced 17 surviving sixteenth-century herbaria in Italy, Germany, France, Switzerland and the Netherlands (Supplementary Table 1), eight of which contain tomato specimens (Fig. 1A-J). We have no indication of tomato specimens in other surviving herbaria produced in this time period. The oldest extant herbarium was compiled by Michele Merini, also a pupil of Ghini, in the Pisa botanical garden between 1540-1545. His herbarium is not available online, but its contents were published by Chiovenda (1927), and it does not contain a tomato specimen. Another disciple of Ghini, Andrea Cesalpino, also made a herbarium in the Pisa garden between 1555-1563. Although he mentions the tomato in his *De plantis Libri XVI* (Cesalpino, 1583), there is no tomato among his vouchers (Caruel, 1858). The first herbaria made in France (by Jehan Girault in 1558) and the Low Countries (by Petrus Cadé in 1566, see Christenhusz, 2004) do not have a tomato specimen either. The second herbarium produced in France, that of the German botanist Leonhard Rauwolf, contains a tomato (Fig. 1D), but this specimen was collected during Rauwolf's field trip in northern Italy in 1563 (Stefanaki et al., 2021). Tomato specimens are also included in the herbaria Estense (Ferrara, Italy), Bauhin (three specimens; Basel, Switzerland), Ratzenberger (Kassel, Germany) and the Herbarium Vivum of Hieronymus Harder (Ulm, Germany); all these collections have been compiled towards the end of the sixteenth century (Supplementary Table 1, Fig. 1A-J).

The first image of a tomato (1553)

Although the tomato was common in Mexico at the time of the Spanish conquest, no images of tomatoes made in the New World exist (Daunay, Laterrot & Janick, 2007). An uncolored woodcut illustration, published in 1553 in a Latin herbal by the Flemish doctor and botanist

Rembert Dodoens, can be considered the first image of a tomato (Fig. 2A). A year later (Dodoens, 1554), he published a colored version of the same woodcut (Fig. 2B). Also known under his Latinized name Dodonaeus, Dodoens studied at several universities and travelled to France, Germany and Italy from 1535 to 1546, where he may have seen the tomato for the first time. In 1548, he settled in Mechelen (currently Belgium), then a hotspot of sixteenth-century naturalists, who studied exotic plants in the gardens of local noblemen. In a later edition of his herbal, Dodoens (1583) acknowledged the people who supplied him with plants. One of them, Jean de Brancion, had a beautiful garden with many exotic species, obtained via his extensive international network (Egmond, 2010). In Aldrovandi's manuscripts, kept at the University of Bologna, there are several lists of seeds sent to De Brancion (Frati, Ghigi & Sorbelli, 1907), of which one, dated 10 January 1571, contains a 'Pomum pomiferum' listed just before the eggplant, indicated as 'Mala insane purpurea' (Aldrovandi manuscripts 136 V, c. 137v). Another possibility is that Dodoens obtained a tomato plant from the garden of the Antwerp apothecary Pieter van Coudenberghe, created in 1548 and containing more than 600 exotic plants (Vandewiele, 1993).

On 22 September 1553, in the same year that Dodoens published the first woodcut, two tomato plants were depicted by the Swiss naturalist Conrad Gesner (Table 1, Fig. 2C-D). Unfortunately, his *Historia Plantarum*, a beautiful collection with hundreds of colored plant illustrations, was never published. Gesner had travelled to Italy in 1544, where he met Ghini to study his collections (Findlen, 2017), which provides us with a clue to where he may have obtained his tomato seeds. Later, Gesner (1561) wrote that the tomato was grown by Pieter van Coudenberghe in Antwerp (a possible source of Dodoens' tomato), by Vuoysselus in Breslau (now Poland) and in German gardens by Joachimus Kreichius in Torgau and in Nuremberg by George Oellinger. Apothecary Oellinger (Ollingerus) also had three drawings made by Samuel Quichelberg (1529-1567) of the different tomato varieties that he had planted (Fig. 2G-I). His vast collection of naturalist drawings, *Magnarum medicinae partium herbariae et zoographiae*, was finished in 1553 but never published until Lutze and Retzlaff (1949) published a selection of his work.

In the meantime, from c. 1550 to his death in 1576, the Venetian nobleman Michiel worked on his garden inventory, finalized in a five-volume illustrated manuscript now held by the Marciana library in Venice (De Toni, 1940). Michiel attempted to describe all plants he knew, so the species that figure in his work may have grown in the Padua garden, in his own Venice estate, or they were sent to him as dried specimens (De Toni, 1940). The third volume (Libro Rosso I) features a description of the tomato (Table 1). When he started his manuscript, Michiel was still in Padua and may have seen the tomato there. The watercolor image in this manuscript is possibly made by Domenico Dalle Greche (Fig. 2F). Another drawing in Michiel's manuscript (Supplementary Fig. 1) was mentioned as one of the earliest depicted tomatoes in Europe (Egmond, 2018), but the depicted plant has simple, lobed leaves and symmetrical, depressed and

deeply furrowed fruits. We agree with De Toni's identification of this illustration as an Ethiopian eggplant (*Solanum aethiopicum* L.), probably a member of the kumba cultivar group (PROTA, 2015).

Another candidate for the earliest extant European drawing of the tomato is a watercolor image (Fig. 2E) in a manuscript by the German botanist Leonhart Fuchs, dated between 1549 and 1561 and known as the 'Vienna Codex' (Meyer, Trueblood & Heller, 1999; Baumann, Baumann & Baumann-Schleihauf, 2001). This manuscript was meant to become an extended version of his famous herbal *De historia stirpium commentarii insignes* (Fuchs, 1542), widely considered a masterpiece with 500 very accurate woodcut illustrations and the first known European publication of New World plants such as maize, tobacco, marigold and chili pepper (Meyer, Trueblood & Heller, 1999). The tomato, however, was not yet described in this famous herbal, nor its later editions. It does appear in the Vienna Codex as a drawing (Fig. 2E) and in the text, which reported that this unfamiliar 'apple' was only known from gardens and that it was not mentioned by the ancient Greeks, Romans or even the Moors. The manuscript was never published, but Meyer, Trueblood & Heller (1999) suggested that the drawing may be earlier than

In 1586, decades after the first tomato illustrations in the 1550s and eight years after Matthioli's death in 1578, an uncolored woodcut of a tomato plant (Fig. 2M) appeared in *De Plantis Epitome Utilissima*, an enlargement of Matthioli's work published in Latin by Joachim Camerarius (1586: 821). A colored version of the same woodcut (Fig. 2N) is published four years later, again by Camerarius, but this time in German (1590: 378), although this image is often attributed to Matthioli (e.g., Houchin, 2010).

The first names of tomatoes

the woodcut of Dodoens (1553).

In 1548, Grand Duke Cosimo I was presented some tomatoes from his Florentine Estate. A letter from 1548 mentions that the Florentine *pomidoro* arrived safely at the ducal household (Table 1). This letter is the earliest written evidence of the term 'golden apples' in Italian (Gentilcore, 2010). The Latin translation of this local name ('mala aurea') quickly follows in 1554, while Aldrovandi's name 'mali insani' refers to its resemblance to the botanically related eggplant or melanzana (Table 1). Other early sixteenth-century names of the tomato reveal that it came in different colors (red, golden, brown, yellow) or that it was related to the mandrake ('Mandragorae species').

The terms 'pomum amoris' or 'pomme d'amour' are often said to refer to the alleged aphrodisiac properties of the tomato (Smith, 1994). The French term was likely added by a French translator of Matthioli's work (Peralta, Spooner & Knapp, 2008) and could also be a corruption of 'pome dei Moro' (apples of the Moors, Houchin 2010) or 'pomi d'oro'. Two years before Matthioli's first description of the tomato in 1544, the term 'amoris poma' was already coined by Fuchs

(1542: 532) in his description of the eggplant. Michiel also described the eggplant as 'Pomes da mouri da Galli, Melongena da Arabi', a fruit brought by the Moors or Arabs (De Toni, 1940).
 Solanum melongena L. was indeed introduced to Europe during the Middle Ages by Arab traders from India (Daunay, Laterrot & Janick, 2007).

The Spanish gave the name 'love apple' first to the Mexican tomatillo (*Physalis ixocarpa* Lam.), of which the calyx splits open to reveal the fruit, apparently reminding them of female genitals. Later the Spanish transferred this name to the tomato (Gentilcore, 2010). Although the Italians never adopted the Spanish name 'tomate', derived from the Nahuatl 'tomatl' (Long, 1995), the appearances of 'thumatulum' in the inventory of the Pisa garden and 'Tumatle Americanorum' in Guilandinus (1572), successor of Anguillara in the Padua garden, suggest that some early modern botanists knew this name. However, the local term 'poma/pomo' was more common (Table 1).

The name 'Saliunca' in the En Tibi herbarium was erroneously given to the tomato specimen, a mistake made by the scribe who wrote the plant names next to the specimens: the name was meant for the preceding specimen (nr. 293) of Valeriana celtica L. (Stefanaki et al., 2018). According to Ubriszy Savoia (1993: 581), Aldrovandi's term 'Tembul quibusd.' (another type of Tembul) refers to Solanum betaceum Cav., the South American tree tomato, but this species was only introduced in European botanical gardens in 1836.

The remark that 'some people knew the tomatoes as Peruvian apples' was made both by Michiel (De Toni, 1940) and Anguillara (1561), which is not surprising as they were friends and worked together in the Padua garden from 1551 to 1555 (Minelli, 2010). Several other Andean plants figure in Michiel's garden inventory (De Toni, 1940), such as coca (*Erythroxylum coca* Lam.) and 'quina de India' (probably *Cinchona* sp.). As Michiel never published his garden inventory, Anguillara (1561) was quoted for this South American provenance by C. Bauhin in his annotated edition of Matthioli's commentaries (C. Bauhin 1598: 761, Table 1). According to Jenkins (1948), however, there is nothing in the historical record that suggests a Peruvian origin of the tomato. Nevertheless, De Candolle (1885) argued that sixteenth century botanists had received the plant from Peru. De Candolle based this on J. Bauhin & Cherler (1651, published posthumously) who mentioned the name 'Pomi del Peru' as a vernacular Italian name. They also mentioned the name 'Mala Peruviana', citing Hortus Eystetensis (Besler, 1613) as the source, but this name is not mentioned in the tomato illustration in this book. Gray & Trumbull (1883) assume that Anguillara mistook the tomato for Datura stramonium L., an American Solanaceae described as 'mala peruviana' by Guilandinus (1572). Despite his closeness to Ghini, there is no evidence that Anguillara made a herbarium, so no specimen of the 'Poma del Peru' exists. In the extensive collection of Aldrovandi's manuscripts, however, there are many lists of objects (plants, animals, minerals) that he received from all over the world, including South American locations such as the Tumbes province in Peru, the Ecuadorian capital Quito, Cumana

411 (Venezuela) and Uraba in Colombia (Frati, Ghigi & Sorbelli, 1907). It is unfortunately unknown 412 whether Aldrovandi received his tomato specimen directly from his contacts overseas and, if so, 413 from which location. Guilandinus (1572) referred to the tomato as 'tumatle', using its Nahuatl 414 name, and wrote that it came from 'Themistithan', according to Jenkins (1948) a corruption of 415 Tenochtitlan, the Aztec name for what is now Mexico City. Aldrovandi also made a 416 'Themistitani catalogus' of natural objects received from this area, next to lists of specimens 417 from other Mexican locations such as 'Iztapalapa', 'Jucatan insula' and 'Tlaxcala' (Frati, Ghigi 418

419 420

421

422

423

424

425

426

The name 'Ethiopian apple' written next to the tomato specimen in the anonymous Ducale Estense herbarium (Fig. 1I, Table 1) refers to an African origin. This demonstrates the existing confusion between Solanum lycopersicum and the related Old-World species S. aethiopicum, also depicted in Michiels manuscript (Supplementary Fig. 1). Besides the tomato specimens, there are also three specimens of S. aethiopicum in C. Bauhins' herbarium, one of which was named 'poma amoris racemosa' and possibly came from his own garden (Supplementary Fig. 2). The word 'Ettiopia' or 'aethiopicum' in those days did not refer to the current country of Ethiopia but was used as a general term to indicate the African continent (De Toni, 1940).

& Sorbelli, 1907: 181). Still, we do not know whether tomatoes are listed in these manuscripts.

427 428 429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

The name Lycopersicon means 'wolf peach', after the Greek words for wolf (lykos) and peach (persikon), and was first used by the Greek physician Galen (AD 131–200) for designating a plant from Egypt with malodorous sap, just like tomato leaves. Which species Galen had in mind while describing the wolf peach has been lost in centuries of translations and misinterpretations of the classical texts during the Middle Ages (Palmer, 1985). Galen had never seen any New World plant, but a major aim of the Renaissance naturalists was to search for plant specimens that matched descriptions by the classical authors (Palmer, 1985; Stefanaki et al., 2019). However, the German botanist Fuchs argued in his manuscript that as the Greek and Latin authors did not mention the tomato, the plant should not carry any of the classical names (Meyer, Trueblood & Heller, 1999). The Greek name was used in Latin as specific epithet of Solanum lycopersicum L. by Linnaeus (1753), after which Miller (1768) applied it as the genus name for the cultivated tomato (Lycopersicum esculentum Mill). Modern taxonomy has brought the tomato back to the genus Solanum (Peralta, Spooner & Knapp, 2008). Another attempt of sixteenth-century naturalists to trace the tomato in ancient literature led them to the 'Glaucium' of Dioscorides: De Lobel (1571, 1576), for example, described, not without doubts, the tomato under poppies.

444 445 446

The morphology of early tomatoes

447 The woodcut illustration of the elongated, segmented tomatoes by Camerarius (1586; 1590) 448 became widely known, as Matthioli's Commentaries on Dioscorides continued to be a bestseller 449 after his death. However, the sixteenth-century herbarium specimens and the images of small 450 spherical tomatoes in unpublished manuscripts remained locked up in royal treasure rooms,

libraries, and universities. This has led to the idea that the earliest tomatoes introduced to Europe were 'large and lumpy', a 'mutation' from a smoother, more diminutive Mesoamerican form, and probably 'the direct ancestor of some modern cultivated tomatoes' (Smith, 1994:15).

According to Sturtevant (1919), there were no indications that the round tomato was known

among the early botanists before 1700.

From our review of the sixteenth-century descriptions, images and herbarium specimens, it becomes clear that different landraces of tomatoes were introduced early on in Europe. These represented a great variety in flower and fruit shape, size and color, as was already suggested by Daunay, Laterrot & Janick (2007) and Peralta, Spooner & Knapp (2008). Several tomato illustrations (e.g., Camerarius, 1586) and specimens like those of C. Bauhin (Fig. 1E-G) show duplications of sepals and petals, exserted styles and deeply furrowed (segmented) fruits, while the specimens in the En Tibi and Rauwolf herbaria (Fig. 1C-D) and Oellinger's third drawing (Fig. 2I) have simple flowers (5 petals) and small, spherical fruits (Table 2).

Although the drawing in Fuchs' manuscript (Vienna Codex, 1549-1556/1561) is often considered 'unnatural' and 'false' (Meyer, Trueblood & Heller, 1999; Koning et al., 2008), the task assigned to artist Albrecht Meyer was to represent the variation in flowers and fruits, instead of depicting an individual plant. Fuchs wrote that he had seen at least three different varieties and decided to include all in one illustration (Meyer, Trueblood & Heller, 1999: 629; Peralta, Spooner & Knapp, 2008). Dominico dalle Greche also included several fruit types in his drawing for Michiel (Fig. 2F). According to McCue (1952), the reference by Cesalpino (1583) to the white color of the flowers was incorrect, but Camerarius (1590) described and depicted white-colored flowers as well. The different tomato names, 'aurea' (golden), 'rubrum' (red), 'luteum' (yellow) and 'croceum' (orange-yellow, golden-yellow), also indicate that the fruits came in different colors.

Tomatoes underwent a dramatic increase in fruit size during domestication: some modern cultivars produce fruit a thousand times larger than their wild counterparts (Lin et al., 2014). Wild tomato species generally have flowers with five to six sepals, petals and stamens, and bilocular fruits. Through a mutation known as fasciation, flowers will produce up to eight petals and an increased number of locules, which leads to multisegmented, elongated fruits. Humans probably selected fasciated tomatoes for their large fruits, but only a small portion of all modern tomato cultivars is multilocular (Barrero & Tanksley, 2004). The fact that the first tomato described in Europe was segmented (Matthioli, 1544, Table 2) proves that the early sixteenth-century tomatoes did not come from wild plants but represented a crop that had reached a fairly advanced stage of domestication (Bai & Lindhout, 2007).

Table 2 shows that most sixteenth-century specimens lack preserved fruits: juicy tomatoes cannot be easily pressed into botanical vouchers. They are bulky and will not keep their shape

when pressed, and due to their moisture, the specimens will quickly start to mold. Petrollini's first tomato specimen had only an immature fruit, but when preparing the tomato specimen in the En Tibi herbarium, he skillfully removed the juicy insides of the tomato and pressed the skin of the fruit to represent its round shape (Fig. 1C). Ratzenberger's fruits seem to have spoiled and have been removed from the specimen (Fig. 1J). Harder found a solution: he pressed a flowering specimen and drew the roots, ripe and golden fruits later on the paper (Fig. 1H).

Genetic origin of the En Tibi tomato

What was the geographical origin of the early tomatoes that sparked the interest of the Renaissance botanists? The sixteenth-century literature, specimens and illustrations do not answer this question. The Peruvian origin mentioned by Michiel and Anguillara is not specific, and apart from Guilandinus (1572), the other early sources do not discuss any geographical origin. The knowledge on tomatoes circulating in Europe during the sixteenth-century came from plants that were already cultivated in gardens, as is evident from the detailed morphological descriptions on fruit shape and color, characters that were only observable in living plants. The provenance from the obscure New World was not of interest to most sixteenth-century scholars, who tried hard to trace the tomato in the writings of ancient Greek authors. Regarding herbarium specimens, we only know that the Rauwolf tomato was collected somewhere in N. Italy (Stefanaki et al., 2021), while C. Bauhin's tomatoes were possibly cultivated in his garden in Basel.

The question of geographical origin may also be approached by genomic research on the crop's earliest herbarium specimens. Recently, DNA was extracted from a leaf of the tomato specimen in the En Tibi herbarium (c. 1558, Bologna, kept at Naturalis), and its whole genome was sequenced using Illumina TruSeq technology (Michels, 2020) and published online (https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR10143152). The En Tibi genome was then mapped to the Heinz 1706 reference genome (The Tomato Genome Consortium, 2012), with an average sequencing depth of 2.28 (Michels, 2020). Only 9.9 Mbp were recovered with ≥10x depth, which equated to 1.2% of the reference genome. This indicated that the specimen's DNA had severely fragmented over the past 475 years. Data on genome assemblies of 114 accessions of wild species and traditional cultivars from Latin America were retrieved from the 360-tomato resequencing project (Lin et al., 2014; https://solgenomics.net/organism/Solanum lycopersicum/tomato 360) and cropped to span only

To identify the En Tibi tomato's nearest neighbors, Michels (2020) performed a network clustering analysis (NeighborNet, Bryant 2003). Dimensionality reduction analyses were carried out on the remaining SNPs to investigate coarse genetic similarity among the accessions. In Fig. 3, the lengths of the terminal branches are proportional to the number of autapomorphies,

distinctive genetic features that are unique to each taxon. Wild populations are generally more

the 1.2% of the sequenced En Tibi genome with sufficient coverage.

531 genetically diverse (and thus have higher numbers of autapomorphies) than domesticated ones, 532 because of the founder events of domestication and deliberate inbreeding. The highly diverse, 533 wild Solanum pimpinellifolium accessions (dark green circles) spread out on the left (Fig. 3A). 534 On the right, the En Tibi tomato clustered in the group of domesticated tomatoes (S. 535 lycopersicum) from both Central and South America, with very short branches (Fig. 3B). The 536 graph also shows that some accessions of the cherry tomato (S. lycopersicum var. cerasiforme) 537 are genetically close to the large-fruited domesticated tomato varieties on both parts of the 538

continent. In contrast, other accessions of cherry tomatoes appear to be truly wild, given their

539 long branches.

540 541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

Table 3 shows the genetically close varieties to the En Tibi tomato, and some of the associated data stored for these accessions in the C.M. Rick Tomato Genetics Resource Center (TGRC, https://tgrc.ucdavis.edu) at the University of California at Davis, USA. While the three Mexican accessions are characterized as 'Latin American cultivars' (probably landraces are meant here), the other three accessions are classified in the TGRC database as 'wild'. However, C-61 was collected from a family garden and C-281 in open vegetation along a road in the (once) heavily forested eastern Andean foothills. Very little information from the farmers themselves is stored for the accessions close to the En Tibi tomato. B-249 is the only one with a vernacular name (Zocato, no language indicated), and B-153 was collected on a market but said to grow wild. For C-281, the sentence "Indian women: no word in Quechua" in the database suggests that the collector tried to obtain information from a local person, but communication was not possible. The presumably 'wild state' of some of the accessions close to the En Tibi tomato does not coincide with the molecular data, which show that the sixteenth-century tomato was a fully domesticated crop. Combined with the absence of farmers' knowledge in the database, the information in the TGRC database on the domestication status of these accessions is questionable. Some of the nearest neighbors of the En Tibi tomato that were listed as 'wild' in the germplasm data may have escaped from cultivation. Compared to genuinely wild accessions, the branches of these presumably feralized ones are so short that they are very likely to have passed through domestication processes and/or possible hybridization with cultivated tomatoes.

559 560 561

562

563

564

565

Michels (2020) also found that the En Tibi tomato specimen was more heterozygous than all recently collected accessions from Mesoamerica sequenced by Lin et al. (2014), which had a narrower genetic background. This means that the sixteenth-century specimen was less inbred or domesticated than its current counterparts in Mexico. However, some South American domesticated tomatoes had even higher heterozygosity, perhaps due to gene flow between landraces and crop wild relatives (Michels, 2020).

566 567 568

569

570

Discussion

Recently, the chloroplast DNA of the En Tibi specimen was completely retrieved at high coverage by Kakakiou (2021). Consequently, the En Tibi plastome was mapped to the

chloroplast genome of *S. lycopersicum* (NC_007898) and haplotype networks were constructed using the Median-Joining (MJ) method and the accessions of the 360-tomato resequencing project (Lin et al., 2014) to reveal the nearest relatives and give clues regarding its origin. The En Tibi specimen was placed in the same node as all Mesoamerican individuals, together with some Ecuadorian and Peruvian accessions of *S. lycopersicum* var. *cerasiforme* (Kakakiou, 2021).

The molecular research on the En Tibi tomato does not provide a definite answer to the exact locality of its domestication, and it was impossible to appoint the En Tibi as a direct ancestor of some modern tomato varieties. However, its direct ancestors likely came from Mesoamerica. The latest study by Blanca et al. (2021) shows that the wild *S. lycopersicum* var. *cerasiforme* from Mexico travelled with indigenous people to South America, probably as a weed among maize grains, where it hybridized with wild individuals of *S. pimpinellifolium*. People then started to domesticate these hybrids and took them back to Mexico, where they used them to develop *S. lycopersicum* var. *lycopersicum*. The Peruvian cherry tomato accessions that were close to the En Tibi tomato were probably also cultivated, carried some Mesoamerican ancestry and reflect the domestication history outlined by Blanca et al. (2021).

As more than 98% of its genome could not be read, it is impossible to reconstruct complete gene sequences coding for taste or natural resistance to pest and diseases (Michels, 2020), despite anticipation of this earlier (Van Santen 2012, De Boer, 2013). To reconstruct the 'original' flavor, nutritional qualities and adaptations to the (a)biotic environment of sixteenth-century tomatoes, assuming that these tomatoes possessed those traits and that they were lost through intensive breeding for yield in modern cultivars (Klee & Resende, 2020), research should focus on traditional landraces currently grown by small farmers in Central and South America that most resemble historic varieties.

The accessions sequenced by Lin et al. (2014) in the 360-tomato project reflect centuries of human migration and trade, which has caused extensive gene flow between tomato varieties. The information was obtained from online genomic data, and germplasm institutes store very little information on exact localities or morphological, nutritional and agronomical qualities of these accessions or on the farmers that grow them. Moreover, this resequencing project did not capture the entire tomato diversity in the Americas. Increased sampling of landraces in the Andes and Mesoamerica is essential to fully characterize tomato diversity (Knapp & Peralta, 2016). With decreasing crop diversity and the social, economic and ecological challenges faced by small farmers of indigenous descent to preserve their traditional agricultural practices (Knapp & Peralta, 2016; Petropoulos, Barros & Ferreira, 2019), tracing the 'sisters' of the En Tibi tomato back to Mexican or Peruvian smallholders' gardens will be difficult. The landraces that were genetically close to the En Tibi tomato were collected between 36 and 52 years ago: they may have already disappeared from indigenous gardens and survive only as seeds in germplasm institutes.

Conclusions

611

612 613

614

615

616

617

618

619

620

621

622

623

624 625

626

627

628

629

630

631 632

633

634

635

636 637

638

The earliest tomatoes that reached Europe came in a wide variety of colors, shapes and sizes: with both simple and fasciated flowers, round and segmented fruits. The first description of a tomato was published by Matthioli in 1544, while the oldest specimens were collected by Aldrovandi and Petrollini in c. 1551 in the Pisa botanical garden. The earliest illustrations were made in Germany and Flanders in the early 1550s. The names of early tomatoes in contemporary manuscripts suggest both a Mexican and a Peruvian origin. The 'En Tibi' specimen was collected by Petrollini around 1558 and thus is not the oldest extant tomato, although it is the first specimen that shows a mature fruit. Although only 1.2% of its nuclear DNA was recovered, molecular research on its genome and plastome shows that the En Tibi specimen was a fully domesticated tomato, and genetically close to three Mexican landraces and two Peruvian tomato accessions that most probably also had a Mesoamerican origin.

Molecular research on the other sixteenth-century tomato specimens may reveal additional patterns of genetic similarity and geographic origin. Clues on the 'historic' taste and pest resistance of the sixteenth-century tomatoes are difficult to find in their degraded DNA, but should rather be sought in those landraces in Central and South America that are genetically close to them. The indigenous farmers growing these traditional varieties should be supported to conserve these heirloom varieties in-situ.

Sequencing the ancient DNA of the other nine sixteenth-century tomato specimens highlighted in our paper may provide different but equally exciting snapshots of historic genetic variation. This may lead to different, similar-looking landraces in either South- or Mesoamerica. Further digitization, translation and online publication of Aldrovandi's manuscripts, archives of botanical gardens and correspondence between Renaissance naturalists will probably reveal more details on the first New World crops in Europe, their geographic origin and arrival date.

Acknowledgements

639 640 We would like to thank the staff of libraries and universities who provided us with digital images 641 of specimens, illustrations, rare books and manuscripts: Adriano Soldano, Annalisa Managlia, 642 Martina Caroli and Silvia Tebaldi of the University of Bologna (Aldrovandi herbarium), Gerda 643 van Uffelen of the Hortus Botanicus Leiden and Izabela Korczyńska of the Jagiellonian library in 644 Krakow (Libri Picturati), Gisela Glaeser of the Universitätsbibliothek der FAU Erlangen-645 Nürnberg (Oellinger and Gesner illustrations), Raffaella Alterio and Mario Setter, of the 646 Biblioteca Angelica (Erbario B), Rome, Karien Lahaise, Naturalis library (literature), Jurriaan de 647 Vos, University of Basel (C. Bauhin herbarium), the staff of the Archivio di Stato di Modena 648 (Ducale Estense herbarium), the staff of Biblioteca Marciana, Venice and Alessandro Moro 649 (Michiel's illustrations), Peter Mansfeld, Naturkundemuseum Kassel (Ratzenberger herbarium), 650 Sophie Schrader, Bayerische Staatsbibliothek München (Harder herbarium), and Peter Prokop of

- 651 the Österreichische Nationalbibliothek, Vienna (Fuchs illustration). DNA extraction was carried
- out by Barbara Gravendeel (Naturalis) and sequencing was carried out by Elio Schijlen
- (Wageningen University). We are also grateful to José Blanca who shared his group's latest
- findings on the history of tomato domestication.

656 References

- 657 Anguillara LM. 1561. Semplici, li quali in più parerei a diversi nobili huomini scritti Appaiono.
- Venice: Vincenzo Valgrisi.
- Arber A. 1986. Herbals, their origins and evolution: A chapter in the history of botany, 1470–
- 660 *1670.* Cambridge: Cambridge University Press.
- Bai Y, Lindhout P. 2007. Domestication and breeding of tomatoes: What have we gained and
- what can we gain in the future? *Annals of Botany* 100(5): 1085–1094. doi:
- https://doi.org/10.1093/aob/mcm150
- Bailey LH. 1886. *Notes on tomatoes*. East Lansing: Agricultural College of Michigan.
- Bakker FT, Antonelli A, Clarke JA, Cook JA, Edwards SV, Ericson PG, Faurby S, Ferrand N,
- Gelang M, Gillespie RG, Irestedt M, Lundin K, Larsson E, Matos-Maraví P, Müller J, Von
- Proschwitz T, Roderick GK, Schliep A, Wahlberg N, Wiedenhoeft J, Källersjö, M. 2020. The
- Global Museum: Natural history collections and the future of evolutionary science and public
- education. *PeerJ* 8: e8225. Doi: 10.7717/peerj.8225.
- Barrero LS, Tanksley SD. 2004. Evaluating the genetic basis of multiple- locule fruit in a broad
- cross section of tomato cultivars. *Theoretical and Applied Genetics* 109: 669–679. Doi:
- 672 10.1007/s00122-004-1676-y.
- Bauhin C. 1596. Phytopinax, seu, Enumeratio plantarum ab herbariis nostro plantarum
- 674 viuis iconibus. Basel: Sebastianum Henricpetri. Available at
- https://www.biodiversitylibrary.org/item/30648#page/346/mode/1up
- Bauhin C. 1598. Petri Andrea Matthioli opera quae extant omnia. Frankfurt: Nikolaus Basse.
 Available at
- https://play.google.com/books/reader?id=W99s3SJiLaAC&hl=en GB&pg=GBS.PA760
- Bauhin J, Cherler JH. 1651. *Historia plantarum universalis, nova, et absolutissima, cum consensu et dissensu circa eas.* 3rd vol. Yverdon: Dominicus Chabraeus.
- Baumann B, Baumann H, Baumann-Schleihauf S. 2001. *Die Kräuterbuch–Handschrift des Leonhart Fuchs*. Stuttgart: Ulmer.
- Besler B. 1613 [2008]. *Hortus Eystetensis*. Annotated edition, Schirmer/Mosel: Taschen.
- Blanca J, Sanchez-Matarredona D, Ziarsolo P, J Montero-Pau, Van der Knaap E, Díez MJ,
- Cañizares J. 2021. Haplotype analyses reveal novel insights into tomato history and
- domestication including long-distance migrations and latitudinal adaptations. BioRxiv
- preprint. Available at: doi: https://doi.org/10.1101/2021.06.18.448912
- Blanca J, Montero-Pau J, Sauvage C, Bauchet G, Illa E, Díez MJ, Francis D, Causse M, Van der
- Knaap E, Cañizares J. 2015. Genomic variation in tomato, from wild ancestors to
- contemporary breeding accessions. *BMC genomics* 16(1): 1-19.

- Bryant D. 2003. Neighbor-Net: an agglomerative method for the construction of phylogenetic
- networks. *Molecular Biology and Evolution* 21(2): 255–65. Doi: 10.1093/molbev/msh018.
- 693 Camerarius J. 1586. De Plantis Epitome Utilissima. Frankfurt am Main: Peter Fischer, Heinrich
- Dack. Available at https://archive.org/details/BIUSante-07755x01
- 695 Camerarius, J. 1590. Kreutterbuch Desz Hochgelehrten vnnd weitberühmten Herrn D. Petri
- 696 Andreae Matthioli: Jetzt widerumb mit viel schönen neuwen Figuren.... Frankfurt am Main:
- Peter Fischer, Heinrich Dack. Available at: http://digital.ub.uni-
- duesseldorf.de/vester/content/titleinfo/4025416
- Camus J, Penzig OAJ. 1885. *Illustrazione del ducale Erbario Estense conservato nel R. Archivio di Stato in Modena*. Modena: GT Vincenzi e nipoti.
- Caruel T. 1858. *Illustratio in hortum siccum Andreae Caesalpini*. Florence: Le Monnier.
- Cesalpino A. 1583. *De plantis Libri XVI*. Florence: Georgi Marescotti. Available at https://www.biodiversitylibrary.org/bibliography/60929#/summary
- 704 Chiovenda E. 1909. Francesco Petrollini, botanico del secolo XVI. *Annali di Botanica* 7: 339–705 447.
- 706 Chiovenda E. 1927. Un antichissimo erbario anonimo del Museo Botanico di Firenze. *Annali di Botanica* 17: 119–139.
- 708 Christenhusz MJ. 2004. The hortus siccus (1566) of Petrus Cadé: a description of the oldest
- known collection of dried plants made in the Low Countries. *Archives of Natural History* 31(1): 30-43.
- Daunay MC, Laterrot H, Janick J. 2006. Iconography of the Solanaceae from Antiquity to the XVIIth century: A rich source of information. *Acta Horticulturae* 745: 59-88.
- De Boer M. 2013. De smaak van een eeuwenoude tomaat. Naturalis Biodiversity Center: het
- 714 maatschappelijk belang van biodiversiteit. *NRC Handelsblad Supplement* 7 September 2013: 4.
- De Candolle A. 1885. Origin of cultivated plants, 1st American edition. New York: D. Appleton and Co
- 718 De Lobel M, Pena P. 1571. Stirpium Adversaria Nova. London: Thomas Purfoot. Available at
- 719 <u>https://bibdigital.rjb.csic.es/viewer/13064/?offset=#page=131&viewer=picture&o=search&n=</u>
 720 0&q=amoris
- 721 De Lobel M. 1576. Plantarum seu stirpium historia. Antwerp: Christopher Plantin. Avaialble at
- 722 <u>https://bibdigital.rjb.csic.es/viewer/13070/?offset=#page=1&viewer=picture&o=ocr&n=0&q=</u>
 723 amoris
- De Sahagún B. c. 1577. Historia general de las cosas de Nueva España por el fray Bernardino
- de Sahagún: el Códice Florentino. Libro X: del pueblo, sus virtudes y vicios, y otras naciones.
- Florence: Mss. Biblioteca Medicea Laurenziana, Florence. Available at
- 727 http://www.wdl.org/es/item/10621/#collection=florentine-codex.
- De Toni GB. 1907. Spigolature Aldrovandiane. VI. Le piante dell'antico Orto Botanico di Pisa ai
- 729 tempi di Luca Ghini. *Annali di Botanica Volume V* (3): 421-440.

- De Toni GB. 1910. Spigolature Aldrovandiane IX. Nuovi documenti intorno Francesco
- Petrollini, prima guida di Ulisse Aldrovandi nello studio delle piante. *Atti del Reale Istituto*
- 732 Veneto di Scienze, Lettere ed Arti 69: 815–825.
- 733 De Toni E. 1940. Michiel, Pietro Antonio. I cinque libri di piante. Codice Marciano, 1551-1575.
- Venice: Officine Grafiche Carlo Ferrari.
- 735 Dioscorides P. c. 60 AD. De Materia Medica.
- 736 Dodoens R. 1553. De stirpium historia commentariorum imagines ad vivum expressae...
- Antwerp: Ioannis Loei. Available at
- https://www.biodiversitylibrary.org/page/6726576#page/2/mode/1up
- 739 Dodoens R. 1583. Stirpium Historiae Pemptades Sex sive Libri XXX. Antwerp: Christopher
- 740 Plantin. Available at
- https://bibdigital.rjb.csic.es/viewer/10942/?offset=#page=1&viewer=picture&o=search&n=0
- 742 <u>&q</u>=
- Figure 743 Egmond F. 2010. The world of Carolus Clusius: Natural history in the making, 1550–1610.
- 744 London: Pickering & Chatto.
- Egmond F. 2016. The garden of nature: visualizing botanical research in northern and southern
- Europe in the 16th century. In: Ferdinand J, ed. *From art to science: Experiencing nature in the European garden 1500-1700*. Treviso: ZeL Edizioni, 18-33.
- 748 Egmond F. 2018. European exchanges and communities. In: Curry A, Jardine N, Secord JA,
- Spary EC, eds. Worlds of Natural History. Cambridge: Cambridge University Press, 78-93.
- 750 Findlen P. 1994. Possessing nature: Museums, collecting, and scientific culture in Early Modern
- 751 *Italy*. Berkeley: University of California Press.
- Findlen P. 2017. The death of a naturalist: Knowledge and community in late Renaissance Italy.
- 753 In: Manning G, Klestinec C. *Professors, Physicians and Practices in the History of Medicine*.
- 754 Cham: Springer, 127-168.
- 755 Frati L, Ghigi A, Sorbelli A. 1907. Catalogo dei manoscritti di Ulisse Aldrovandi. Bologna:
- Nicola Zanichelli, 127-168
- Fuchs L. 1542. De Historia Stirpium Commentarii insignes. Basel: Officina Isingriniana.
- 758 Available at
- https://bibdigital.rjb.csic.es/viewer/13865/?offset=#page=77&viewer=picture&o=bookmark&
- 760 n=0&q=
- Gentilcore D. 2010. *Pomodoro! A history of the tomato in Italy*. New York: Columbia University
- 762 Press.
- Gesner C. 1561. *In hoc volumine continenturDe hortus Germaniae*. Argentorati: Iosias
- Rihelius. Available at https://www.biodiversitylibrary.org/item/33559#page/1/mode/1up
- Gray A, Trumbull JH. 1883. Review of De Candolle's origin of cultivated plants; with
- annotations upon certain American species. *American Journal of Science* 3(148): 128-138.
- Guilandinus M. 1572. Papyrus, hoc est commentarius in tria C. Plinij maioris de papyro capita.
- Venice: Antonium Ulmum. Available at

- https://play.google.com/store/books/details?id=Lq4vsSs34OkC&rdid=book-
- 770 <u>Lq4vsSs34OkC&rdot=1</u>
- Houchin R. 2010. Praten over tomaten: Introductie van tomaat (Solanum lycopersicum L.) in de
- Lage Landen. In: Bakels CC, Fennema K, Out W, Vermeeren C., eds. *Van planten en slakken*.
- Leiden, Sidestone Press, 81-102.
- Jenkins JA. 1948. The origin of the cultivated tomato. *Economic Botany* 2(4): 379-392.
- Kakakiou V. 2021. Plastid genome analysis of the En Tibi specimen shows Mesoamerican
- origin. Leiden: MSc thesis, Leiden University. Available at:
- https://www.researchgate.net/publication/355163967_Plastid_genome_analysis_of_the_En_T
- ibi_specimen_shows_Mesoamerican_origin
- Katz E. 2009. Chili pepper, from Mexico to Europe: Food, imaginary and cultural identity. In:
- Medina FX, Ávila R, De Garine, I. Food, Imaginaries and Cultural Frontiers: Essays in
- honour of Helen Macbeth. Guadalajara: Universidad de Guadalajara, 213-232.
- 782 Kessler HF. 1870. Das älteste und erste Herbarium Deutschlands, im Jahre 1592 von Dr.
- Caspar Ratzenberger angelegt: gegenwärtig noch im Königlichen Museum zu Cassel
- 784 *befindlich*. Kassel: Freyschmidt. Available at http://mdz-nbn-resolving.de/urn:nbn:de:bvb:12-
- 785 <u>bsb11018583-2</u>
- Klee HJ, Resende Jr. MF. 2020. Plant domestication: Reconstructing the route to modern
- 787 tomatoes. *Current Biology* 30(8): R359-R361.
- Knapp S, Peralta IE. 2016. The tomato (Solanum lycopersicum L., Solanaceae) and its botanical
- 789 *relatives*. London: Natural History Museum.
- Koning J, van Uffelen G, Zemanek A, Zemanek B. 2008. Drawn after nature: the complete
- 791 botanical watercolours of the 16th-century Libri Picturati. Leiden: Brill.
- Larranaga N, Van Zonneveld M, Hormaza JI. 2021. Holocene land and sea-trade routes explain
- complex patterns of pre-Columbian crop dispersion. *New Phytologist* 229(3): 1768-1781.
- Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J,
- Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li K, Xiong G, Xue Y, Mazzucato A,
- Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, Städler T, Li J, Ye Z, Du Y, Huang S.
- 797 2014. Genomic analyses provide insights into the history of tomato breeding. *Nature Genetics* 46(11): 1220-1226.
- 799 Linnaeus C. 1753. *Species Plantarum*. Stockholm: Laurentius Salvius.
- Long J. 1995. De tomates y jitomates en el siglo XVI. Estudios de Cultura Náhuatl 25: 239–252.
- López-Terrada M. n.d. The history of the arrival of the tomato in Europe: an initial overview.
- 802 Traditom. Available at
- 803 <u>http://traditom.eu/fileadmin/traditom/downloads/TRADITOM_History_of_the_arrival_of_the</u>
- 804 <u>tomato_in_Europe.pdf</u>
- Luztze E, Retzlaff H. 1949. Herbarium des Georg Oellinger anno 1553 zu Nürnberg. Salzburg:
- Akademischer Gemeinschaftsverlag.
- Matthioli PA. 1544. Di Pedacio Dioscoride Anazarbeo libri cinque della historia, et materia
- 808 medicinale trodotti in lingua volgare Italiana. Venice: Nicolo de Bascarini.

- Matthioli PA. 1548. Commentarii, in libros sex Pedacii Dioscorides Anarzabei, de materia
- 810 *medica*., Venice: Valgrisius. Available at
- https://classic.europeana.eu/portal/nl/record/92004/NKCR NKCR 5 H 000058 45VM
- 812 8U7 cs.html?utm source=new-website&utm medium=button
- 813 Matthioli PA. 1554. Commentarii in libros sex Pedacii Dioscoridis Anazarbei, de medica
- 814 *materia*. Venice: Valgrisius. Available at
- 815 <u>https://books.google.nl/books?id=HEhdAAAAAAAJ&printsec=frontcover&cad=0#v=onepag</u>
- 816 <u>e&q&f=true</u>
- McCue GA. 1952. The history of the use of the tomato: an annotated bibliography. *Annals of the*
- 818 *Missouri Botanical Garden* 39(4): 289-348.
- Metro-Roland MM. 2013. Goulash nationalism: the culinary identity of a nation. *Journal of*
- 820 *Heritage Tourism* 8(2-3): 172-181.
- Meyer FG, Trueblood EE, Heller JL. 1999. The great herbal of Leonhart Fuchs: de historia
- 822 stirpium commentarii insignes, 1542. Stanford: Stanford University Press.
- Michels E. 2019. The phylogeography and functional genomics of the En Tibi tomato specimen.
- Leiden: MSc thesis, Leiden University. Available at:
- https://www.researchgate.net/publication/355062128 The phylogeography and functional g
- enomics of the En Tibi tomato specimen
- Minelli A. 2010. Michiel, Pietro Antonio. *Dizionario Biografico degli Italiani*, Volume 74.
- Available at https://www.treccani.it/enciclopedia/pietro-antonio-michiel_(Dizionario-antonio-michiel_">https://www.treccani.it/enciclopedia/pietro-antonio-michiel_ (Dizionario-antonio-michiel_")
- 829 <u>Biografico</u>).
- Palmer R. 1985. Medical botany in northern Italy in the Renaissance. *Journal of the Royal*
- 831 *Society of Medicine* 78(2): 149-157.
- Pardo Tomás J, López Terrada ML. 1993. Las primeras noticias sobre plantas Americanas en
- las relaciones de viajes y crónicas de Indias (1493-1553). Cuadernos Valencianos de Historia
- de la Medicina y de la Ciencia XL, Serie A (Monografías). Valencia: Universitat de Valencia.
- Penzig OAJ. 1905. Illustrazione degli erbarii di Gherardo Cibo. In: Penzig OAJ, ed.
- 836 Contribuzioni alla storia della botanica. Milan: U. Hoepli, 1–237.
- Peralta IE, Spooner DM, Knapp S. 2008. Taxonomy of wild tomatoes and their relatives
- 838 (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae).
- 839 Systematic Botany Monographs 84. Laramie: American Society of Plant Taxonomists.
- Petropoulos SA, Barros L, Ferreira ICFR. 2019. Rediscovering local landraces: Shaping
- horticulture for the future. *Frontiers in Plant Science* 10: 126. Doi: 10.3389/fpls.2019.00126.
- PROTA. 2015. Bibliographic details for Solanum aethiopicum. Wageningen: Plant Resources of
- Tropical Africa. Available at https://uses.plantnet-
- project.org/en/Solanum aethiopicum (PROTA)
- Rotelli F. 2018. Exotic plants in Italian pharmacopoeia (16th-17th centuries). Medicina nei
- 846 Secoli 30(3): 827-880.
- 847 Smith AF. 1994. *The tomato in America: Early history, culture, and cookery*. Columbia:
- 848 University of South Carolina Press.

- Soldano A. 2000. La provenienza delle raccolte dell'erbario di Ulisse Aldrovandi, Volumi I e II.
- Atti dell' Istituto Veneto di Scienze, Lettere ed Arti, Classe de Scienze fisiche, Matematiche e Naturali 158: 1-246.
- Speta F, Grims F. 1980. Hieronymus Harder und sein "Linzer" Herbarium aus den Jahre 1599.
- Kataloge des Oö. Landesmuseums 105, zugleich Linzer Biologische Beiträge 12: 307-330
- Staats M, Erkens RH, Van de Vossenberg B, Wieringa JJ, Kraaijeveld K, Stielow B, Geml J,
- Richardson JE, Bakker FT. 2013. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens. *PLoS ONE* 8(7): e69189.
- Stefanaki A, Thijsse G, van Uffelen G, Eurlings M, van Andel TR. 2018. The En Tibi herbarium, a 16th century Italian treasure. *Botanical Journal of the Linnaean Society* 187: 397-427.
- 859 Stefanaki A, Porck H, Grimaldi IM, Thurn N, Pugliano V, Kardinaal A, Salemink J, Thijsse G,
- Chavannes-Mazel C, Kwakkel E, Van Andel TR. 2019. Breaking the silence of the 500-year-
- old smiling garden of everlasting flowers: The En Tibi book herbarium. *PLoS ONE* 14(6): e0217779.
- Stefanaki A, Walter T, Porck H, Bertin A, Van Andel TR. 2021. The early book herbaria of Leonhard Rauwolf (S. France and N. Italy, 1560–1563): new light on a plant collection from the 'golden age of botany'. *Rendiconti Lincei Scienze Fisiche e Naturali* 32: 449–461.
- Sturtevant EL. 1919. *Notes on edible plants*. Report of the New York Experiment Station of the year 1919. Albany: J.B. Lyon Company. Available at https://uses.plantnet-project.org/en/Lycopersicum (Sturtevant, 1919)
- The Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. *Nature* 485(7400): 635–41. Doi: 10.1038/nature11119.
- Thijsse G. 2012. Gedroogde schatten. In: van Gelder E, ed. *Bloeiende kennis: Groene ontdekkingen in de Gouden Eeuw*. Hilversum: Uitgeverij Verloren, 36–54.
- Thijsse G. 2016. 'Tussen pampier geleyt': Ontstaan, verspreiding en gebruik van de vroegste herbaria. In: IJpelaar L, Chavannes-Mazel CA, eds. *De groene Middeleeuwen. Duizend jaar gebruik van planten (600–1600)*. Eindhoven: Lecturis BV, 64–93.
- Toresella S. 1992. Le prime piante americane negli erbari del Cinquecento. *Le Scienze* 281: 46-57.
- Ubriszy Savoia A. 1993. Le piante americane nell'Erbario di Ulisse Aldrovandi. *Webbia* 48: 579–598.
- Van Santen H. 2012 De alleroudste tomaat ligt in Leiden. *NRC Handelsblad* 17 July 2012: 16.
- Van Andel TR, Meyer RS, Aflitos SA, Carney JA, Veltman MA, Copetti D, Flowers JM,
- Havinga RM, Maat M, Purugganan MD, Wing RA, Schranz ME. 2016. Tracing ancestor rice of Suriname Maroons back to its African origin. *Nature Plants* 2(10): 1-5. Doi:
- 884 10.1038/nplants.2016.149
- Van Andel TR. 2017. *Open the treasure room and decolonize the museum*. Inaugural lecture for the Clusius chair in History of Botany and Gardens. Leiden: Leiden University.
- Vandewiele LJ. 1993. Wat groeide er in de tuin van Pieter van Coudenberghe? In: De Nave F,
- Imhof D, eds. De Botanica in de Zuidelijke Nederlanden (einde 15de eeuw-ca. 1650)
- Antwerp: Museum Plantin-Moretus and Stedelijk Prentenkabinet, 23-31.