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Owing to technological advances in ancient DNA, it is now possible to sequence viruses from the past to
track down their origin and evolution. However, ancient DNA data is considerably more degraded and
contaminated than modern data making the identification of ancient viral genomes particularly
challenging. Several methods to characterise the modern microbiome (and, within this, the virome) have
been developed; in particular, tools that assign sequenced reads to specific taxa in order to characterise
the organisms present in a sample of interest. While these existing tools are routinely used in modern
data, their performance when applied to ancient microbiome data to screen for ancient viruses remains
unknown.

In this work, we conducted an extensive simulation study using public viral sequences to establish which
tool is the most suitable to screen ancient samples for human DNA viruses. We compared the
performance of four widely used classifiers, namely Centrifuge, Kraken2, DIAMOND and MetaPhlAn2, in
correctly assigning sequencing reads to the corresponding viruses. To do so, we simulated reads by
adding noise typical of ancient DNA to a set of publicly available human DNA viral sequences and to the
human genome. We fragmented the DNA into different lengths, added sequencing error and C to T and G
to A deamination substitutions at the read termini. Then we measured the resulting sensitivity and
precision for all classifiers.

Across most simulations, more than 228 out of the 233 simulated viruses are recovered by Centrifuge,
Kraken2 and DIAMOND, in contrast to MetaPhlAn2 which recovers only around one third. Overall,
Centrifuge and Kraken2 have the best performance with the highest values of sensitivity and precision.
We found that deamination damage has little impact on the performance of the classifiers, less than the
sequencing error and the length of the reads. Since Centrifuge can handle short reads (in contrast to
DIAMOND and Kraken2 with default settings) and since it achieves the highest sensitivity and precision at
the species level across all the simulations performed, it is our recommended tool. Regardless of the tool
used, our simulations indicate that, for ancient human studies, users should use strict filters to remove all
reads of potential human origin. Finally, we recommend to verify which species are present in the
database used, as it might happen that default databases lack sequences for viruses of interest.
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Abstract  30 

Owing to technological advances in ancient DNA, it is now possible to sequence 31 

viruses from the past to track down their origin and evolution. However, ancient DNA data 32 

is considerably more degraded and contaminated than modern data making the 33 

identification of ancient viral genomes particularly challenging. Several methods to 34 

characterise the modern microbiome (and, within this, the virome) have been developed; in 35 

particular, tools that assign sequenced reads to specific taxa in order to characterise the 36 

organisms present in a sample of interest. While these existing tools are routinely used in 37 

modern data, their performance when applied to ancient microbiome data to screen for 38 

ancient viruses remains unknown.  39 

In this work, we conducted an extensive simulation study using public viral 40 

sequences to establish which tool is the most suitable to screen ancient samples for human 41 

DNA viruses. We compared the performance of four widely used classifiers, namely 42 

Centrifuge, Kraken2, DIAMOND and MetaPhlAn2, in correctly assigning sequencing reads 43 

to the corresponding viruses. To do so, we simulated reads by adding noise typical of 44 

ancient DNA to a set of publicly available human DNA viral sequences and to the human 45 

genome. We fragmented the DNA into different lengths, added sequencing error and C to T 46 

and G to A deamination substitutions at the read termini. Then we measured the resulting 47 

sensitivity and precision for all classifiers.  48 

Across most simulations, more than 228 out of the 233 simulated viruses are 49 

recovered by Centrifuge, Kraken2 and DIAMOND, in contrast to MetaPhlAn2 which 50 

recovers only around one third. Overall, Centrifuge and Kraken2 have the best performance 51 

with the highest values of sensitivity and precision. We found that deamination damage has 52 

little impact on the performance of the classifiers, less than the sequencing error and the 53 

length of the reads. Since Centrifuge can handle short reads (in contrast to DIAMOND and 54 

Kraken2 with default settings) and since it achieves the highest sensitivity and precision at 55 

the species level across all the simulations performed, it is our recommended tool. 56 

Regardless of the tool used, our simulations indicate that, for ancient human studies, users 57 

should use strict filters to remove all reads of potential human origin. Finally, we 58 

recommend to verify which species are present in the database used, as it might happen that 59 

default databases lack sequences for viruses of interest. 60 
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Introduction  61 

The human body is home to different species of microorganisms (including bacteria, 62 

archaea, viruses and eukaryotes). The composition of these microorganisms is called 63 

microbiota, and the union of all their genomes is referred to as the microbiome. The 64 

microbiome is being characterised since the last few decades and is known to play an 65 

important role in human health (Anon 2019). The majority of the microbiome studies have 66 

concentrated on the most abundant organisms of the microbiota, namely the bacteria (Stern 67 

et al. 2019). However, the rest of the microbiome, especially the virome, the viral fraction 68 

of the microbiome, has gained more attention in recent years as it is tightly linked to our 69 

welfare (Pérez-Brocal and Moya 2018; Siqueira et al. 2018; Stern et al. 2019). 70 

Ancient DNA (aDNA) sequencing allows for the reconstruction of ancient 71 

microbial genomes and has opened the door to an entire new field sometimes dubbed 72 

“paleomicrobiology”.  The availability of aDNA has opened a unique window into the past 73 

allowing to study the evolution of viruses and other pathogenic microbes (Taubenberger et 74 

al. 2005; Duggan et al. 2016; Worobey et al. 2016; Krause-Kyora et al. 2018; Mühlemann, 75 

Jones, et al. 2018; Mühlemann, Margaryan, et al. 2018; Vågene et al. 2018; Rascovan et al. 76 

2019). 77 

 Even though the potential gains are enormous, the ancient microbiome is both 78 

challenging to retrieve and to analyse as aDNA is degraded and contaminated. More 79 

specifically, aDNA molecules present characteristic patterns caused by post-mortem 80 

molecular damage: fragmentation and substitutions (especially occurring at the end of the 81 

molecules). Such damage (and the associated patterns) depends on environmental factors 82 

such as humidity, temperature, salinity, pH, and microbial growth (Briggs et al. 2007; 83 

Allentoft et al. 2012; Sawyer et al. 2012; Dabney et al. 2013). Fragmentation is the 84 

consequence of depurination with abasic sites leading to single-strand breaks and, 85 

subsequently, to double-strand breaks, which cause the DNA molecule to break into small 86 

fragments (Dabney et al. 2013). Note that a large fraction of the DNA fragments is 87 

considerably shorter than 100 bp resulting in sequenced reads that often include some of the 88 

sequencing adapters. Substitutions at the end of the DNA fragments are caused by 89 

deamination resulting into an increase cytosines to thymines (C to T) substitutions at the 5’ 90 
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end of the fragments and guanines to adenines (G to A) substitutions at the 3’ ends of the 91 

fragments for double stranded libraries (Briggs et al. 2007; Carøe et al. 2018).  92 

In most microbiome aDNA studies the first step conducted is to assign a taxon to 93 

each of the sequenced reads using a classifier (i.e. classify the reads). The classification of 94 

the reads results in a list of microbes that are potentially ancient having infected the host 95 

prior to the death of the sampled organism. From this list of potential candidates some 96 

microbes (usually pathogens) are selected for follow up analyses to corroborate if they are 97 

truly ancient microbes and “endogenous”. The classification of reads and selection of 98 

candidates is known as the screening or scanning step (Warinner et al. 2017). The steps 99 

following the screening are computationally intensive, for instance, they generally include a 100 

mapping step (BWA (Li and Durbin 2009), BowTie2 (Langmead and Salzberg 2012)) and 101 

a blasting step (Altschul et al. 1990) to determine if a particular genome is the most likely 102 

source of the sequenced reads (Krause-Kyora et al. 2018; Mühlemann, Jones, et al. 2018; 103 

Vågene et al. 2018; Mühlemann et al. 2020). 104 

For the screening step there are many options of classifiers available. The classifiers 105 

are diverse and differ from each other in the underlying database, sequence search 106 

algorithm, and taxonomic binning (the process of assigning a taxonomic rank to each of the 107 

reads sequenced from a sample). In the specific case of ancient microbiome studies, 108 

benchmarks have been conducted to choose an appropriate classifier (Velsko et al. 2018) or 109 

to determine the most adequate parameters to enhance the performance of specific 110 

classifiers (Eisenhofer and Weyrich 2019). Nevertheless, these benchmark studies only 111 

focus on the bacterial fraction of the microbiomes. Considering this, we have decided to 112 

perform a benchmark study to assess the performance of different classifiers in screening 113 

ancient microbiome samples for viruses; specifically, our study focuses on DNA viruses 114 

with human as their host (human DNA viruses), since most of the ancient viral DNA 115 

studies published so far target such viruses. In short, we classified simulated samples with 116 

four classifiers: Centrifuge, Kraken2, DIAMOND and MetaPhlAn2 (for a fifth classifier: 117 

MALT, see Supplementary Note 1). The classified samples consisted of simulated ancient-118 

like DNA reads, with different length, deamination damage and sequencing error values. 119 

These samples represent an ideal case scenario as they come from a single human DNA 120 

viral species and have a high coverage. As we knew the true species in the sample, we 121 
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scored the classifications per sample; we evaluated the effect of read length, deamination 122 

and sequencing error; and we compared the overall performance of all classifiers. In 123 

addition, we evaluate the effect of human contamination by classifying simulated human 124 

reads with the four classifiers.  125 

The four classifiers assessed in the present study: Centrifuge (Kim et al. 2016), 126 

Kraken2 (Wood et al. 2019), DIAMOND (Buchfink et al. 2015) and MetaPhlAn2 (Truong 127 

et al. 2015) differ on their approaches. These classifiers were not specifically developed for 128 

aDNA; fragmentation and cytosine deamination may present a challenge for the taxonomic 129 

assignment since reads with post-mortem alterations could lead to misclassifications. In the 130 

subsequent paragraphs we will describe the characteristics in terms of database, algorithms 131 

and taxonomic binning of these four classifiers (see Table 1 for a summary). 132 

The four classifiers databases are characterised by the type of molecule and the 133 

genomic region(s) that are included. Among the four classifiers, two different types of 134 

molecules are used: DNA and protein sequences. In terms of genomic regions, the 135 

databases either include multiple loci from each organism (such as a set of proteins or 136 

marker genes) or whole genomes. Centrifuge uses whole genome DNA databases. Kraken2 137 

is versatile in database usage as it can use protein or DNA, whole genome or single locus 138 

databases. DIAMOND uses a protein database and can use as query both DNA or amino 139 

acid sequences. MetaPhlAn2 relies on a multiple loci DNA database consisting of core 140 

genes that are shared within a clade but not outside of it (clade specific marker genes). In 141 

contrast to its previous version, MetaPhlAn2’s database includes marker genes for viruses 142 

and eukaryotic microbes.  143 

For the sequenced search algorithm, classifiers either rely on alignments or on exact 144 

k-mer matches. Centrifuge, DIAMOND and MetaPhlAn2 depend on alignment algorithms. 145 

Centrifuge uses the Burrows-Wheeler Transform (Burrows and Wheeler 1994) and 146 

Ferragina-Manzini index (Ferragina and Manzini 2000). These algorithms allow to create a 147 

data structure which facilitates fast alignments with efficient memory usage. Centrifuge 148 

works by searching for exact matches (i.e. no mismatches or gaps are allowed). DIAMOND 149 

implements double index alignment (both query and reference are indexed), looking for 150 

matches of seeds (short subsequences of fixed length, with default lengths of 15-24 bp) and 151 

then extending the alignment. DIAMOND’s seeds are spaced seeds, meaning that some 152 
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positions in the seeds are treated as wildcards. Finally, MetaPhlAn2 performs alignments 153 

using BowTie2 (Langmead and Salzberg 2012). BowTie2 is an index-assisted aligner that 154 

allows gaps in the alignment. Its algorithm has two phases: ungapped seed match, and an 155 

extension that permits gaps. Kraken2 is in contrast an alignment-free classifier which is 156 

based on exact matches of k-mers (sequence substrings of length k)  (Wood and Salzberg 157 

2014). Kraken2 builds an index of k-mers (of length 35 by default for nucleotide 158 

sequences) from the database. K-mers are first obtained from the query read and these k-159 

mers are then looked up in the database (an exact k-mer match is performed). 160 

Finally, the classifiers use different strategies for taxonomic binning. DIAMOND 161 

uses the lowest common ancestor (LCA) algorithm: that is, if a read matches several 162 

species, it will be assigned to the most specific (“lowest”) taxonomic rank shared by all the 163 

matching species. If the read only matches one species, the taxonomic assignation will 164 

remain at the level of that species. As a consequence, conserved sequences will be assigned 165 

to higher taxonomic levels, and specific sequences will be assigned to species level (Huson 166 

et al. 2007). Centrifuge and Kraken2 perform taxonomic binning using scoring schemes. 167 

Centrifuge ranks the alignments done with a score that favours longer hits. The query read 168 

is attributed to the taxon in the database with the highest score. Similarly, Kraken2 assigns 169 

a read to the taxon which has the most k-mer matches in common. In this case, a root-to-170 

leaf path is used to sum k-mers coming from higher taxonomic ranks. MetaPhlAn2 relies 171 

on a clade specific marker catalogue. If there is an alignment to a marker, the read is 172 

assigned to the taxonomic clade associated with that marker. A clade can be as specific as a 173 

strain, or as broad as a phylum (Segata et al. 2012). 174 

Materials & Methods 175 

In short, the analyses consisted in simulating reads from reference viral sequences, 176 

classifying them with four widely used classification tools and quantifying the performance 177 

of the classifiers under different conditions. In particular, we investigated how varying the 178 

read lengths, adding DNA damage (features typical of ancient DNA) and sequencing error 179 

impact the classifications made by the tools. Finally, we analysed the assignments made by 180 

the classifiers on simulated short human reads.  181 
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Reference viral sequences 182 

A total of 238 reference viral sequences from 233 different human DNA viruses were used 183 

in this study. To get the aforementioned sequences we first queried the Viral-Host DB 184 

(downloaded on 25 September 2019) (Mihara et al. 2016) for viruses that infect Homo 185 

sapiens, obtaining a list of 1,315 viruses. We downloaded the reference sequences of such 186 

viruses in genbank format from NCBI RefSeq (Brister et al. 2015; O’Leary et al. 2016) and 187 

kept the sequences if their “molecule type” record was “DNA” or “ss-DNA”, obtaining a 188 

total of 250 DNA viral sequences. Finally, we removed duplicated sequences with the same 189 

taxID, representing viruses with different isolates or alternative genomes assemblies; we 190 

also removed the Human endogenous retrovirus K113 (HERV-K113) sequence 191 

(NC_022518.1), as this virus is a provirus in the human reference genome (Turner et al. 192 

2001). This gave us a total of 233 viruses with 238 different sequences (one of the viruses 193 

is stored in RefSeq in six different contigs). A table with information about the viruses used 194 

in this study is available on Table S1; it includes the following: virus name, sequence name, 195 

sequence length, type of molecule (DNA or ss-DNA), type of genome (linear or circular), 196 

sequence accession number, virus taxID and Baltimore group. For each selected viral 197 

sequence, we generated a set of simulated reads as described below. 198 

Simulation of viral reads and read length 199 

ART (ART-MountRainier-2016-06-05, art_Illumina Q Version 2.5.8) (Huang et al. 200 

2012) was used to simulate sequencing reads starting from each of the 233 human DNA 201 

viruses’ sequences as reference. By default, ART simulates reads with sequencing error 202 

typical for the specified sequencer. The sequencing machine was set to Illumina HiSeq 203 

2500 (art_illumina -ss HS25) for all simulations, and the parameter qShift (that controls the 204 

amount of sequencing error, see below) was set to 0 for most of the simulations (but also to 205 

different values when assessing the effect of sequencing error) resulting in typical Illumina 206 

HiSeq 2500 error profiles. In an initial simulation, for each of the 233 viruses, single-end 207 

reads of a fixed length were simulated emulating the short read length observed in typical 208 

ancient DNA data, see e.g. (Green et al. 2008). First, the read length was set at 60 bp (-l 60) 209 

and a coverage of 10× was requested (-f 10) resulting in 280 to 39,270 reads per virus, 210 

depending on the viral sequence length. Second, the read length was varied from 30 to 150 211 

bp while keeping the coverage at 10×. We set the coverage of 10× (an unrealistically high 212 
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number for ancient DNA data) as we wanted to compare the classifiers under ideal 213 

conditions. As the reads are classified independently of each other, we do not expect that 214 

the relative performance of the classifiers (point estimates) would change with a lower 215 

depth of coverage. 216 

Each set of reads from the 233 selected human DNA viruses was classified using 217 

four different classifiers: Centrifuge, Kraken2, DIAMOND and MetaPhlAn2 (Table 1). The 218 

parameters for each of the classifiers are specified below. 219 

Classification of reads 220 

As much as possible, we used the default parameters suggested by the developers of each 221 

tool to build the databases and perform the classification as the performance of each tool is 222 

likely optimal for those parameters. Otherwise the parameters are stated. 223 

Centrifuge 224 

Centrifuge version 1.0.3-beta was used. To build a custom viral database we downloaded 225 

all the viral sequences stored in RefSeq on 12 September 2021 from 226 

https://ftp.ncbi.nlm.nih.gov/refseq/release/viral/viral.${i}.1.genomic.fna.gz (${i} has values 227 

from 1 to 3) and NCBI’s taxonomy nodes information (files nodes.dmp and names.dmp) 228 

from https://ftp.ncbi.nih.gov/pub/taxonomy/taxdmp.zip on 14 October 2021. We created 229 

our own “conversion table” file required by Centrifuge which links the accession number to 230 

its taxID using the following command of NCBI’s E-utilities (Anon):  231 

esearch -db nuccore -query "${accession}[Accession]" | elink -target 232 

taxonomy | efetch -format xml | xtract -pattern Taxon -element TaxId, 233 

where “${accession}” represents the accession number. We then created the database with 234 

the following command: centrifuge-build --conversion-table 235 

my_viral_accession2taxid.map --taxonomy-tree nodes.dmp --name-table 236 

names.dmp all_viral.genomic.fna Centrifuge_viral, where 237 

“my_viral_accession2taxid.map” is our “conversion-table” file; “nodes.dmp” and 238 

“names.dmp” are the taxonomy files downloaded from NCBI Taxonomy; 239 

“all_viral.genomic.fna” contains all RefSeq viral sequences in fasta format; and 240 

“Centrifuge_viral” is the name of the created database. 241 

We also created Centrifuge’s default database which includes all RefSeq sequences from 242 

bacterial, archaeal, viral and human genomes (built on 2 September 2021) following the 243 
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software instructions). The results obtained with the default database are shown in 244 

Supplementary Note 2. 245 

When running Centrifuge to classify the reads a maximum of one taxonomic assignment 246 

per read was retrieved (-k 1), to obtain an output comparable to the other classifiers. All 247 

other parameters were left with default values. 248 

Kraken2 249 

Kraken2 version 2.0.7-beta was run with default parameters. To build our viral custom 250 

database first we downloaded the taxonomy using the following command kraken2-build 251 

--download-taxonomy --db Kraken2_viral_db, where Kraken2_viral_db is the name 252 

of the database. Then we replace all the internal files (except 253 

“Kraken2_viral_db/taxonomy”) to have the following directory structure: 254 

Kraken2_viral_db/ 255 

| 256 

|-- library 257 

|   \-- viral 258 

|       \-- library.fna 259 

| 260 

|-- seqid2taxid.map 261 

| 262 

\-- taxonomy 263 

Where “library.fna” is the same as “all_viral.genomic.fna” and “seqid2taxid.map” is the 264 

same as “my_viral_accession2taxid.map”; both files used to build Centrifuge’s custom 265 

viral database. To build the database the following command was used: kraken2-build -266 

-build --db Kraken2_viral_db. 267 

We also downloaded Kraken2 the prebuilt “standard” database from 268 

https://benlangmead.github.io/aws-indexes/k2 dated to 17 May 2021. This database 269 

includes the RefSeq of bacterial, archaeal, viral and human genomes plus UniVec_Core. 270 

The results obtained with this default database are shown in Supplementary Note 2. 271 

We also performed analyses building a database with a shorter k-mer length in order to 272 

classify short (30 bp) reads, for these results see Supplementary Note 3. 273 
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DIAMOND 274 

DIAMOND version 0.9.22 was used with the RefSeq viral protein database. The protein 275 

sequences were downloaded from 276 

https://ftp.ncbi.nlm.nih.gov/refseq/release/viral/viral.${i}.protein.faa.gz  (${i} has values 277 

from 1 to 3); the taxonomy nodes where downloaded from 278 

https://ftp.ncbi.nih.gov/pub/taxonomy/taxdmp.zip; and the file which links accession 279 

number to taxID was downloaded from 280 

https://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/prot.accession2taxid.gz. All files 281 

were downloaded on 1 September 2021. The database was built following the manual’s 282 

instructions. 283 

In addition, we built a “full” database with archaeal, bacterial, human and viral protein 284 

sequences. The viral sequences and taxonomy files are identical as the previous database. 285 

We downloaded the archaeal sequences from 286 

https://ftp.ncbi.nlm.nih.gov/refseq/release/archaea/archaea.nonredundant_protein.${i}.prote287 

in.faa.gz (${i} has values from 1 to 12); the bacterial from 288 

https://ftp.ncbi.nlm.nih.gov/refseq/release/bacteria/bacteria.nonredundant_protein.${i}.prot289 

ein.faa.gz (${i} has values from 1 to 1396); and human from 290 

https://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/human.${i}.protein.faa.gz (${i} has 291 

values from 1 to 11). Archaeal and bacterial protein sequences were downloaded on 1 292 

September 2021; human protein sequences were downloaded on 6 September 2021. The 293 

results obtained with this “full” database are shown in Supplementary Note 2. 294 

DIAMOND was run in the taxonomic classification mode (-f 102 option) in order to 295 

perform the taxonomic assignments; all other parameters were set as default. As the input 296 

data is DNA, the query is translated into protein for each of its six reading frames and 297 

aligned against the protein database. 298 

We also performed analyses changing the default seed length used by DIAMOND in order 299 

to classifiy short (30 bp) reads, for these results see Supplementary Note 3. 300 

MetaPhlAn2 301 

MetaPhlAn2 version 2.6.0 was run with default parameters. The default microbe clade-302 

specific marker genes database was used (mpa_v20_m200 version), it includes marker 303 

genes from bacteria, archaea, viruses and eukaryotic microbes. 304 
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Summary statistics 305 

To evaluate the performance of the classifiers, each read was assigned to one of the 306 

following categories: i) correctly classified read at the species level (“correct species”), ii) 307 

correctly classified read at a higher taxa level (“correct higher”), iii) misclassified read at 308 

any taxa level (“incorrect”) and iv) unclassified read (“unclassified”). Figure 1 shows a 309 

schematic example of each of the four categories for Variola virus.  The correctly classified 310 

reads are divided into two sets hereafter: a set including only the reads classified correctly 311 

at the species level (“correct species”, abbreviated “s” below) and a set including all the 312 

reads classified correctly at the species and at higher taxa (“correct species” and “correct 313 

higher”, abbreviated “s&h” below). Further, we computed the widely used statistics 314 

sensitivity and precision to compare the classifiers (Wood and Salzberg 2014). Sensitivity 315 

is the proportion of correctly classified reads over all simulated reads; precision is the 316 

proportion of correctly classified reads over all classified reads. We computed two sets of 317 

sensitivity and precision measures depending on whether “correct species” is assumed to be 318 

correct or “correct species” and “correct higher” are assumed to be correct. More 319 

specifically, sensitivity and precision are defined as follows for each viral sequence 𝑣":  320 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦*+, =
𝑟/*+,

𝑟/*+, + 𝑟/1+, + 𝑟"+, + 𝑟2+,
 321 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦*&1+, = 𝑟/*+, + 𝑟/1+,
𝑟/*+, + 𝑟/1+, + 𝑟"+, + 𝑟2+,

 322 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛*+, =
𝑟/*+,

𝑟/*+, + 𝑟/1+, + 𝑟"+,
 323 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛*&1+, = 𝑟/*+, + 𝑟/1+,
𝑟/*+, + 𝑟/1+, + 𝑟"+,

 324 

where 𝑟/*+,  are the number of “correct species” reads for the viral sequence 𝑣",  𝑟/1+,   are the 325 

number of “correct higher” reads for the viral sequence 𝑣",  𝑟"+, are the number of 326 

“incorrect” reads for the viral sequence 𝑣",  𝑟2+,  are the number of “unclassified” reads for 327 

the viral sequence 𝑣". For some of the viral sequences 𝑣7, all reads are “unclassified” and 328 

𝑟/*
+8 + 𝑟/1

+8 + 𝑟"
+8 = 0. In this case, the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛*

+8 and the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛*&1
+8  are undefined.  329 
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We summarize the results by computing the mean sensitivities and precisions across the 330 

simulated viral sequences.  For the sensitivities, we have:  331 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦*	 =
1
233>

𝑟/*+,
𝑟/*+, + 𝑟/1+, + 𝑟"+, + 𝑟2+,

?@@

"AB
 332 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦*&1	 = 1
233>

𝑟/*+, + 𝑟/1+,
𝑟/*+, + 𝑟/1+, + 𝑟"+, + 𝑟2+,

?@@

"AB
 333 

For the precisions, we have:  334 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛*	 =
1
𝑛/>

𝑟/*+,
𝑟/*+, + 𝑟/1+, + 𝑟"+,

CD

"AB
 335 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛*&1	 = 1
𝑛/>

𝑟/*+, + 𝑟/1+,
𝑟/*+, + 𝑟/1+, + 𝑟"+,

CD

"AB
 336 

where 𝑛/ is the number of viral sequences for which there is at least one read classified 337 

(correctly or not), i.e. for which 𝑟/*+, + 𝑟/1+, + 𝑟"+, > 0. 338 

In addition, we counted and characterised the number of spurious extra taxa 339 

identified by the classifiers. These taxa are associated with one or more “incorrect” reads. 340 

They include any taxa that were not used to simulate the sequencing reads or taxa not 341 

included in the lineages of the simulated viruses. 342 

Effect of adding deamination damage 343 

Besides DNA fragmentation, another molecular characteristic of ancient DNA is the 344 

deamination process which, for double stranded libraries, results in an increase of C to T 345 

substitutions at the 5’ ends and G to A substitutions at the 3’ ends (Briggs et al. 2007; 346 

Carøe et al. 2018). We simulated reads of 60 bp length and added different levels of 347 

deamination using deamSim (June 06 2016 version) gargammel sub-program (Renaud et al. 348 

2017). The following parameters were applied: a nick frequency of 0.03, a geometric 349 

parameter of 0.25 for the average length of overhanging ends, a probability of deamination 350 

in the double-stranded portions of DNA of 0.01, and 11 different values for the probability 351 

of deamination in the single stranded portions of the DNA (0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 352 

0.35, 0.4, 0.45 and 0.5). Note that the resulting damage pattern is similar to what has been 353 

observed for real data (Figure 2) with higher deamination fractions at read termini. The 354 

resulting observed average number of substitutions was computed for the case of 355 

PeerJ reviewing PDF | (2021:02:58372:1:0:NEW 26 Nov 2021)

Manuscript to be reviewed



 13 

NC_006273.2 (Human betaherpes virus 5)  for all tested single-stranded probabilities of 356 

deamination (Figure 3).  357 

Effect of increasing substitution sequencing error 358 

To better understand the effect of the distribution of errors across the reads, 359 

substitution errors were also simulated following an Illumina-like error profiles. To do so, 360 

sequencing errors were added to the simulated reads using ART (Huang et al. 2012) 361 

indirectly varying the overall error rate by changing the parameter qShift of ART. 362 

Specifically, seven different values for the parameter qShift were tested (0, -1, -3, -5, -7 and 363 

-9). This parameter changes the quality score of the simulated reads, leading to more 364 

substitutions in the simulated reads with lower values. Each qShift value corresponds to an 365 

overall fold increase of substitution error (Huang et al. 2012): 366 

𝑓𝑜𝑙𝑑_𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 1
10KL1"MNBO

 367 

 For instance, a qShift of 0 corresponds to a one-fold increase (i.e. no increase or in 368 

other words typical sequencing error), -3 to a ~two-fold increase and, finally, -9 to a 7.9-369 

fold increase. The effect of decreasing qShift on the observed number of substitutions in 370 

simulated reads is shown in Figure 3 for the case of NC_006273.2 (Human betaherpes 371 

virus 5) values. For this analysis also the simulated read length was set at 60 bp.  372 

Human simulations 373 

When human remains are sequenced, the resulting data contains microbial and 374 

human DNA. To study the microbiome, ideally, reads mapping to the human genomes 375 

should be first removed. However, such cleaning steps are imperfect and can lead to false 376 

classifications. To evaluate how the tools classify potential human sequences that were not 377 

properly filtered out, human reads were simulated using ART (ART-MountRainier-2016-378 

06-05, art_Illumina Q Version 2.5.8) with the human genome (GRCh37) as reference. As 379 

above, the read length used was 60 bp, the coverage 10×, and the sequencing technology 380 

was set to Illumina HiSeq 2500. Centrifuge, Kraken2, DIAMOND and MetaPhlAn2 were 381 

then used to classify the reads as above. The proportions and the number of correctly (i.e. 382 

classified as human) and incorrectly (i.e. not classified as human or at as a taxon within the 383 

human lineage) classified reads were calculated; the number of extra taxa were counted and 384 
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characterised by determining the assigned kingdom and the number of assigned reads per 385 

taxon.   386 

Results 387 

Overall, the performance of the four classifiers is surprisingly distinct across 388 

simulations (Figure 4-9). The results for Centrifuge and Kraken2 are the most similar to 389 

each other, MetaPhlAn2 is the most distinct compared to Centrifuge and Kraken2, while 390 

DIAMOND occupies an intermediate position. 391 

Classification results for the 60 bp read set 392 

Figure 4 and Figure S1 summarise the results for the simulated 60 bp read set. As 393 

discussed above, the simulated reads could be either correctly classified at the species level 394 

(“correct species”), correctly classified at a higher taxa level (“correct higher”), 395 

misclassified (“incorrect”), or “unclassified” (Figure 1).  396 

When considering each virus separately, most reads are classified correctly at the 397 

species level (“correct species”) for most of the simulated viral sequences for Centrifuge 398 

and Kraken2 (Figure S1). In contrast, for DIAMOND, the proportion of “correct species” 399 

varies substantially with many viruses with low, intermediate and high “correct species” 400 

proportions while the remaining reads are mostly “unclassified” or “correct higher”. 401 

MetaPhlAn2 stands out by having roughly two thirds of the viruses with no correctly 402 

classified reads (neither as “correct species” or “correct higher”). As a result, the means 403 

across viruses of the proportion of “correct species” are 24.41% (MetaPhlAn2), 53.61% 404 

(DIAMOND), 93.39% (Kraken2) and 94.48% (Centrifuge). Unlike the other classifiers, 405 

DIAMOND classifies a large proportion of reads correctly but at a higher taxonomic rank 406 

(“correct higher”) for many of the viruses. The other three classifiers have a handful of 407 

viruses with a large proportion of “correct higher”. Overall, most of the simulated viral 408 

sequences have zero or a small proportion of “incorrect” reads, especially in the case of 409 

Centrifuge and Kraken2 (Figure S1, for detailed list of the viruses with the highest incorrect 410 

proportions per classifiers see Supplementary Note 4; Table S2 contains the raw numbers 411 

of reads assigned to each taxa per classifier). The resulting averages of the proportions of 412 

“incorrect” reads are 0.01% (Centrifuge), 0.26% (Kraken2), 0.75% (DIAMOND) and 413 

2.79% (MetaPhlAn2). Finally, Centrifuge and Kraken2 classify most of the simulated reads 414 
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for all viruses (with a mean “unclassified” of 0.01% and 0.44%), while both DIAMOND 415 

(mean of 20.4%) and MetaPhlAn2 (mean of 59.8%) do not classify a large proportion of 416 

reads for most viruses (Figure S2).  417 

The sensitivity and precision reflect the previous “correct species”, “correct higher”, 418 

“incorrect” and “unclassified” overall values (Figure 4A circles and triangles). At the 419 

species level, both means are considerably higher for Centrifuge and Kraken2 with mean 420 

values above 93% for Sensitivity_s and Precision_s. In contrast, MetaPhlAn2’s sensitivity 421 

and precision are the lowest with values of 24.4% (Sensitivity_s) and 46.3% (Precision_s). 422 

MetaPhlAn2’s low Sensitivity_s value is a consequence of the high proportions of 423 

“unclassified” reads for this classifier. Note that for this classifier, the precision is 424 

computed by excluding the viruses without any classified reads, i.e. by excluding most of 425 

the data (see Material and Methods). At the species level, DIAMOND has intermediate 426 

values, with a Sensitivity_s of 53.6% and a Precision_s of 67.4%; both lower than 427 

Centrifuge and Kraken2’s, but higher than MetaPhlAn2’s (Figure 4A circles).  428 

When considering the “correct species” and “correct higher” reads to compute the 429 

precision and the sensitivity (Figure 4A triangles), the order of the classifiers stays the 430 

same, however the performance of DIAMOND and MetaPhlAn2 are greatly improved. In 431 

particular, DIAMOND has many viruses with a large fraction of “correct higher” reads. As 432 

a result, DIAMOND’s Sensitivity_s&h is considerably higher than its Sensitivity_s with 433 

values of 78.9% and 53.6%, respectively. Similarly, its Precision_s&h (98.6%) is higher 434 

than its Precision_s (67.4%). DIAMOND’s Sensitivity_s&h is lower than Centrifuge’s and 435 

Kraken2’s, and higher than MetaPhlAn2’s. Centrifuge and Kraken2 achieve the highest 436 

Precision_s&h values with 99.9% and 99.7%, respectively; followed closely by 437 

DIAMOND (98.6%), and lastly by MetaPhlAn2 (74.4%) (Figure 4A triangles).  438 

Beyond the proportion of correctly classified reads per virus, we also considered 439 

which viruses used in the simulations were recovered with at least one correctly classified 440 

read (Figure 4B). Encouragingly, despite large differences observed at the read level, three 441 

classifiers detected almost all the 233 viruses tested: Centrifuge and Kraken2 identified 232 442 

viruses, and DIAMOND detected 228. In contrast MetaPhlAn2 reported only 87 viruses.  443 

In addition, we computed how many spurious extra taxa were reported, these are 444 

taxa that were neither the virus of interest nor in the lineage of that virus (Figure 4C). 445 
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Encouragingly, no classifier reports more than 2 extra taxa per virus on average. We found 446 

that MetaPhlAn2 is the classifier with the highest number of spurious extra taxa (on 447 

average 1.45 across tested viruses), followed by DIAMOND (1.06), Kraken2 (0.58) and, 448 

finally, Centrifuge (0.41).  449 

Effect of increasing read length on the classification performance  450 

To better understand the effect of the length of the sequenced reads on the 451 

classification results, we then investigated the performance of the classifiers for read 452 

lengths ranging from 30 to 150 bp (Figure 5, Figures S2 & S3).  453 

In general, by increasing the read length, the classifications improve. We observe 454 

higher proportions of “correct species” reads (Figure S2 & S3), fewer “incorrect” reads, 455 

higher sensitivity and precision, and a decrease in the number of spurious extra taxa 456 

(Figures S2 & S3).  457 

The most drastic result across classifiers for the read length simulations is that 458 

DIAMOND and Kraken2 do not classify very short reads. Specifically, no 30 bp reads are 459 

classified for DIAMOND and for Kraken2 given the default parameters used. We have 460 

changed their default settings to classify these short 30 bp reads, however we found that the 461 

number of classified reads was minimal for DIAMOND. In the case of Kraken2, it 462 

classifies less than half of the reads and presents an increase of spurious extra taxa reported, 463 

the results are shown in Supplementary Note 3. Similarly, DIAMOND classifies only very 464 

few reads for 40 bp and 50 bp compared to higher read lengths. This contrasts with the 465 

results for Centrifuge and MetaPhlAn2 whose performance do not significantly deteriorate 466 

with shorter reads in the case of Centrifuge, or it remains stable across all lengths in the 467 

case of MetaPhlAn2 (Figure 5).   468 

From 60 bp onwards, most of the observations discussed above hold; Centrifuge and 469 

Kraken2 have the highest “correct species” mean proportions, followed by DIAMOND and 470 

MetaPhlAn2 (Figure S3). DIAMOND has the highest “correct higher” proportions; and 471 

Centrifuge has the lowest “incorrect” mean proportions. Consequently, from 60 bp 472 

onwards, the highest sensitivities (Sensitivity_s) and precisions (Precision_s) are observed 473 

for Centrifuge and Kraken2 followed by DIAMOND and MetaPhlAn2. Regarding the 474 

“correct higher” classifications, Centrifuge, Kraken2 and DIAMOND have the highest 475 

Precision_s&h; as DIAMOND classifies correctly many reads at higher taxonomic level its 476 
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precision is greatly benefited. DIAMOND’s has a Sensitivity_s&h that is lower than 477 

Centrifuge’s and Kraken2’s but higher than MetaPhlAn2. Moreover, as above, regardless of 478 

the simulated read length, the number of detected viruses remains the same. Most viruses 479 

are detected by Centrifuge, Kraken2 and DIAMOND while an important fraction of the 480 

tested viruses are missed by MetaPhlAn2 (Figure 5C). 481 

A sharp decrease in the number of extra taxa for increased read lengths is observed 482 

for MetaPhlAn2 (Figure 5D), the most constant classifier across read lengths for sensitivity. 483 

A slighter decrease of spurious extra taxa is observed for Centrifuge and Kraken2. In the 484 

case of DIAMOND, we see an increase up to 90 bp, followed by a decrease. The highest 485 

number of spurious extra taxa is found in MetaPhlAn2 up to 60 bp; for read lengths above 486 

60 bp DIAMOND present the highest number (Figure 5D).  487 

When looking more in detail per classifier, for read lengths of 40 bp and longer, the 488 

proportion of “correct species” reads increases for Centrifuge and Kraken2, while the 489 

proportions of “correct higher” and “incorrect” reads decreases (Figure S2 & S3). This 490 

results in a slight increase in the sensitivity and precision with longer reads (Figure 5A & 491 

B). For DIAMOND, the fraction of “unclassified” reads decreases dramatically from 100% 492 

(30 bp read lengths) to less than 25% (150 bp read lengths). Among the reads that are 493 

classified, the “correct species” and “correct higher” ones increase substantially up to 90 bp 494 

while the proportion of “correct higher” slightly decreases above 90 bp (Figure S2 & S3). 495 

Unlike other classifiers, substantially more reads are classified with longer read lengths, 496 

and a slight increase in the proportion of “incorrect” reads is observed as well (Figure S2 & 497 

S3). As a result, the sensitivity improves substantially for longer reads for DIAMOND, 498 

especially for the Sensitivity_s&h while the precision’s increase is slighter (Figure 5).  499 

MetaPhlAn2 is the most stable classifier when varying read length with the 500 

classification categories “correct species” and “correct higher” remaining almost constant 501 

(Figure S2 & S3). The only summary statistics that changes is the proportion of “incorrect” 502 

reads which slightly decrease when increasing read length, resulting also in a decrease in 503 

the number of spurious extra taxa. Consequently, the sensitivity remains constant and the 504 

precision increases with longer reads (Figure 5A & B).  505 
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Effect of the deamination damage on the classification performance 506 

To further assess the performance of the classifiers for ancient DNA like data, we 507 

added deamination damage characteristic of ancient double-stranded DNA libraries 508 

(increase of C to T substitutions at the 5’ read termini and G to A substitutions at the 3’ 509 

read termini, see Figure 2) to the simulated 60 bp reads and evaluated the impact of 510 

deamination on the taxonomic assignments (Figure 6). The probability of deamination in 511 

the double-stranded portions of DNA was set at 0.01 for all simulations, while we varied 512 

the different probabilities of single stranded deamination from 0 to 0.5 (see Material and 513 

Methods). Those parameters result in realistic damage profiles, with 3’ values of  up to 0.45 514 

being on the higher end of what can be observed (Figure 3), see e.g. (Malaspinas et al. 515 

2014; Allentoft et al. 2015).  516 

Overall, reassuringly, deamination has little to no effect on the classifiers’ 517 

performance. The slight reduction of “correct species” reads leads to a hardly noticeable 518 

decrease of the sensitivities (Figure 6A). Similarly, the precision of all classifiers remains 519 

constant for all values of the single-stranded deamination probabilities (Figure 6B). The 520 

deamination damage has no effect, as well, in the number of correctly detected viruses 521 

(among the 233 viruses tested) (Figure 6C).  522 

Deamination only impacts the average number of spurious extra taxa for Centrifuge, 523 

Kraken2 and DIAMOND, which increases (Figure 6D).  In contrast, for MetaPhlAn2 the 524 

average number of spurious extra taxa presents a small reduction. For single-stranded 525 

probability of deamination values ranging from 0 to 0.15 Centrifuge reports the lowest 526 

number of spurious extra taxa; from 0.2 and above DIAMOND has the lowest numbers. 527 

MetaPhlAn2 reports the highest number of spurious extra taxa up to 0.35; above that value 528 

Centrifuge presents higher numbers. 529 

Effect of the substitution sequencing error on the classification performance 530 

As the effects of ancient DNA deamination were minor, we indirectly investigated 531 

whether this was the result of the unusual ancient DNA-like distribution and type (C to T in 532 

5’ ends and G to A in 3’ ends) of the substitutions compared to standard sequencing error. 533 

For these simulations, errors were added using ART which assumes a profile similar to the 534 

ones observed for Illumina Sequencing machines (HiSeq 2500) by decreasing the qShift 535 

parameter resulting in an increase of 1 to 7.9-fold of the overall error rate. As with damage, 536 
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a higher number of errors leads to divergent reads (reads with different sequences 537 

compared to the reference from which they were generated, Figure 3).  538 

As for damage, DIAMOND and MetaPhlAn2 are essentially not affected by the 539 

sequencing error across simulations with results for a 7.9-fold increase in error rate 540 

essentially identical to the ones at 1-fold across all statistics (Figure 7, Figures S2 & S3).  541 

The trends observed for Centrifuge and Kraken2 (increase of “unclassified” reads 542 

and small decrease of the rest of the categories) are exacerbated with Illumina-like 543 

sequencing error compared to damage (Figure S2 & S3). This result is an almost linear 544 

decrease in sensitivity when compared to the fold increase in error for Centrifuge and 545 

Kraken2 (Figure 7). However, Centrifuge and Kraken2 precision values remain constant, 546 

the reason for this is that the absolute number of correctly classified ("correct species” and 547 

“correct higher”) is high relative to “incorrect” along the increased substitutions (Figure 548 

7B).  549 

When considering not only the proportion of reads but also the viruses identified, 550 

we observe that the number of recovered true viruses is constant regardless of the error rate 551 

substitutions. Moreover, as for deamination, the number of spurious extra taxa increases 552 

substantially for Centrifuge and Kraken2 with increased number of substitutions, while 553 

DIAMOND’s increase is less sharp and MetaPhlAn2 presents an overall small reduction 554 

(Figure 7 D). 555 

Classification of human reads 556 

In recent years, many ancient microbes have been detected in ancient human 557 

remains. In those studies, one of the challenges is to disentangle human from microbial 558 

DNA. To assess the effect of not filtering out effectively human DNA, simulated reads 559 

were generated from the reference human genome and used as input to the classifiers.  560 

Almost the totality of reads (more than 98%) remains unclassified for all four 561 

classifiers (Figure 8A), which is expected as none of them have human sequences in the 562 

databases used. MetaPhlAn2 and DIAMOND have the highest proportion of unclassified 563 

reads (99.98%), followed by Kraken2 (99.5%) and Centrifuge (98.4%). Among all 564 

classifiers, Centrifuge presents the highest number of incorrectly assigned reads (Figure 565 

8B). Above 78% of the classifications were made at the species level for all classifiers; and 566 

about a quarter of the assignments were within the Heunggongvirae kingdom (Figure 9). 567 
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Interestingly, the number of spurious extra taxa varied greatly across classifiers 568 

(Figure 8C), being Centrifuge the tool with the largest number of spurious extra taxa with 569 

7,118 identified by at least 1 read, followed by Kraken2 (1,390), DIAMOND (528) and 570 

MetaPhlan2 (91). Table S3 contains a list of each taxon identified by at least one read for 571 

each classifier, we observed that several taxa have a large number of assigned reads 572 

(several thousands) for all classifiers.  573 

Discussion 574 

By providing a direct window into the past, ancient virome studies have the 575 

potential to shed light into the pathogens responsible for historical epidemics, to uncover 576 

prehistorical epidemics, but also to provide clues about the molecular biology and the 577 

evolutionary history of ancient viruses. Yet, finding ancient viruses is akin “finding broken 578 

needles in noisy haystacks”. Ancient genomes are fragmented, affected by post-mortem 579 

damage, incomplete and contaminated by ancient and present organisms. Furthermore, the 580 

DNA of viruses represent only a tiny fraction of the DNA extracted from the host. Thus, the 581 

recovery of ancient viruses’ genomes is an experimental and computational challenge and, 582 

given how rare ancient samples are, it is crucial to recover as much ancient DNA as 583 

possible. 584 

Our approach and its limitations 585 

 To get a sense of the best suited classifier to screen for viruses in ancient 586 

microbiome samples, we compared state-of-the art classifiers under controlled conditions, 587 

i.e. in silico simulations. To do so, we selected 238 viral sequences from 233 human DNA 588 

viruses, fragmented them and added ancient DNA-like noise, and classified the resulting 589 

short and damaged reads with Centrifuge, Kraken2, DIAMOND and MetaPhlAn2. These 590 

classifiers (that were not specifically developed for ancient DNA) differ in essentially all 591 

possible ways including the underlying databases, the sequence search algorithms and the 592 

taxonomic binning strategies (Table 1). Hereafter we provide some clues to explain the 593 

main results that were obtained for each classifier and conclude with some 594 

recommendations. However, it is important to note that our results and recommendations 595 

are limited to the four tested classifiers and to the databases available at the time of the 596 

analyses. Moreover, the simulations are a proxy of a real-life situations (i.e. a screening 597 
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step in a microbiome study). In other words, our recommendations are a good starting point 598 

for anyone wishing to study ancient viromes. Yet future work should allow to update and to 599 

further refine them.    600 

Unidentified and incorrectly classified viruses 601 

In most simulations with reads over 50 bp long, three of the classifiers, namely Centrifuge, 602 

Kraken2 and DIAMOND, successfully detect at the species level more than 228 out of the 603 

233 tested viruses. These encouraging results suggests that if viral genomes were present in 604 

a sample with sufficient coverage, they would be detected by Centrifuge, Kraken2 and 605 

DIAMOND even if the reads are fragmented and damaged. In contrast, MetaPhlAn2 606 

missed 146 viruses. Regarding the incorrect assignments, encouragingly, for almost all 607 

viruses across all classifiers (except for MetaPhlAn2), the incorrect proportion does not 608 

exceed 43%. For a list as well as a discussion of the unidentified viruses and viruses with 609 

the highest incorrect proportions see Supplementary Note 4. 610 

Classification of very short (30 bp) reads 611 

One of the main characteristics of ancient DNA is the highly fragmented nature of 612 

the molecules, generally shorter than the sequencing read length (resulting in the 613 

sequencing of the adapters). The classifiers we tested were not developed to tackle such 614 

short reads and as expected, longer reads, which contain more information, positively 615 

impact the overall classification results. Our simulations suggest that DIAMOND and 616 

Kraken2’s performance is substantially affected by a reduction in read length. This 617 

contrasts with the result for Centrifuge and especially MetaPhlAn2 showing these two 618 

classifiers can still handle shorter reads. In particular, we observed that 30 bp long reads are 619 

not classified at all by DIAMOND and Kraken2, using their default parameters. 620 

DIAMOND’s performance is still substantially reduced at 40 bp and 50 bp while Kraken2’s 621 

sensitivity is close to its highest value at 40 bp. In other words, a significant number of 622 

reads shorter than 40 bp would be lost when using Kraken2; and in the case of DIAMOND, 623 

shorter than 60 bp. These results can be explained by the underlying algorithms and 624 

databases. Kraken2’s default k-mer length (35 bp) was used to build its database, making 625 

an exact match impossible for 30 bp, as the k-mers are longer than the reads. Similarly, 626 

DIAMOND uses as seeds 4 shapes of length 15-24 and weight 12 by default which 627 

translates into 45-72 bp and weight 36. This explains why it failed to classify any read of 628 
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30 bp long, and why it has issues classifying 40 bp reads (the reads being only 4 bp longer 629 

than the default seed weight). Relatedly, DIAMOND is the only classifier depending on 630 

protein alignments and longer DNA reads are required to align the same number of amino 631 

acids as nucleotides. Even when changing the default settings of DIAMOND and Kraken2 632 

the number of short reads classified is minimal (DIAMOND) or it comes with a trade-off: 633 

higher number of spurious taxa reported (Kraken2), see Supplementary Note 3. 634 

A high sensitivity and precision for Centrifuge and Kraken2 635 

As aDNA studies are usually limited in the amount of starting biological material, it 636 

is crucial to assign correctly as many reads as possible and to minimise the number of 637 

errors, i.e. to use a classifier with a high sensitivity and precision. With sensitivity and 638 

precision values at the species level around 90% and above, Centrifuge and Kraken2 639 

outperform DIAMOND and MetaPhlAn2. In other words, Centrifuge and Kraken2 classify 640 

correctly more reads among the simulated reads but also classify correctly more reads 641 

among the classified ones. In comparison, DIAMOND and MetaPhlAn2 detect correctly 642 

less than 65% of the reads (sensitivity) on average across viruses (Figure 4A). For the 643 

sensitivity, this can likely be explained in part by the differences in database; Centrifuge 644 

and Kraken2 include whole genomes, while DIAMOND’s database contains proteins and 645 

MetaPhlAn2’s contains custom clade specific markers, i.e. only a fraction of the genomes 646 

in both cases. The latter two classifiers have therefore a large proportion of unclassified 647 

reads. DIAMOND’s precision is not higher at the species level as it classifies correctly a 648 

large fraction of reads at higher taxonomic ranks (“correct higher”, see below). 649 

MetaPhlAn2’s mean precision is considerably lower than the other classifiers because it has 650 

high proportions of “incorrect” reads for some viruses, and because the number of viruses 651 

used to compute it is smaller (only the viruses with classifications are considered, and many 652 

viruses had 0 classified reads). As mentioned in Supplementary Note 4, three and 145 out 653 

of the 233 tested viruses do not have sequences stored in DIAMOND’s and MetaPhlAn2’s 654 

databases, respectively. As a result, both sensitivity and precision are reduced for both 655 

tools. When computing the statistics considering only the viruses that are present in their 656 

databases their performance improves: with 60 bp long reads DIAMOND reaches a 657 

Sensitivity_s of 54.31%, Sensitivity_s&h of 79.58%, Precision_s of 68.24% and 658 

Precision_s&h of 99.24%; while MetaPhlAn2 reaches a Sensitivity_s of 65.37%, a 659 
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Sensitivity_s&h of 69.67%, a Precision_s of 89.9% and a Precision_s&h of 96.92%. 660 

Despite this improvement both of them are still outperformed by Centrifuge and Kraken2.  661 

High proportions of “correct higher” reads for DIAMOND  662 

 DIAMOND exhibits a markedly higher number of reads correctly classified at a 663 

higher taxonomic rank compared to the other classifiers. Protein changes have the potential 664 

to directly impact the phenotype of an organisms and are therefore more conserved (Li 665 

1997) and DIAMOND is the only classifier based on a protein database. Thus, the protein 666 

database (which benefits from the redundancy of the genetic code and the high degree of 667 

conservation of proteins) but also the LCA binning algorithm implemented in DIAMOND 668 

may explain why this classifier has a much larger fraction of reads classified as “correct 669 

higher”, and as a result a great improvement of its precision when considering the higher 670 

taxa. As an example, the virus with the highest proportion of reads assigned to higher levels 671 

in DIAMOND, human erythrovirus V9 (NC_004295.1) has 84.8% of its reads correctly 672 

assigned to the Erythroparvovirus genus. All these reads aligned to proteins of the correct 673 

species human erythrovirus V9, but also to proteins from species within the genus. Given 674 

the use of the LCA algorithm, DIAMOND reported the reads at genus level. Consequently, 675 

when using DIAMOND, one should consider jointly the classifications at the species level 676 

and above.  677 

Sensitivity and precision are generally robust to deamination damage 678 

 Besides fragmentation, deamination damage is another key feature of ancient DNA 679 

that could negatively impact classifications. Encouragingly, our simulations suggest that 680 

ancient DNA-like damage has little to no effect on the classifiers’ performance aside for an 681 

increased number of spurious extra taxa for Centrifuge, MetaPhlAn2 and Kraken2 (see 682 

below). To avoid a high number of spurious extra taxa, the use of DIAMOND would be 683 

convenient, as long as the reads are long enough. Interestingly, when comparing 684 

deamination and sequencing error simulations resulting in similar number of mismatches 685 

(i.e. when the single stranded probability of deamination is set at 0.5 and the qShift value at 686 

-9), deamination has little effect, while sequencing error reduces the sensitivities of 687 

Centrifuge and Kraken2. This suggests having errors mostly concentrated at the end of the 688 

reads (ancient DNA-like errors) do not hinder their classification as much as Illumina-like 689 
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errors, which are any kind of substitutions more evenly distributed across the read (Pfeiffer 690 

et al. 2018). 691 

Extra spurious taxa 692 

Across all simulations with reads above 30 bp, Centrifuge and Kraken2 achieved the 693 

lowest fraction of misclassified reads across viruses and MetaPhlAn2 the highest. Besides 694 

the proportion of “incorrect” reads, we also investigated the number of spurious extra taxa 695 

reported since they provide a clue of the amount of follow-up work to confirm candidate 696 

microbes. In length simulations MetaPhlAn2 and DIAMOND have the highest number of 697 

spurious extra taxa. In contrast, Centrifuge is the classifier with the lowest number of 698 

spurious taxa for the same simulations; as the length increases the number of spurious extra 699 

taxa decreases. This could be explained by Centrifuge’s taxonomic binning strategy with 700 

scores favouring longer hits. The contrasting high numbers of MetaPhlAn2 could be 701 

explained by its database: with MetaPhlAn2’s database missing markers for 145 of the 702 

tested viruses and having markers for diverse organisms (archaea, bacteria and eukaryotes, 703 

besides the viruses). However, it is important to mention that in the human simulations, 704 

with the true species absent in all databases, Centrifuge is the tool with the highest number 705 

of spurious taxa.  706 

For high values of deamination and sequencing error MetaPhlAn2 and DIAMOND 707 

are exceeded by Centrifuge and Kraken2. It seems that DIAMOND and MetaPhlAn2 708 

alignment query algorithms prevent them of increasing the number of spurious taxa as 709 

much as Centrifuge or Kraken2. DIAMOND, as well, could be more robust to noise 710 

generated by the substitutions as it depends on a protein database.  711 

Human reads can be classified as viruses, archaea, bacteria or other eukaryotes 712 

Ancient human reads mistakenly classified as viruses can be very problematic in 713 

studies of human remains as both viral and human reads would exhibit characteristic 714 

ancient DNA features such as fragmentation and deamination damage. To assess whether 715 

human reads had any chance of being classified as viruses if they were not properly cleaned 716 

out, we classified simulated human reads. The results show that encouragingly, most reads 717 

remain as unclassified (the species is not in the database). Nevertheless, thousands of reads 718 

are misclassified. Most of those incorrectly classified reads are assigned to a wrong species 719 

(false positive), giving the user a sense of false confidence in the classification as it is so 720 
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specific. The assignments are generally hard to interpret except for a retrovirus identified 721 

by Centrifuge, Kraken2 and DIAMOND. In this case, one of the top hits (i.e. the taxa with 722 

the highest numbers of reads, see Table S3) was human endogenous retrovirus K113 723 

(HERV-K113). As its name suggests this viral genome is integrated in the human genome 724 

(Turner et al. 2001). As a result, and as we did not filter any of the simulated human data 725 

prior to classification, some simulated human reads from the reference assembly are 726 

assigned to the HERV-K113 present in the databases. The simulated reads coming from the 727 

location in the human genome where the endogenous retrovirus was integrated aligned to 728 

the HERV-K113 in the database. Note that if there had been a filtering step for human 729 

reads (such as the removal of reads that map to the reference human genome), this virus 730 

would not have been recovered (the reads would have mapped to the proviral form of 731 

HERV-K113 in the reference human genome, hence would have been filtered out).   732 

Recommendations and future directions 733 

In the context of ancient virome studies, the ideal classification tool is one that 734 

allows us to recover all viruses present in the studied sample but also that does not identify 735 

any spurious extra viruses. In other words, we hope to find the right trade-off between 736 

having a high number of true positives and a low number of false positives. In this study, 737 

we considered both the fraction of reads per virus that were correctly classified, as well as 738 

the number of recovered viruses and the number of spurious extra taxa with at least one 739 

read assignment.  740 

Sequenced ancient genomes are generally incomplete and being able to correctly 741 

classify most regions in the viral genomes will be an advantage to recover ancient viruses. 742 

Given the difficulty in finding ancient viruses and in being certain they are actually ancient, 743 

every lead in the screening phase is generally followed by extensive work. These steps 744 

generally include the mapping of sequenced data to individual candidate genomes 745 

identified by classifiers (Krause-Kyora et al. 2018; Mühlemann, Jones, et al. 2018; Vågene 746 

et al. 2018; Mühlemann et al. 2020). Any classification is treated as a candidate and 747 

reducing the number of false positives is key to achieve a manageable workload, to 748 

decrease the computational resources needed and to minimize false claims. 749 

We find that, when considering the fraction of correctly classified reads, Centrifuge and 750 

Kraken2 exhibit the highest sensitivity and precision at the species level. When including 751 
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higher taxonomic ranks, DIAMOND reaches a precision close to those of Centrifuge and 752 

Kraken2; although the sensitivity remains considerably lower. Moreover, Centrifuge, 753 

Kraken2 and DIAMOND recover essentially all the simulated viruses for most simulations. 754 

Regarding Kraken2 and DIAMOND, very short fragments cannot be classified with these 755 

two classifiers when using default parameters (shorter than 35 bp in the case of Kraken2, 756 

and shorter than 45 bp for DIAMOND). We performed additional analyses by adjusting 757 

some of the parameters (using a seed of 9 amino acids for DIAMOND and reducing the k-758 

mer size to 29 bp when building the database for Kraken2) so these tools can handle shorter 759 

sequences (see Supplementary Note 3). In summary, DIAMOND classifies very few 760 

additional reads. Moreover, for Kraken2, there is a trade-off: the number of spurious extra 761 

taxa increases. Considering all those results together, Centrifuge and Kraken2 are likely the 762 

better choice among the four tools to increase the likelihood of recovering ancient viruses.  763 

One caveat with Centrifuge is that it outputs the largest numbers of spurious extra 764 

taxa across when the species tested is not present in its database (see Figure 8 and 765 

Supplementary Note 2) or when the reads are highly deaminated. Hence, if the list of 766 

candidates is very wide (probably due to the extra taxa) and option to optimise 767 

computational resources for downstream analyses would be to focus on the candidates with 768 

the highest number of assignments (as we saw in the human simulations, an important 769 

proportion of extra taxa has less than 10 assigned reads). For studies with high 770 

deamination, DIAMOND could be a good choice to reduce the number of candidates for 771 

further downstream analyses (as long as the reads have the appropriate length) as its 772 

sensitivity and precision are stable (Figure 6). We also recommend DIAMOND for fast 773 

screenings given its high Precision_s&h and as its database is smaller than Kraken2’s or 774 

Centrifuge’s and is easier to build (see Table 1 and Materials and Methods).  775 

MetaPhlAn2 did not perform well in our analyses. While MetaPhlAn2 has 776 

advantages, such as having stable sensitivity and precision values in different conditions 777 

(Figures 5-7), the large number of viruses that would be missed in ancient virome studies 778 

suggest it is not well-suited for such analyses. However, its small database makes this tool 779 

convenient if researchers are after specific viruses, as long as the virus of interest has a 780 

marker gene in the database or the researchers define its marker genes and add them to the 781 

database following the developer’s instructions. 782 
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For human studies, our simulations suggest that, even when the human genome is 783 

included in the database, cleaning as many human reads as possible would be necessary 784 

prior to classification to minimize the number of false positives. This would come at the 785 

expense of losing true candidates. However, we found hundreds of detected spurious extra 786 

taxa across different kingdoms within the viruses, and this could lead to false claims. To 787 

avoid having to handle so many false positives, our suggestion would be to map the data to 788 

the human genome and remove all reads that get assigned coordinates including those with 789 

low mapping qualities prior to classification using e.g. Sunbeam (Clarke et al. 2019).  790 

The results presented here are focused on DNA viruses that infect humans. 791 

However, we expect they likely hold for viruses from other hosts as well. The reasons for 792 

the difficulty to classify some viruses for specific classifiers are mainly the specific 793 

databases used and the viral taxonomy of the tested viruses (see Supplementary Note 4). 794 

Hence, if the intention is to answer a specific biological question, i.e. to identify a given set 795 

of viruses with any of the classifiers tested here, we recommend to first make sure the 796 

viruses of interest are present in the classifier’s database. To help users in that regard, we 797 

have also included Table S2, that lists (for 60 bp) the raw number of reads per taxon for 798 

each classifier for all human DNA viruses included in this study.  799 

To conclude, the four classifiers that we compared performed remarkably well 800 

considering they were not specifically developed to handle aDNA data and are robust to 801 

ancient DNA deamination damage. In our simulations, Centrifuge and Kraken2 802 

outperforms the other classifiers as Centrifuge can handle short fragments, and both of 803 

them have high sensitivity and precision values across read lengths. Moreover, for human 804 

studies, human ancient DNA contamination could lead to a very large number of false 805 

positives if human reads are not filtered properly. Finally, an area of future research would 806 

be to adapt the databases and default parameters of the classifiers to improve their precision 807 

and sensitivity values, and to increase the number of identified viruses, especially when 808 

handling short reads.  809 

 810 
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Table 1(on next page)

Characteristics of the five classifiers.

Database, query algorithm and taxonomic binning strategy for each classifier. In the main
text the results for MetaPhlAn2 and for Centrifuge, Kraken2 and DIAMOND with custom viral
databases are shown. The results for Centrifuge and Kraken2’s default databases as well as
DIAMOND database with archaeal, bacterial, human and viral protein sequences are shown in
Supplementary Note 2. Results for MALT are shown in Supplementary Note 1.
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1

2

Database
Classifier

Organisms included Loci Molecule Size
Query algorithm

Taxonomic 

binning strategy

Default

(“full db”)

RefSeq: archaea, bacteria, viruses and 

human
24G

Centrifuge
Custom 

(“viral db”)
RefSeq: viruses

Whole genomes DNA

213M

Exact alignment 

(no mismatches 

or gaps)

Score that 

favours longer 

hits

Default 

(“full db”)

Refseq + UniVec_Core: archaea, bacteria, 

viruses, human and (vectors, adapters, 

linkers and primers)

89G

Kraken2

Custom 

(“viral db”)
RefSeq: viruses

Whole genomes DNA

34G

Exact k-mer 

matching

Highest number 

of k-mer matches 

considering a 

root-to-leaf path

Custom 

(“full db”)

RefSeq: archaea, bacteria, viruses, human 

and viruses
72G

DIAMOND
Custom 

(“viral db”)
RefSeq: viruses

Protein coding 

regions
Proteins

117M

Alignment using 

spaced seeds

Lowest common 

ancestor

MetaPhlAn2 Default
Archaea, bacteria, viruses and eukaryotic 

microbes

Clade specific 

markers
DNA 1.2G

Alignment with 

BowTie2: 

ungapped seed 

match followed 

by extension

Clade specific 

marker

MALT
Custom 

(“viral db”)
RefSeq: viruses Whole genomes DNA 7.3G

Banded 

alignment with 

spaced seeds

Lowest common 

ancestor
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Figure 1
Visual representation of the different classification categories defined in this study
(“correct species”, “correct higher”, “incorrect” and “unclassified”).

The Variola virus is used here as an example to illustrate the simulation steps and the four
classification categories used to summarize the simulation results. Three schematic steps are
shown to summarize the simulations: (1) The random selection of a virus (here the Variola

virus). (2) The simulation of reads from the viral sequence: the selected virus is used as
reference genome to simulate sequencing reads with ART (Huang et al. 2012). (3a) The
classification of the reads: all reads are then classified with Centrifuge, Kraken2, DIAMOND
and MetaPhlan2 (Buchfink et al. 2015; Truong et al. 2015; Kim et al. 2016; Wood et al. 2019:
2) and then assigned to one of the four categories (3b): i) “correct species”: reads correctly
classified as the virus of interest (dark green), ii) “correct higher”: reads classified as at
higher taxonomic rank included in the lineage of the virus of interest (light green), iii)
“incorrect”: reads classified as a taxon not included in the lineage of the virus of interest, d)
“unclassified”: reads not classified.
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Figure 2
Observed deamination damage across the reads.

Observed frequency of substitutions across the reads simulated from the viral sequence
NC_006273.2 (Human betaherpes virus 5) for different probabilities of single stranded
deamination ranging from 0 to 0.5 (the range used in the simulations). The nick frequency
was set at 0.03, the geometric parameter for the average length of overhanging ends at
0.25, and the probability of deamination in the double-stranded portions of DNA at 0.01. The
frequency of substitutions is shown on the y-axis; the distance from the read termini is shown
on the x-axis. C to T substitutions are depicted in red; G to A substitutions are depicted in
blue; in grey all other substitutions. Plots on the left represent the 5’ end of the reads, plots
on the right represent the 3’ end. Note that similar patterns have been observed in real data
(Briggs et al. 2007; Carøe et al. 2018).
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Figure 3
Average number of substitutions for the deamination and sequencing error simulations.

Observed average number of substitutions for different simulation parameter values for the
deamination and sequencing error simulations. Shown here are the observed values for the
case of NC_006273.2 (Human betaherpes virus 5) with 39,270 simulated reads of length 60
bp. For the deamination simulations, the single-stranded probability (see Figure 2) of the
deamSim gargamel subprogram (Renaud et al. 2017) is increased from 0 to 0.5. Note that
deamination takes place with a probability of 0.01 across the read for all the deamination
simulations so that there are additional errors even with a single stranded probability set at
0. For the sequencing error simulations, the parameter qShift of ART was decreased from 0 to
-9 which corresponds to a 1 fold (qShift of 0) to 7.9 fold (qShift of -9) increase compared to
standard Illumina 2500 sequencing (Huang et al. 2012).
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Figure 4
Classification results for the 60 bp read set.

A) Mean sensitivity versus mean precision. The mean sensitivities (Sensitivity_s &
Sensitivity_s&h) are the means of the proportions of reads correctly classified over the total
number of simulated reads across viruses. The mean precisions (Precision_s & Precision_s&h)
are the means of the proportions of reads correctly classified over the number of classified
reads across viruses. Circles denote the values if only “correct species” reads are considered
as correctly classified reads; triangles denote the values if “correct species” and “correct
higher” reads are considered as correctly classified reads (see Materials and Methods). The
perfect classifier would have 100% sensitivity and 100% precision. B) Total number of viruses
recovered for each classifier when correctly identifying at least 1 read per virus. The dashed
line indicates the total number of tested viruses (233). C) Mean number of spurious extra
taxa per classifier. In this plot, a taxon is assumed as identified by a classifier if at least 1
read is assigned to it.

PeerJ reviewing PDF | (2021:02:58372:1:0:NEW 26 Nov 2021)

Manuscript to be reviewed



PeerJ reviewing PDF | (2021:02:58372:1:0:NEW 26 Nov 2021)

Manuscript to be reviewed



Figure 5
Effect of the read length on the classification performance.

For these simulations, read length was varied from 30 to 150 bp. A) Average Sensitivity_s
(continuous lines) and Sensitivity_s&h (dashed lines) for each classifier. B) Average
Precision_s (continuous lines) and Precision_s&h (dashed lines) for each classifier. C) Total
number of viruses detected out of the 233 tested. The dashed line shows the maximum
number of detectable viruses. D) Average number of spurious extra taxa across simulated
viral sequences. The vertical dashed line indicates the initial 60 bp read set.
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Figure 6
Effect of the deamination damage on the classification performance.

For these simulations, errors were added using deamSim gargamel subprogram which
assumes an ancient DNA deamination-like distribution and were added in addition to the ART
Illumina like sequencing errors. The results shown here correspond to a single-stranded
probability of deamination varying from 0 to 0.5. For all the results the nick frequency is set
at 0.03, the average length of overhanging ends is set at 0.25, and the probability of
deamination in the double-stranded portions of DNA is set at 0.01. A) Average Sensitivity_s
(continuous lines) and Sensitivity_s&h (dashed lines) for each classifier. B) Average
Precision_s (continuous lines) and Precision_s&h (dashed lines) for each classifier. C) Total
number of viruses detected out of the 233 tested. The dashed line shows the maximum
number of detectable viruses. D) Average number of spurious extra taxa across simulated
viruses.
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Figure 7
Effect of the substitution sequencing error on the classification performance.

For these simulations, errors were added using ART which assumes a profile similar to the
ones observed for Illumina Sequencing machines (HiSeq 2500). The results shown here
correspond to increasing the overall sequencing error rate ranging from 1 to 7.9-fold (qShift
values from 0 to -9). On the x-axis, the first number correspond to the expected fold increase
in error rate while the parameter that was varied, qShift, is shown in parenthesis. A) Average
Sensitivity_s (continuous lines) and Sensitivity_s&h (dashed lines) for each classifier. B)
Average Precision_s (continuous lines) and Precision_s&h (dashed lines) for each classifier. C)
Total number of viruses detected out of the 233 tested. The dashed line shows the maximum
number of detectable viruses. D) Average number of spurious extra taxa across simulated
viral sequences. The vertical dashed line indicates the initial 60 bp read set.
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Figure 8
Classification of human reads

A) Proportion of reads for each classification category (see Figure 1). Note that none of the
databases used include human (see Table 1). B) Total number of incorrectly classified reads.
C) Number of spurious extra taxa reported by each classifier.
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Figure 9
Taxonomic ranks represented in the classification of human reads.

Number of reads and the proportion of reads per classifier (bar plots). Proportion of taxa
classified as a particular pair of superkingdom-kingdom (pie charts).
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