Revision of *Holothuriophilus trapeziformis* Nauck, 1880 (Decapoda: Pinnotheridae) from the Pacific coast of Mexico, based on integrative taxonomy (#57986)

First revision

Guidance from your Editor

Please submit by 23 Jul 2021 for the benefit of the authors .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 9 Figure file(s)
- 1 Raw data file(s)
- 1 Other file(s)

Custom checks

DNA data checks

- Have you checked the authors <u>data deposition statement</u>?
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

Field study

- Have you checked the authors field study permits?
- Are the field study permits appropriate?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

-	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Revision of *Holothuriophilus trapeziformis* Nauck, 1880 (Decapoda: Pinnotheridae) from the Pacific coast of Mexico, based on integrative taxonomy

 $\textbf{Fernando Cort\'es-Carrasco}~^1,~\textbf{Manuel El\'as-Guti\'errez}~^{\texttt{Corresp.},~2},~\textbf{Mar\'ia del Socorro Garc\'ia-Madrigal}~^3$

Corresponding Author: Manuel Elías-Gutiérrez

Email address: melias@ecosur.mx

Background. Holothuriophilus trapeziformis Nauck, 1880 is a holothurian-dweller Pinnotherid crab representing one of the two species of the genus distributed along the Pacific coast of America. While the parasitic ecological interaction with its host is well established, the morphology of the male remains unknown, and DNA information for the species is not available. Furthermore, the existing morphological separation of both species of the genus is subjective since it is based on the interdactilar gape condition of the pincers finger. Our goal is to complete and clarify the taxonomic status of H. trapeziformis and describe the male morphology, providing more stable characters to differentiate this species. This goal will be accomplished with the use of the integrative taxonomy.

Methods. We collected new biological material on the Pacific coast of Mexico, including the topotypes. We also reviewed material from national collections to integrate morphologically (based on a complete and detailed description and illustration of the species using light microscopy), ecological (based on the identification of the host and locality where the crab was located), and the mtCOI gene data (commonly known as DNA barcodes) to differentiate *H. trapeziformis* from other related crabs.

Results. This species presents marked sexual dimorphism only in the primary sexual characters. Morphological variation is high on this species, but DNA barcoding indicates only one taxon, with a maximum divergence of 2.2%. All the specimens have the same Barcode Index Number (BIN; BOLD: ADE9974). We confirmed that H. trapeziformis is a different species from his closest congener, H. pacificus. We observed additional characters to the previously known: the ornamentation of the pincers fingers, the shape of the male abdomen, and its first gonopod. Intra-specific COI distance was >3% of divergence, and the species forms a clear, unique clade compared with other family members. All the hosts for H. trapeziformis were identified as Holothuria (Halodeima) inornata Semper, 1868; the presence of the crab in the host's coelomic cavity was confirmed, but it was also found within the intestine. The location of the species beyond the previously established area also allowed us to extend its distribution range along the Pacific coast of Mexico. With the data recovered from our research, the taxonomic status of Holothuriophilus trapeziformis is now complete.

¹ Aquatic Ecology and Systematics, El Colegio de la Frontera Sur, Chetumal Unit, Chetumal, Quintana Roo, Mexico

² Aquatic Ecology and Systematics, El Colegio de la Frontera Sur, Chetumal, Quintana Roo, Mexico

³ Campus Puerto Ángel, Universidad del Mar, Puerto Ángel, Oaxaca, Mexico

1	
2	
3	
4	
5	
6	
7	
8	
9 10	Revision of <i>Holothuriophilus trapeziformis</i> Nauck, 1880 (Decapoda: Pinnotheridae) from the Pacific coast of Mexico, based on integrative taxonomy
11 12	
13	Fernando Cortés-Carrasco ¹ , Manuel Elías-Gutiérrez ^{1*} , María del Socorro García-Madrigal ²
13	remando Cortes-Carrasco [*] , Mander Enas-Odurenez [*] , Maria dei Socorio Garcia-Madrigar-
15	
16	
17 18 19 20	 ¹Aquatic Ecology and Systematics. El Colegio de la Frontera Sur. Chetumal Unit, Quintana Roo, Mexico. ² Campus Puerto Ángel, Universidad del Mar, Puerto Ángel, Oaxaca, México.
21	
22	
23	
24	
25 26 27 28	*Corresponding author: Manuel Elías-Gutiérrez melias@ecosur.mx
29	
30	
31	
32	
33	Abstract

34 Background. Holothuriophilus trapeziformis Nauck, 1880 is a holothurian-dweller Pinnotherid 35 crab representing one of the two species of the genus distributed along the Pacific coast of America. While the parasitic ecological interaction with its host is well established, the 36 37 morphology of the male remains unknown, and DNA information for the species is not available. 38 Furthermore, the existing morphological separation of both species of the genus is subjective since 39 it is based on the interdactilar gape condition of the pincers finger. Our goal is to complete and 40 clarify the taxonomic status of *H. trapeziformis* and describe the male morphology, providing more stable characters to differentiate this species. This goal will be accomplished with the use of 41 42 the integrative taxonomy. 43 Methods. We collected new biological material on the Pacific coast of Mexico, including the 44 topotypes. We also reviewed material from national collections to integrate morphologically 45 (based on a complete and detailed description and illustration of the species using light microscopy), ecological (based on the identification of the host and locality where the crab was 46 47 located), and the mtCOI gene data (commonly known as DNA barcodes) to differentiate H. 48 trapeziformis from other related crabs. 49 **Results.** This species presents marked sexual dimorphism only in the primary sexual characters. 50 Morphological variation is high on this species, but DNA barcoding indicates only one taxon, with 51 a maximum divergence of 2.2%. All the specimens have the same Barcode Index Number (BIN; 52 BOLD: ADE9974). We confirmed that H. trapeziformis is a different species from his closest 53 congener, H. pacificus. We observed additional characters to the previously known: the ornamentation of the pincers fingers, the shape of the male abdomen, and its first gonopod. Intra-54 specific COI distance was >3% of divergence, and the species forms a clear, unique clade 55 56 compared with other family members. All the hosts for H. trapeziformis were identified

as *Holothuria* (*Halodeima*) *inornata* Semper, 1868; the presence of the crab in the host's coelomic cavity was confirmed, but it was also found within the intestine. The location of the species beyond the previously established area also allowed us to extend its distribution range along the Pacific coast of Mexico. With the data recovered from our research, the taxonomic status of *Holothuriophilus trapeziformis* is now complete.

Introduction.

62

63 Pinnotherids (Crustacea: Pinnotheridae) are true decapod crabs, which show a conspicuous sexual dimorphism, notably different morphological stages of development and complex ecological 64 65 relationships with different invertebrates, but can also be found in free life (Schmitt, McCain & Davidson 1973; Ocampo et al. 2011; Becker & Türkay 2017). Worldwide, sixteen species are 66 67 known to be endobiontic with sea cucumbers (Ng & Manning 2003), of which two species assigned 68 to the genus *Holothuriophilus* Nauck, 1880, are distributed in the Pacific coast of America 69 (Manning 1993). H. trapeziformis Nauck, 1880 with a type locality in Mazatlan, Mexico, is associated with the sea cucumber *Holothuria* (*Halodeima*) inornata Semper, 1868. H. pacificus 70 71 (Poeppig, 1836) from Talcahuano, Chile (Manning 1993) is associated with a different sea 72 cucumber, Athyonidium chilensis (Semper) (Garth 1957; Honey-Escandón & Solís-Marín 2018). 73 This genus is diagnosed by its transversally elongated carapace, wider anterior to middle portion; its short, robust and compressed walking legs, with the dorsal margin cristate; and the third 74 75 maxilliped with the ischiomerus indistinguishably fused (Garth 1957; Manning1993; Ng & 76 Manning 2003; Campos, Peláez-Zárate & Solís-Marín 2012). However, the taxonomic status of *H. trapeziformis* remains confuse, because male morphology is 77 78 unknown and the available information from female illustrations shows some inconsistencies when 79 the carapace, Mxp3 shape, and setae patterns are compared (see Bürger 1985: 380–381, pl. 9, fig.

80	26; Ahyong & Ng 2007: 214, Figs. 20A, C; Campos, Peláez-Zárate & Solís-Marín 2012: 60, figs.
81	2B, C). Due to this situation the differentiation of <i>Holothuriophilus trapeziformis</i> from <i>H. pacificus</i>
82	is based on a single morphological character; the former species has a narrow opening when the
83	pincers fingers are closed, but in the latter species the fingers gap is conspicuous (Campos, Peláez-
84	Zárate & Solís-Marín 2012).
85	Despite Nauck's (1880) effort to provide a detailed description of the Holothuriophilus
86	trapeziformis, the preservation quality of the sample, and the data from the reviewed material
87	made it impractical to designate a type specimen, make a complete description, and determine
88	the identity of the host with certainty. Moreover, the female syntypes deteriorated over time and
89	the male was unknown (Bürger 1895; De Man 1887; Ng & Manning 2003). Later, Manning
90	(1993), Ng & Manning (2003), and Ahyong & Ng (2007) examined the syntype series to
91	complete the diagnosis and designated a lectotype which was described and illustrated; however,
92	there are inconsistencies in their illustrations and the diagnostic characters are not informative
93	when considering the information available for Holothuriophilus pacificus. In addition, for 84
94	years, H. trapeziformis was not collected until Caso (1958, 1964, 1965) gathered four
95	pinnotherids, determined as Pinnixa barnharti (not Pinnixa barnharti Rathbun, 1918), associated
96	with <i>Holothuria inornata</i> Semper, 1868 and <i>H. kefersteinii</i> (Selenka) (= <i>H. riojai</i> Caso, 1964).
97	Thirty-four years later, one of Caso's specimens was determined as <i>Holothuriophilus</i> sp. by
98	Campos, Díaz & Gamboa-Contreras (1998). More recently Campos, Peláez-Zárate & Solís-
99	Marín (2012) updated the species diagnosis and made a review of the genus. Finally, Honey-
100	Escandón & Solís-Marín (2018) confirmed the ecological association between <i>H. trapeziformis</i>
101	and <i>Holothuria inornata</i> , but Caso's (1958, 1965) records of <i>Holothuria kefersteinii</i> as a host
102	remains uncertain because the field collection data does not correspond with the material

103	reviewed by Honey-Escandón & Solís-Marín (2018), and the location of these pinnotherids and
104	their holothurian hosts is unknown (F. Solís-Marín, 2018, pers. comm.).
105	For <i>Holothuriophilus trapeziformis</i> , there is currently no data on any gene. In contrast, for <i>H</i> .
106	pacificus, there is information related to the COI gene sequence for one specimen recovered
107	from the shoreline in southern Chile (CFAD062-11; boldsystems.org). Within this context,
108	sequencing of approximately 650 bp region of the mitochondrial Cytocrome Oxidase 1 gene
109	(COI) has been promoted to conform a standardized DNA barcode system with the aim of being
110	one more tool for the identification of biological species with many applications in diverse fields
111	of knowledge (Hebert et al. 2003; Hajibabaei et al. 2007). In spite of the difficulty to work with
112	COI regarding the debate about the acceptance of one molecular marker as an accurate character
113	to define a species (Will & Rubinoff 2004), it has been considered the best marker for
114	identification in other decapods (Spielmann et al. 2019). The utility of the DNA Barcoding (COI
115	sequence) has been useful to delimit other pinnotherids (Ocampo et al. 2013; Perez-Miguel et al.
116	2019), brachyuran larvae (Brandão, Freire & Bruton 2016), and other crustacean taxa (Costa et
117	al. 2007; Matzen da Silva et al. 2011).
118	Considering that integrative taxonomy based on morphological and molecular data is
119	increasingly useful to define and delimit biological species with greater certainty, the goal of this
120	study is, therefore, to define the taxonomic status of Holothuriophilus trapeziformis by
121	completing the information on the species with the description of the male, revising the
122	morphological variability in both sexes, updating the range of distribution, and establishing a
123	baseline of mitochondrial COI gene barcode. Finally, this information will provide new
124	diagnostic characters that will allow a clearer separation of both species of Holothuriophilus
125	from the Pacific coast of America.

126 Material & methods

127	Morphology
128	Fifty-two crabs belonging to the <i>Holothuriophilus trapeziformis</i> were extracted from the coelom
129	and intestine of the sea cucumber <i>Holothuria inornata</i> . Hosts were manually collected through
130	skin and SCUBA diving at a maximum depth of 10 meters in Sinaloa, Guerrero, and Oaxaca,
131	Mexico (Fig. 1). The collected material was labeled and fixed according to the Elías-Gutiérrez et
132	al. (2018) protocol for tissue preservation and DNA analyses. Due to the size of the specimens
133	and the thickness of their cuticle, we injected ethanol into the body and joints of the appendices
134	with insulin syringes.
135	All biological material (Table S1) was classified and deposited in the Scientific Collection of
136	Marine Invertebrates of the Laboratorio de Sistemática de Invertebrados Marinos (LABSIM)
137	from Universidad del Mar (UMAR), Oaxaca, Mexico (OAX-CC-249-11). Hosts were identified
138	with specialized literature (Solís-Marín et al. 2009; Honey-Escandón & Solís-Marín 2018).
139	For the analysis of the taxonomic status of <i>Holothuriophilus trapeziformis</i> specialized literature
140	from Nauck (1880), Manning (1993), Ng & Manning (2003), Ahyong & Ng (2007), and
141	Campos, Peláez-Zárate & Solís-Marín (2012) was reviewed. Likewise, for <i>H. pacificus</i> , Poeppig
142	(1836), Nobili (1901), Rathbun (1918), and Garth (1957) were reviewed.
143	For this study, we got a field permit for collections with non-commercial scientific research
144	purposes by Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación
145	(SAGARPA) and Comisión Nacional de Acuacultura y Pesca (CONAPESCA) (Collecting
146	permit: PPF/DGOPA-301/17).
147	The species description follows the terminology of Ahyong & Ng (2007). The setae terminology
148	is based on Garm & Watling (2013). Drawings were made with the help of a lucid camera and

149	then digitalized in a vector format. Pictures were taken with a Nikon D5100 digital camera.
150	Measurements are given in millimeters and the latitude and longitude of the collections were
151	obtained from Google Earth TM .
152	Because we were only able to obtain nine specimens (three males and six females) from the type
153	locality, in contrast to 47 (six males and 41 females) from the southern region, and due to
154	morphological variability observed, it was necessary to standardize the observations by using
155	specimens in the same stage of development. The shared stage of development between the three
156	regions (Sinaloa, Guerrero, and Oaxaca) corresponded to males and ovigerous females with a
157	carapace width measurement equal to eight millimeters. To standardize the observations, the
158	specimen and the dissected pieces were mounted on a plastic clay base to make the drawings.
159	For the carapace contour, the samples were mounted, so the dorsal view of the posterior margin
160	line of the carapace was observed. For the Mxp3, an attempt was made to extract it from its base
161	to obtain both endopod and exopod and to mount it with the articles in the same perspective. The
162	cutting edge of the fingers' chelae was cleaned of dirt to see all the teeth, the first gonopod was
163	extracted from its base, and the setae cleaned of dirt.
164	Abbreviations used in the text: CL, carapace length (taken as the middle line from the frontal
165	margin to the posterior margin of the carapace); CW, carapace width (measured in its medium-
166	anterior portion); Mxp2, second maxilliped; Mxp3, third maxilliped; P2-5, walking legs 1 to 4.
167	Acronyms used in the text: BOLD, barcode of life database (boldsystems.org); BIN, barcode
168	index number (sensu Ratnasingham & Hebert, 2013); BOLD-ID, Specimen ID in the Barcode of
169	Life Data System; CNE-ICML-UNAM, National Collection of Echinoderms of the Institute of
170	Marine Sciences and Limnology of the National Autonomous University of Mexico; DC-NHM,
171	Division of Crustacea, Natural History Museum, Smithsonian Institution; SMF-ZMG,

172	Senckenberg Museum für Naturkunde, Zoologisches Museum Göttingen University, Humboldt
173	Universität, Berlin; UABC, Autonomous University of Baja California, Mexico; UMAR,
174	Universidad del Mar campus Puerto Angel, Oaxaca, Mexico.
175	Collectors: AEV, Aidé Egremy Valdés; AGF, Andrea Glockner Fagetti; CCA, Carlos Cruz
176	Antonio; AHM, Adanely Hernández Muñoz; FBV, Francisco Benítez Villalobos; FCC, Fernando
177	Cortés Carrasco; HMC, Humberto Mesa Castillo; KFL, Karen Lizbeth Flores López; KMB,
178	Karen Mesa Buendía; RGF, Rebeca Granja Fernández; VCH, Valeria Chavez García.
179	DNA extraction and PCR amplification
180	Genomic DNA of individuals of <i>Holothuriophilus trapeziformis</i> was extracted from biological
181	material collected in the field and some individuals from the OAX-CC-249-11 regional
182	collection of the Universidad del Mar, using tissue from the walking legs, the chelae, or eggs
183	from the ovigerous females. Tissues were placed into 96-well microplates with a drop of 96%
184	ethanol, and DNA extraction was carried out following the standard glass fiber method
185	consisting of a mix of Proteinase K with an invertebrate lysis buffer according to Ivanova, De
186	Waard & Hebert (2006). Following the DNA extraction, the PCR mixture with a final volume of
187	12.5 μl, contained 2 μl of Hyclone ultrapure water (Thermo Fisher Scientific), 6.25 μl of 10%
188	trehalose (previously prepared: 5 g D-(+)- trehalose dihydrate (Fluka Analytical) in a total of 50
189	ml of molecular grade ddH2O), 1.25 μl of 10X PCR Platinum Taq buffer (Invitrogen), 0.625 μl
190	of 50 μmol/L MgCl2 (Invitrogen), 0.0625 μl of 10 μmol/L dNTP (KAPA Biosystems), 0.125 μl
191	of each 10 μ mol/L primer, 0.06 μ l of PlatinumTaq DNA polymerase (Invitrogen), and 2 μ l of
192	DNA template. All specimens were amplified with the Zooplankton primers (ZplankF1_t1 and
193	ZplankR1_t1, see Prosser, Martínez-Arce & Alías-Gutiérrez 2013 for details). The reactions
194	were cycled at 94°C for 1 min, followed by five cycles of 94°C for 40 seconds, 45°C for 40

195	seconds and 72°C for 1 min, followed by 35 cycles of 94°C for 40 seconds, 51°C for 40 seconds
196	and 72°C for 1 min, with a final extension of 72°C for 5 min. PCR products were visualized on a
197	pre-cast 2% agarose gels (E-Gel [©] 96 Invitrogen), and the most intense positive products were
198	selected for sequencing.
199	Sequencing and DNA barcode
200	Selected PCR products were sequenced using a modified (Hajibabaei et al. 2005) BigDye [©]
201	Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystem, Inc.), and then sequenced
202	bidirectionally on an ABI 3730XL automated capillary sequencer using M13F and M13R
203	sequence primers at the Biology Institute at the National Autonomous University of Mexico and
204	at the Eurofins Genomics Louisville Laboratory (USA). Sequences were edited using
205	CodonCode© v 3.0.1 (CodonCode Corporation, Dedham, MA, USA) and uploaded to BOLD. In
206	some cases, the original forward and reverse tracers uploaded to BOLD were checked again.
207	Consensus assembly was generated, and edited manually with Sequencher [©] 4.1.4. (Gene Codes
208	Corporation, Ann Arbor, MI, USA), and then they were aligned using BioEdit® (Hall 1999).
209	Likelihood tree and distance analysis
210	COI sequences generated for <i>Holothuriophilus trapeziformis</i> in this study were compared with
211	COI sequences from other pinnotherids collected in the Eastern Pacific coast of America,
212	available in BOLD and/or GeneBank (Table S2). Sequence data, trace files, and primer details
213	for all <i>H. trapeziformis</i> specimens and for the other species are available under the dataset name
214	PINMX1HT ("Htrapeziformis from Mexico") in the Barcode of Life Data System
215	(barcodinglife.org). Additionally, H. trapeziformis sequences were uploaded to GenBank
216	(https://www.ncbi.nlm.nih.gov/). The accession numbers are noted in the table S2.

217	To construct the tree, the best-fitting evolution model of nucleotide substitution for distance
218	based on COI alignments was established on the Maximum Likelihood (ML) for 24 different
219	nucleotide substitution models, selected according to the Akaike (AIC) and Bayesian (BIC)
220	criterion (Darriba et al. 2011), and tested using jModelTest [©] 2.1.10 (Posada & Buckley 2004).
221	The final tree was obtained with nodal support for the resulting branches estimated with 1000
222	bootstrap replicates in MEGA 7.0 (Tamura et al. 2013). It was simplified with the
223	compress/expand feature of MEGA. Also, interspecific COI genetic distances for the dataset
224	were estimated using the Kimura-2 parameters distance method in MEGA. Values greater than
225	3% were considered the threshold for the delimitation of the species (Hebert et al. 2003).

226	Results
227	The morphology of 56 specimens from three coastal regions in the Mexican Pacific was
228	analyzed, including the type locality. A detailed morphological revision of the specimens
229	allowed us to determine notable variations, mostly on the carapace general shape, features of the
230	first male gonopod, and in the pincers chelae ornamentation. Northern type locality morphology
231	shows a notable variation in the general carapace outline shape and general appearance which
232	looks more stout and eroded in contrast to that of the southern specimens. However, all
233	specimens show features that define Holothuriophilus trapeziformis according to Ng & Manning
234	(2003) and Campos, Peláez-Zárate & Solís-Marín (2012). In addition, previously undescribed
235	structures like the Mxp2 and male second gonopod plus the genetic data resolution, confirm that
236	all the revised material corresponds with the <i>H. trapeziformis</i> . Complete morphology description
237	of the male and the discussion of character variations in both sexes are annotated in the
238	Systematics section and DNA barcoding analyses are annotated after that.
239	Systematics
240	Infraorder Brachyura Latreille, 1802
241	Family Pinnotheridae De Haan, 1833
242	Genus Holothuriophilus Nauck, 1880
243	Holothuriophilus. — Manning, 1993: 225.
244	Diagnosis (modified from Manning 1993). Carapace broader than long, widest on mid anterior
245	portion, transversely subcuadrangular, subrectangular, subovate or subtrapezoidal. Third
246	maxilliped with ischium and merus indistinguishable fused; exopod with one segmented
247	flagellum; endopod palp 3-segmented; propodus shorter than carpus, conical; subspatulate

- 248 dactylus articulated basally on propodus, extending beyond end of propodus. Dactyli of walking
- legs similar and subequal, short. Abdomen of seven segments in both sexes.
- 250 Holothuriophilus trapeziformis Nauck, 1880
- 251 (Figs. 2A–G, 3A–D, 4A–K, 5A–K, 6A–D)
- 252 Holothuriophilus trapeziformis Nauck, 1880: 24, 66 [ovigerous female type]. —De Man 1887:
- 253 721–722 [female (CW = 13.8 mm, CL = 10.5 mm)]. —Ng & Manning 2003: 903, 916-918, Fig.
- 254 7C–F [female lectotype (CW = 7.7 mm, LC = 4.8 mm): SMF-ZMG 67/565a]. —Ahyong & Ng
- 255 2007: 213-214, Fig. 20. —Campos, Peláez-Zárate & Solís-Marín 2012: 57–62, Figs. 1A, B, 2A–
- 256 D [female (CW = 9.1 mm, CL = 5.5 mm)].
- 257 Pinnotheres trapeziformis Bürger 1895: 380–381, plate 9, Fig. 26, plate 10, Fig. 25 [female type
- 258 (CW = 14 mm, CL = 10 mm), male (CW = 5 mm, CL = 8.5 mm)]. —Adensamer 1897: 107. —
- 259 Schmitt, McCain & Davidson 1973: 5, 13, 89 [list].
- 260 Pinnoteres trapeziformis Balss 1957: 1417 [not 1956 fide Schmitt, McCain & Davidson 1973].
- 261 *Pinnixa barnharti* (no Rathbun, 1918) Caso 1958: 329; 1965: 254–26.
- 262 Holothuriophilus sp. Campos, Díaz & Gamboa-Contreras 1998: 377, Fig. 1E.
- 263 Material examined: 56 specimens: 25 ovigerous females, 22 females, nine males (Table S1).
- 264 **General distribution:** Tropical Eastern Pacific (Mexico).
- 265 **Previous records:** Mazatlán, Punta Tiburón (Sinaloa); Ixtapa (Guerrero).
- 266 New records: Playa Pinitos (Sinaloa); Playa Nudista, Playa Zacatoso, Playa Caleta de Chon
- 267 (Guerrero); Playa Agua Blanca, Playa Coral, Playa Camaron, Playa Panteón, Playa Estacahuite,
- 268 Playa La Tijera, Bahía San Agustín, Playa El Tejón (Oaxaca).
- 269 **BIN:** ADE9974

Size range (mm): Males: CW = 5.5-11, CL = 3.2-7; females: CW = 5.1-11, CL = 3-7; 270 271 ovigerous females: CW = 7.3-13, CL = 5-8. 272 **Diagnosis**. Carapace general shape transversely subrectangular, suboval or subtrapezoidal. 273 Cristated anterolateral margin with a hepatic notch and a vanished blunt tooth inside the notch. 274 Chelipeds merus and carpus inner surface densely setose; propodus ventral inner margin with a 275 row of conspicuous short setae; cutting edge of propodus and dactylus almost meeting when 276 closed, interdactilar gape narrow; dactylus cutting edge with proximal denticles, with a 277 conspicuous medial tooth, and with a distal convex or acute projection. Merus dorsal surface of 278 W1, 3 and 4 with setae, W2 without seta. Abdomen with 6 somites plus free telson; on male, 279 margin of somite 4 to 6 concave, telson subrounded. Male first gonopod notably curved outward 280 from its mid-distal portion. 281 Description: Male (Fig 2A–C; UMAR-DECA-308; CW = 11 mm, CL = 7 mm): Carapace, 282 transversely subtrapezoidal, wider than long, CW/CL ratio ca. 1.6, mid-anterior portion wider; 283 anterolateral margins slightly projected, cristated, a hepatic notch with a blunt middle tooth 284 (Figs. 3A, B; bold arrow); dorsal surface convex, smooth, without defined regions; mid-posterior and posterolateral surface with microscopic pits of variable size and pilosity (Figs. 3A; hollow 285 286 circles and dots); inferior lateral margin with abundant plumose setae (Fig. 3A; simple lines 287 represent the enlarged schematic setae). 288 Front bilobed, scarcely visible in dorsal view, margin granulated, surface slightly pubescent (Fig. 289 3B; dots). 290 Orbits small, completely filled by eyes; eyes pigmented; ocular peduncle scarcely pubescent. 291 Antennules robust; peduncle 2-segmented, biflagellate, transversely folded into the fossae; 292 superior flagellum 2-articles, second article the longest, tapering distally, with six apical setae

293	(Fig. 4Ba); inferior flagellum conic, with four articles decreasing in size, article one to three with
294	a-transverse line of simple setae, fourth article with two transverse lines of simple seta (Fig.
295	4Bb).
296	Antennae long, slender, with 12 articles, last article with short apical setae (Fig. 4A).
297	Pterygostomian region pubescence (Fig. 3B; fine dots). Buccal frame trapezoidal, completely
298	covered by the-Mxp3. Mxp2 endopod 5-articles, with setae (Fig. 4Ca), dactylus subrounded and
299	shorter than propodus (Fig. 4C; black arrow); exopod 1-article, wider distally, external surface
300	with an elevated ridge (Fig. 4Cb), flagellum with long apical setae (Fig. 4Cc), epipodite long,
301	distal margicunded (Fig. 4Cd). Mxp3 ischiomerus fused without suture line, width/length ratio
302	= 0.7, external margin convex with setae, internal margin with a medial conspicuous projection
303	(Fig. 4Da; white arrow); carpus subconial, external margin with short setae; propodus subconical
304	(Fig. 4Dc); dactylus subspatuliform, wider distally (Fig. 4D; black arrow), slightly overreaching
305	propodus, external surface with short plumose setae, external margin with long plumose setae;
306	exopod 1-article, external margin and external surface with short simple setae, flagellum slender,
307	with plumose long setae (Fig. 4E).
308	Sternal third plate with anterior margin sinuous, anterolateral angles with crenu-denticulated
309	margin (Fig. 3C; black arrow), surface scarcely pilose (Fig. 3C; dots); fourth plate slightly
310	globose, surface with microscopic pits (Fig. 3C; hollow circles), distal external angle curved
311	outward, margin crenu-denticulated (Fig. 3C; which arrow).
312	Chelipeds subequals (Figs. 2A–C); merus external surface and carpus anterior margin with
313	plumose setae; ehelae width and length subequal, ventral margin microscopically granulated
314	(Fig. 4F bold arrow, 7C; dashed arrow), demargin slightly cristate and bent inwards; fingers
315	(Fig. 4F bold arrow, 7C; dashed arrow), depend margin slightly cristate and bent inwards; fingers wider than long, length equal, spoon-tipped, tip acute (Fig. 4F), interdactylar gap narrow (vg.

316	Fig. 7C); movable finger shorter than fixed finger, crossed inward when the pincer is closed,
317	cutting edge sinuous, with three medial teeth (Fig. 4F; bold arrow) and a mid-distal convex
318	projection (Fig. 4F; white arrow); fixed finger cutting edge with nine teeth, faint lamella over the
319	smooth portion of the cutting edge (Fig. 4F; dashed arrow), ventral inner surface with short setae.
320	Walking legs similar, relative length W3>W2>W1>W4, segments short, robust, compressed,
321	dorsal margin cristate, ventral surface with plumose setae; merus dorsal margin on W1, W3, W4
322	with plumose setae, on W2-without setae; dactylus curved, stout, tips acute; W1-W3, dactylus
323	subequal than propodus, of W4-shorter than its propodus (Fig. 3A).
324	Abdomen symmetrical, subtriangular, six free somites plus a-telson, margin with short setae,
325	lateral margin from segments 4–6 slightly concave and narrowing, telson subrounded (Figs. 3D).
326	In juvenile males the lateral margins are straight instead of concave, but the gonopods are
327	present.
327 328	First gonopod slender, margins sinuous, mid-distal portion notably curved outwards, surface with
328	First gonopod slender, margins sinuous, mid-distal portion notably curved outwards, surface with
328 329	First gonopod slender, margins sinuous, mid-distal portion notably curved outwards, surface with abundant plumose setae (Fig. 3E). Second gonopod small, flagellum curved outwards, slightly
328 329 330	First gonopod slender, margins sinuous, mid-distal portion notably curved outwards, surface with abundant plumose setae (Fig. 3E). Second gonopod small, flagellum curved outwards, slightly bent inwards, tip pointing upwards, margins convex with a shallow notch (Fig. 3F; black arrow).
328 329 330 331	First gonopod slender, margins sinuous, mid-distal portion notably curved outwards, surface with abundant plumose setae (Fig. 3E). Second gonopod small, flagellum curved outwards, slightly bent inwards, tip pointing upwards, margins convex with a-shallow notch (Fig. 3F; black arrow). Female (Figs. 2D–F; UMAR-DECA-307; CW = 10.50, CL = 7): Same as the male but with
328 329 330 331 332	First gonopod slender, margins sinuous, mid-distal portion notably curved outwards, surface with abundant plumose setae (Fig. 3E). Second gonopod small, flagellum curved outwards, slightly bent inwards, tip pointing upwards, margins convex with a-shallow notch (Fig. 3F; black arrow). Female (Figs. 2D–F; UMAR-DECA-307; CW = 10.50, CL = 7): Same as the male but with less abundant seta in the pterygostomian region and in the ventral surface of the propodus chelae,
328 329 330 331 332 333	First gonopod slender, margins sinuous, mid-distal portion notably curved outwards, surface with abundant plumose setae (Fig. 3E). Second gonopod small, flagellum curved outwards, slightly bent inwards, tip pointing upwards, margins convex with a shallow notch (Fig. 3F; black arrow). Female (Figs. 2D–F; UMAR-DECA-307; CW = 10.50, CL = 7): Same as the male but with less abundant seta in the pterygostomian region and in the ventral surface of the propodus chelae, setae of dorsal surface of the merus walking legs and inner surface of the merus and carpus
328 329 330 331 332 333 334	First gonopod slender, margins sinuous, mid-distal portion notably curved outwards, surface with abundant plumose setae (Fig. 3E). Second gonopod small, flagellum curved outwards, slightly bent inwards, tip pointing upwards, margins convex with a-shallow notch (Fig. 3F; black arrow). Female (Figs. 2D–F; UMAR-DECA-307; CW = 10.50, CL = 7): Same as the male but with less abundant seta in the pterygostomian region and in the ventral surface of the propodus chelae, setae of dorsal surface of the merus walking legs and inner surface of the merus and carpus chelae more abundant and long. Carapace slightly more convex. Abdomen subovate. See
328 329 330 331 332 333 334 335	First gonopod slender, margins sinuous, mid-distal portion notably curved outwards, surface with abundant plumose setae (Fig. 3E). Second gonopod small, flagellum curved outwards, slightly bent inwards, tip pointing upwards, margins convex with a-shallow notch (Fig. 3F; black arrow). Female (Figs. 2D–F; UMAR-DECA-307; CW = 10.50, CL = 7): Same as the male but with less abundant seta in the pterygostomian region and in the ventral surface of the propodus chelae, setae of dorsal surface of the merus walking legs and inner surface of the merus and carpus chelae more abundant and long. Carapace slightly more convex. Abdomen subovate. See "variation" section for more details.

339	Habitat: Marine. Associated with the sea cucumber Holothuria (Halodeima) inornata, living in
340	its coelom and inside its intestine (Fig. 2G). This holothurian inhabits rocky-sand bottoms in
341	shallow waters (0–18 m).
342	Variation: The revised material showed three general outlines on the carapace shape. Between
343	males, a transversally subrectangular carapace shape was observed in 33% (three specimens
344	from Sinaloa) of the revised material. A subovate shape was observed in 56% (five specimens)
345	of the material and comes from Guerrero and Oaxaca, and a subtrapezoidal shape in 11% (one
346	specimen from Oaxaca). In females, the subrectangular shape was observed in 11% (five
347	specimens from Sinaloa) of the material. The subovate shape in 85% (40 specimens from
348	Guerrero and Oaxaca), and the subtrapezoidal shape in 2% (two specimens from Oaxaca).
349	The subrectangular shape (Figs. 5A, 6A) is defined by a straight and notably projected margin of
350	the frontal lobes. There is a straight anterior margin in which the hepatic notch in males is
351	notably deeper, eroded, and extended over the carapace (Fig 5A, white arrow). In females it is
352	less conspicuous (Fig. 6A, black arrow). The males have truncated and scarcely projected lateral
353	lobes with the anterior portion concave (Fig. 5A, black arrow), however in the female it is
354	straight. In contrast the subovate shape (Figs. 5E, I, 6D, G) is defined by an entire even margin
355	which is outlined by the slightly oblique and scarcely projected frontal lobes. The convex
356	anterolateral margin continues smoothly to the lateral margin forming a notably convex lobe
357	(Figs. 5E, I, black arrows) in which the hepatic notch in the males is deep, eroded and extended
358	(Fig. 5E, I, white arrow). In females it is shallow, slightly eroded, and less extended over the
359	carapace (Figs. 6D, G, black arrow).
360	The subtrapezoidal shape is defined by the scarcely projected margin of the frontal lobes, which
361	continues evenly and smoothly to the straight anterolateral margin forming notably projected

362	lateral lobes (Fig. 2D, 7A). In all the females, the margin of the frontal lobes and the eyes are not
363	visible in dorsal view and only a slight notch can be seen (Figs. 6A, D, G, white arrows), because
364	the frontal-dorsal surface is more convex than in males. However, if the carapace is placed so
365	that the posterior margin line of the carapace cannot be seen, then the general carapace outline
366	looks like that of the males from Guerrero or Oaxaca (v.g. Figs. 5E, I).
367	In frontal view, the convexity the frontal-dorsal surface allows a pair of inflated and only
368	drawn lobes on the surface to be seen. The remarkably convex frontal-dorsal surface which
369	obscures the frontal margin and the eyes in dorsal view was observed in 16 specimens (15
370	females, one male). This shape was more frequent in ovigerous females (10 specimens, 67%)
371	than in non-ovigerous ones (five specimens, 33%). The less convex shape was observed in 39
372	specimens (31 females, eight males).
373	Despite the variation in the shape of the carapace in both sexes, in all cases the CW/CL ratio is
374	the same. Additionally, the length measured from the notch of the margin of the frontal lobes to
375	the external orbital angle and the external orbital angle to the posterior angle of the hepatic notch
376	is the same.
377	Regarding the Mxp3, the ischiomerus external margin appears notably convex on its mid-distal
378	portion or slightly even throughout its length. Its inner margin could have a concave or sinuous
379	mid-distal portion. Nevertheless, the inner margin always has a blunt or slightly acute projection
380	(Figs. 5Ca, Ga, Ka, 6Ca, Fa, Ia; black arrow), but its width/length ratio is constant in all the
381	outlines' variations. The carpus is conical and, due to the drawing's perspective, the main
382	variation in its appearance is the length and the convexity or straightness of the dorsal margin,
383	(Figs. 5Cb, Gb, Kb, 6Cb, Fb, Ib). Regardless of its appearance, a projected ridge on the internal
384	surface has a conspicuous tuft of setae. The propodus also looks variable in its width/length ratio.

It has an acute or rounded distal margin due to how the piece is mounted. Despite that, its
proximal ventral margin always forms a straight angle where the dactylus is jointed (Figs. 5Cc,
Gc, Kc, 6Cc, Fc, Ic). Finally, the dactylus shows two closely related outlines, one subspatulated
and the other suboblong. The first one has a more expanded distal portion instead of a narrow
shape as in the latter. Nevertheless, its distal margin always overreaches the propodus slightly
(Figs. 5Cd, Gd, Kd, 6Cd, Fd, Id).
We observed a variation in the ornamentation of the chelae fingers. Between males, the cutting
edge of the movable finger has two or three proximal blunt or acute teeth (Figs. 5B, F, J, black
arrows). The medial tooth is simple (Figs. 5B, J, white arrow) or bicuspid (Fig. 5F, white arrow),
and the subdistal projection is acute (Figs. 5B, F, white dashed arrow) or blunt (Fig. 5J, white
dashed arrow). The fixed finger has six to nine blunt (Fig. 5B) or acute (Fig. 5F, J) teeth, and the
middle or more conspicuous tooth is always bicuspid (Figs. 5B, F, J, black dashed arrow).
Between females, the movable finger shows two to three acute teeth (Fig. 6B, E, H, black arrow).
The medial tooth can be acute (Figs, 6B, E, white arrow) or blunt (Fig. 6H, white arrow), and
there is a blunt subdistal projection (Figs. 6B, E, H, white dashed arrow). The fixed finger has
four to thirteen teeth, with a bicuspid blunt medial tooth (Fig. 6B, E, black dashed arrow) or it is
simple, acute (Fig. 6H, black dashed arrow). Only one specimen (DECA-1172) had a different
chelae size and a different teething pattern on the cutting edge of the fixed finger (Fig. 6J, K).
The first gonopod of the males shows variation in the degree of curvature and in the proportion
of the distal section that is curved, as well in the general outline shape of the gonopod tip.
However, it may be similar in different stages of development. In this sense, the general
appearance in the abdominal view of males from Sinaloa and Oaxaca is more similar because the
external and internal margins are sinuous (Figs. 5D, L). The curvature degree is approximately

408	90° (Fig. 5D) and 75° (Fig. 5L) respectively. The tip of the external margin is truncated (Figs.
409	5De-f, Le-f; white arrow), and the ventral margin of the tip has a blunt projection (Figs. 5De, Le
410	black arrow). In males from Guerrero, the external and internal margins are less sinuous and the
411	curvature degree is approximately 65° (Fig. 5H). The tip of the external margin is convex (Fig.
412	5He-f; white arrow), and the ventral margin of the tip has a pointed projection (Fig. 5He; black
413	arrow).
414	Also, in sternal view, the ventral process shape of the internal margin tip is variable. In males
415	from Sinaloa, it is obtuse (Fig. 5Df; black arrow), while those from Guerrero had a convex one
416	(Fig. 5Hf; black arrow). Those from Oaxaca had it oblique (Fig. 5Lf; black arrow), but this may
417	also vary between the different sizes of the crabs.
418	Remarks: The taxonomical history of <i>Holothuriophilus trapeziformis</i> was synthetized by
419	Campos, Peláez-Zárate & Solís-Marín (2012) and they highlight the fact that the specimen
420	identified by Bürger (1895) as a male, based on the shape of the abdomen, is actually a female.
421	We observed the same in several young individuals with abdomens showing a similar shape to
422	that of juvenile males, however, the presence of pleopods in all the abdominal somites confirms
423	that they are females. This finding allowed us to present the complete male morphology of H .
424	trapeziformis.
425	All the biological material examined shows phenotypic variation, particularly between the
426	individuals from the type locality in Mazatlan with respect to those from of Guerrero and
427	Oaxaca, but COI gene shows no differences. With our detailed cription of the male
428	morphology it is now possible to differentiate Holothuriophilus trapeziformis from H. pacificus
429	with certainty. The carapace can be subrectangular (Fig. 5A, 6A), suboval (Fig. 5E, I, 6D, G) or

+30	subtrapezoidal (Fig. 1A, D, 2A, /A) in the former, but it is always subcuadrangular in the latter
431	(Fig. 7E).
432	Holothuriophilus trapeziformis has the Mxp3 dactylus with its distal portion notably expanded,
433	the external distal margin slightly truncated, and the flagellum of the exopod is long and robust
134	(Figs. 7B, J, K, 8A). In contrast, <i>H. pacificus</i> has a rounded distal margin and the flagellum of
435	the exopod is long and slender (Figs. 7F, 8D).
436	The first gonopod of <i>Holothuriophilus trapeziformis</i> has a more sinuous lateral margin, with a
437	distal portion larger, curved outwards with abundant setae (Fig. 8C). In H. pacificus, it is straight
438	with just the distal portion slightly curved outwards and with less abundant setae (Fig. 8F).
439	The abdomen of <i>Holothuriophilus trapeziformis</i> , in males, is subtriangular with lateral margins
440	narrowing from the fourth to the sixth somite, the third somite has notably convex lateral
441	margins, the sixth somite has notably concave lateral margins, and the telson is subrounded and
142	wider than long (Fig. 8B). In <i>H. pacificus</i> , it is triangular, the lateral margins are almost straight,
143	the third and sixth somite lateral margins are concave, and the telson is subtriangular and more
144	extended than wide (Fig. 8E).
145	In the case of Holothuriophilus trapeziformis, adult ovigerous and non-ovigerous females, the
146	abdomen is suboval and broader than long, the first somite has convex lateral margins, the
147	second somite has sinuous distal margins, the third somite has oblique and downward lateral
148	margins, the sixth somite has oblique and outward lateral margins, and the telson has a length to
149	width ratio ca. 0.2 (Fig. 7D). In contrast, <i>H. pacificus</i> have it suboval and more extended than
450	wide, the first somite has concave lateral margins, the second somite has almost straight distal
451	margins, the third somite has oblique and upwards lateral margins, the sixth somite has convex
452	lateral margins, and the telson has a length to width ratio ca. 0.3 (Fig. 7H).

unta Tiburón, Sinaloa to Playa Tejón, Oaxaca. We found crabs in the e cloaca of the host, as mentioned by Manning (1993), Campos,
e cloaca of the host, as mentioned by Manning (1993), Campos,
arín (2012), and Honey-Escandón & Solís-Marín (2018). By the first
within the intestine (Fig. 1G).
inornata is distributed throughout the Tropical Eastern Pacific from the
o to Ecuador, and in the temperate island Lobos de Afuera, Peru
Honey-Escandón & Solís-Marín 2018). It also represents an important
ut its distribution range (Santos-Beltrán & Salazar-Silva 2011).
records for Holothuriophilus trapeziformis outside the Pacific coast of
abs (Table S1), 51 were processed. The number of base pairs was
abs (Table S1), 51 were processed. The number of base pairs was op for 37 specimens with a sole Barcode Index Number (BIN;
op for 37 specimens with a sole Barcode Index Number (BIN;
op for 37 specimens with a sole Barcode Index Number (BIN; 2013) in the BOLD database: ADE9974. Of those, 35 produced a high
op for 37 specimens with a sole Barcode Index Number (BIN; 2013) in the BOLD database: ADE9974. Of those, 35 produced a high togram). The 14 crabs that could not be amplified correspond to old
op for 37 specimens with a sole Barcode Index Number (BIN; 2013) in the BOLD database: ADE9974. Of those, 35 produced a high togram). The 14 crabs that could not be amplified correspond to old ent collections that were not fixed according to the Elías-Gutiérrez et al.
op for 37 specimens with a sole Barcode Index Number (BIN; 2013) in the BOLD database: ADE9974. Of those, 35 produced a high togram). The 14 crabs that could not be amplified correspond to old ent collections that were not fixed according to the Elías-Gutiérrez et al.
op for 37 specimens with a sole Barcode Index Number (BIN; 2013) in the BOLD database: ADE9974. Of those, 35 produced a high togram). The 14 crabs that could not be amplified correspond to old ent collections that were not fixed according to the Elías-Gutiérrez et al. T query in GenBank confirmed our sequences to belong to a
op for 37 specimens with a sole Barcode Index Number (BIN; 2013) in the BOLD database: ADE9974. Of those, 35 produced a high togram). The 14 crabs that could not be amplified correspond to old ent collections that were not fixed according to the Elías-Gutiérrez et al. T query in GenBank confirmed our sequences to belong to a

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

Holothuriophilus trapeziformis from the dataset (DS-PINMX1HT) in a single cluster. The cluster of H. trapeziformis is well separated from H. pacificus in the maximum likelihood tree (ML), as shown in figure 9, with a 12 to 14% divergence among all specimens. Holothuriophilus is also close to the Calyptraeotheres clade, but far from other species (Fig. 9) with an interspecific divergence ranging from 12 to 19%. The intraspecific divergences in H. trapeziformes ranged from 0 to 2.2%. This result is congruent with the BOLD distance summary analyses, which show an average distance of 0.73% and a maximum of 2.27% for sequences with more than 500 bp. **Discussion** A major problem for traditional taxonomy, based solely on morphology, is the variability of the phenotype of decapods. In pinnotherid taxonomy, a crucial goal is to provide a complete description of the species with detailed illustrations of common and unusual structures for comparative purposes (Derby & Antema 1980; Ahyong, Komai & Watanabe 2012; Salgado-Barragán 2015). In that regard, characters previously not described like the antenna, the antennule, the Mxp2, and the second male gonopod show no differences between all the examined material despite the variations noted above. These variations are greater when comparing individuals from the northern region (the topotype in Mazatlán, Sinaloa) to those from the southern region (Guerrero and Oaxaca). However, COI data analysis confirmed that our examined specimens correspond to a single species. Phenotype variation is the result of a plastic response to different environmental pressures (Hurtado, Mateos & Santamaria 2010; Rossi & Mantelatto 2013) or due to recent or historical processes that limit the flow of genes because of environmental barriers (Wares, Gaines & Cunningham 2001; Avise 2009). Despite the fact that these processes are well documented, in the case of brachyuran crabs, there is evidence showing that this does not occur in grapsids

499	(Cassone & Boulding 2006), ocypodids (Laurenzano, Mantelato & Schubart 2013), pinnotherids
500	(Ocampo et al. 2013), sesarmids (Zhou et al. 2015), and varunids (Zhang et al. 2017).
501	However, for pinnotherids, the several long-lasting growth phases require specific or various
502	hosts to complete them (Bousquette 1980; Hamel, Ng & Mercier 1999; Ocampo et al. 2011) and
503	represent a drawback. Nevertheless, it allows them to maintain connectivity between populations
504	throughout their geographical distribution range (Haines, Edmunds & Pewsey 1994; Hamel, Ng
505	& Mercier 1999; Ocampo et al. 2012, 2013; Guilherme, Brustolin & de Bueno 2015; Becker &
506	Türkay 2017).
507	In the case of <i>H. trapeziformis</i> , is considered a specific endobiotic parasite of its host (Nauck
508	1880; Campos, Peláez-Zárate & Solís-Marín 2012), resulting in possibly more limited
509	connectivity through larval dispersal. In addition to the above, the particular oceanographic
510	conditions known along the Pacific coast of Mexico and the distribution of the host (Hurtado et
511	al. 2007; Paz-García et al. 2012; Prieto-Rios et al. 2014; Gómez-Valdivia, Parés-Sierra & Flores-
512	Morales 2015; Honey-Escandón & Solís-Marín 2018) could explain the morphological
513	differences observed between the northern species concerning those of the south.
514	Currently, with the complete description of the male, we can conclude that <i>Holothuriophilus</i>
515	trapeziformis is different from H. pacificus using the different characters described here
516	Regarding the DNA barcoding approach, the injection of ethanol inside the body of the crabs
517	through the joints of the exoskeleton, and the use of semi-degenerate zooplankton primers
518	(Prosser, Martínez-Arce & Elías-Gutíerrez 2013) instead of Folmer's, we got a success in a
519	difficult group to work with COI gene (Mantellato et al. 2016). We obtained the amplification of
520	72% of the specimens and 69% sequencing success.

521	The resulting maximum likelihood tree allowed us to confirm <i>Holothuriophilus trapeziformis</i> as
522	a separate species, indicating a divergence from 12 to 14% against the closest taxa, <i>H. pacificus</i> .
523	Also, our tree agrees with Palacios-Theil, Cuesta & Felder (2016) regarding the association of
524	the genus Holothuriophilus and Calyptraeotheres.
525	We can assert that the taxonomic status of Holothuriophilus trapeziformis is now complete,
526	based on the morphology of both sexes, their distribution, specificity of a single host, and
527	according to the DNA barcodes.
528	We believe that <i>Holothuriophilus trapeziformis</i> with its host reflects the restricted habitat in
529	which it lives and possibly the local environmental barriers.
530	Acknowledgements
531	We are grateful to the Chetumal Node of the Mexican Barcode of Life (MEXBOLD) for their
532	support for the genetic analysis, in particular Alma Estrella García-Morales who assisted with the
533	DNA process of the biological samples. To J. Rolando Bastida-Zavala for providing access to the
534	collection material of Laboratorio de Sistemática de Invertebrados Marinos (LABSIM) from
535	Universidad del Mar. To Fernando Álvarez-Noguera and José Luis Villalobos-Hiriart for
536	providing access to the collection material of the Colección Nacional de Crustáceos (CNCR) del
537	Instituto de Biología de la Universidad Nacional Autónoma de México. To Virgilio Antonio
538	Pérez and staff from Buceo Huatulco for their support during the field work. To Carmen Caelen
539	for the English language proofreading and editing.
540	References
541	Adensamer T. 1897. Revision der Pinnotheriden in der Sammlung des K. K. Naturhistorischen
542	Hofmuseums in Wien. Annalen des K.K. Naturhistorischen Hofmuseums 12:105–110.

543	Ahyong ST, Ng PKL. 2007. The pinnotherid type material of Semper (1880), Nauck (1880) and
544	Bürger (1895) (Crustacea: Decapoda: Brachyura). Raffles Bulletin of Zoology Supplement
545	16:191–226.
546	Ahyong ST, Komai T, Watanabe T. 2012. First Viridotheres Manning, 1996, from Japan, with
547	a key to the species (Decapoda, Brachyura, Pinnotheridae). In: Komatsu H, Okuno J,
548	Fukuoka K, eds. Studies on Eumalacostraca: A Homage to Masatsune Takeda,
549	Crustaceana Monographs 17:35-47 https://doi.org/10.1163/9789004202894_003
550	Avise JC. 2009. Phylogeography: retrospect and prospect. <i>Journal of Biogeography</i> 36:3–15
551	https://doi.org/10.1111/j.1365-2699.2008.02032.x
552	Balss H. 1957. Decapoda. In: Bronns GH, ed. Klassen und Ordnungen des Tierreichs. Fünfter
553	Band 5, 1 Abteilung, 7 Buch, 12 Lieferung. pp. 1505-1672.
554	Becker C, Türkay M. 2017. Host specificity and feeding in European pea crabs (Brachyura,
555	Pinnotheridae). Crustaceana 90(7–10):819–844 https://doi.org/10.1163/15685403-
556	<u>00003661</u>
557	Brandão M, Freire AS, Burton RS. 2016. Estimating diversity of crabs (Decapoda: Brachyura)
558	in a no-take marine protected area of the SW Atlantic coast through DNA barcoding of
559	larva. Systematics and Biodiversity 14(3):288–302
560	https://doi.org/10.1080/14772000.2016.1140245
561	Bousquette GD. 1980. The larval development of <i>Pinnixa longipes</i> (Lockington, 1877)
562	(Brachyura: Pinnotheridae) reared in the laboratory. Biological Bulletin 159:592-605
563	https://doi.org/10.2307/1540825
564	Bürger O. 1895. Ein Beitrag zur kenntniss der Pinnotherinen. Zoologische Jahrbücher,
565	Abtheilung für Systematik, Geographie und Biologie der Thiere 8:361–390.

566	Campos E, Diaz V, Gamboa-Contreras JA. 1998. Notes on distribution and taxonomy of five
567	poorly known species of pinnotherid crabs from the eastern Pacific (Crustacea: Brachyura:
568	Pinnotheridae). Proceedings of the Biological Society of Washington 111:372–381.
569	Campos E, Peláez-Zárate V, Solís-Marín FA. 2012. Rediscovery, host and systematics of
570	Holothuriophilus trapeziformis Nauck, 1880 (Crustacea, Brachyura, Pinnotheridae).
571	Zootaxa 3528:57–62 https://doi.org/10.11646/zootaxa.3528.1.4
572	Caso ME. 1958. Contribución al conocimiento de los holoturoideos de México. III. Algunas
573	especies de holoturoideos litorales de la costa Pacífica de México. Anales del Instituto de
574	Biología, Universidad Nacional Autónoma de México 28:309–338.
575	Caso ME. 1964. Contribución al conocimiento de los holoturoideos de México. Descripción de
576	una n. sp. de Holothuria de un nuevo subgénero (Paraholothuria N. SG.). Anales del
577	Instituto de Biología, Universidad Nacional Autónoma de México 3 4(1–2):367–380.
578	Caso ME. 1965. Estudio sobre Equinodermos de México. Contribución al conocimiento de los
579	holoturoideos de Zihuatanejo y de la Isla de Ixtapa (primera parte). Anales del Instituto de
580	Biología, Universidad Nacional Autónoma de México 36:253–291.
581	Cassone JB, Boulding GE. 2006. Genetic structure and phylogeography of the lined shore crab
582	Pachygrapsus crassipes, along the northeastern and western Pacific coast. Marine Biology
583	149:213–226 https://doi.org/10.1007/s00227-005-0197-9
584	Costa FO, De Waard JR, Boutillier J, Ratnasingham S, Dooh RT, Hajibabaei M, Hebert
585	PDN. 2007. Biological identification through DNA barcodes: the case of the Crustacea.
586	Canadian Journal of Fisheries and Aquatic Science 64:272–295
587	https://doi.org/10.1139/f07-008

588	Darriba D, Taboada GL, Doallo R, Posada D. 2011. jModel1est 2: more models, new
589	heuristics and parallel computing. Nature Methods 9(8):772
590	https://doi.org/10.1038/nmeth.2109
591	Derby CD, Antema J. 1980. Induced host odor attraction in the pea crab <i>Pinnotheres</i>
592	maculatus. Biological Bulletin 158:26–33 https://doi.org/10.2307/1540755
593	De Man JG. 1887. Uebersicht der Indo-pacifischen Arten der Gattung Sesarma Say, nebst einer
594	Kritik der von W. Hess und E. Nauck in den Jahren 1865 und 1880 beschriebenen
595	Decapoden. Zoologische Jahrbücher. Abteilung für Systematik, Geographie und Biologie
596	der Tier 2:639–722.
597	Elías-Gutiérrez M, Valdez-Moreno M, Topan J, Young MR, Cohulo-Colli JA. 2018.
598	Improved protocols to accelerate the assembly of DNA barcode reference libraries for
599	freshwater zooplankton. Ecology and Evolution 8:3002-3018
600	https://doi.org/10.1002/ece3.3742
601	Garth SJ. 1957. Reports of the Lund University Chile Expedition 1948–49, 29, The crustacea
602	decapoda brachyura of Chile. Lunds Universitets Årsskrift. N.F. Avd. 2. Bd. 53. Nr. 7:1-
603	134.
604	Garm A, Watling L. 2013. The crustacean integument: setae, setules, and other ornamentation.
605	In: Watling, L. & Thiel, M. (Eds.) Functional morphology and diversity. The natural
606	history of crustacean series, 1. Oxford University Press, Oxford, pp:167-198
607	https://doi.org/10.1093/acprof:osobl/9780195398038.003.0006
608	Gómez-Valdivia F, Parés-Sierra A, Flores-Morales AL. 2015. The Mexican Coastal Current:
609	A subsurface seasonal bridge that connects the tropical and subtropical Northeastern
610	Pacific. Continental Shelf Research 110:100–107 https://doi.org/10.1016/j.csr.2015.10.010

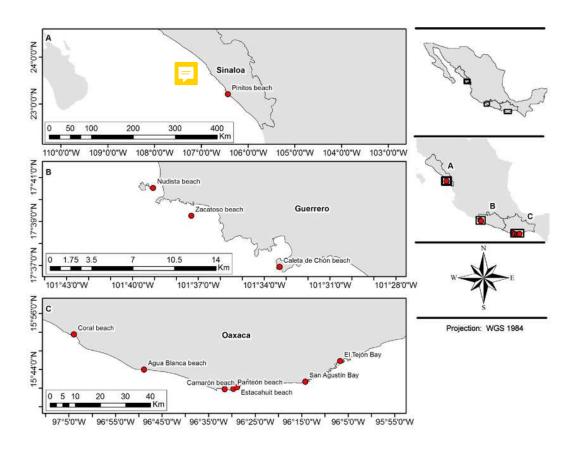
611	Guilherme PDB, Brustolin MC, de Bueno ML. 2015. Distribution of ectosimbiont crabs and
612	their sand dollar host in a subtropical estuarine sandflat. International Journal of Tropical
613	Biology, Revista de Biología Tropical 63(2):209–220.
614	Haines CMC, Edmunds M, Pewsey AR. 1994. The pea crab, Pinnotheres pisum (Linnaeus
615	1767), and its association with the common mussel, Mytilus edulis (Linnaeus, 1758), in the
616	Solent (U.K.). Journal of Shellfish Research 13:5–10.
617	Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA. 2007. DNA barcoding: how it
618	complements taxonomy, molecular phylogenetics and population genetics. TRENDS in
619	Genetics 23(4):167–172 https://doi.org/10.1016/j.tig.2007.02.001
620	Hajibabaei M, De Waard JR, Ivanova NV, Ratnasingham S, Dooh RT, Kirk SL, Mackie
621	PM, Hebert PDN. 2005. Critical factors for assembling a high volume of DNA barcodes.
622	Philosophical Transactions of The Royal Society of London B Biological Science
623	360:1959–1967 https://doi.org/10.1098/rstb.2005.1727
624	Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis
625	program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95–98.
626	Hamel JF, Ng PKL, Mercier A. 1999. Life cycle of the pea crab <i>Pinnotheres halingi</i> sp. nov.,
627	and obligate symbiont of the sea cucumber Holothuria scabra Jaeger. Ophelia 50(3):149-
628	175 https://doi.org/10.1080/00785326.1999.10409393
629	Hebert PND, Cywinska A, Ball SL, De Waard JR. 2003. Biological identification through
630	DNA Barcodes. Proceedings of the Royal Society of London. Series B, Biological Science
631	270 (1512):313–321 https://doi.org/10.1098/rspb.2002.2218
632	Honey-Escandón M, Solís-Marín FA. 2018. A revision of Holoturia (Halodeima) kefersteinii
633	(Selenka, 1867) and the revival of <i>Holothuria inornata</i> Semper, 1868 from sea cucumbers

634	collected in Mexico and Central America. Zootaxa 4377(2):151-77
635	https://doi.org/10.11646/zootaxa.4377.2.1
636	Hurtado LA, Mateos M, Santamaria CA. 2010. Phylogeography of supralitoral rocky
637	intertidal Ligia isopods in the Pacific region from Central California to Central Mexico.
638	PLoS ONE 5(7):e11633 https://doi.org/10.1371/journal.pone.0011633
639	Hurtado LA, Frey M, Guebe P, Pfeiler E, Markow TA. 2007. Geographical subdivision,
640	demographic history and gene flow in two sympatric species of intertidal snails, Nerita
641	scabricosta and Nerita funiculate, from the tropical eastern Pacific. Marine Biology
642	151:1863–1873 https://doi.org/10.1007/s00227-007-0620-5
643	Ivanova NV, De Waard JR, Hebert, PDN. 2006. An inexpensive, automation-friendly protocol
644	for recovering high-quality DNA. Molecular Ecology Notes 6:998-1002
645	https://doi.org/10.1111/j.1471-8286.2006.01428.x
646	Laurenzano C, Mantelatto FLM, Schubart CD. 2013. South American homogeneity versus
647	Caribbean heterogeneity: populations genetic structure of the western Atlantic fiddler crab
648	Uca rapax (Brachyura, Ocypodidae). Journal of Experimental Marine Biology and
649	Ecology 449:22–27 https://doi.org/10.1016/j.jembe.2013.08.007
650	Lefébure T, Douady CJ, Gouy M, Gibert J. 2006. Relationship between morphological and
651	molecular divergence within Crustacea: Proposal of a molecular threshold to help species
652	delimitation. Molecular Phylogenetics and Evolution 40(2006):435-447
653	https://doi.org/10.1016/j.ympev.2006.03.014
654	Manning RB. 1993. Three genera remove from the synonymy of <i>Pinnotheres</i> Bosc, 1802
655	(Brachyura: Pinnotheridae). Proceedings of the Biological Society of Washington 106(3):
656	523–531.

65/	Matzen da Silva J, Creer S, dos Santos A, Costa AC, Cunha MR, Costa FO, Carvalho GR.
658	2011. Systematic and evolutionary insights derived from mtDNA COI barcode Diversity in
659	the Decapoda (Crustacea: Malacostraca). PloS ONE 6(5):1–15, e19449
660	https://doi.org/10.1371/journal.pone.0019449
661	Nauck E. 1880. Das Kaugerüst der Brachyuren. Zeitschrift für wissenschaftliche Zoologie
662	(Leipzig) 34:1–69.
663	Nei M, Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New
664	York
665	Ng PKL, Manning RB. 2003. On two new genera of pea crabs parasitic in holothurians
666	(Crustacea: Decapoda: Brachyura: Pinnotheridae) from the Indo-West Pacific, with notes
667	on allied genera. Proceedings of the Biological Society of Washington 116:901-919.
668	Nobili G. 1901. Decapodi raccolri dal Dr. Filippo Silvestri nell' America meridionale. <i>Bollettino</i>
669	del Musei di Zoologia ed Anatomia comparata della R. Univerith di Torino 16(402):1–16.
670	Ocampo EH, Nuñez JD, Lizarralde MS, Cledón M. 2011. Larval development of
671	Calyptraeotheres garthi (Fenucci, 1975) (Brachyura, Pinnotheridae) described from
672	laboratory-reared material, with notes of larval character use on Pinnotheridae systematics.
673	Helgoland Marine Research 65:347–359 https://doi.org/10.1007/s10152-010-0228-x
674	Ocampo EH, Nuñez JD, Cledón M, Baeza JA. 2012. Host-specific reproductive benefits, host
675	selection behaviour and host use pattern of the pinnotherid crab Calyptraeotheres granthi.
676	Journal of Experimental Marine Biology and Ecology 429: 36–46
677	https://doi.org/10.1016/j.jembe.2012.06.009
678	Ocampo EH, Robles R, Terossi M, Nuñez JD, Cledón M, Mantelato FL. 2013. Phylogeny,
679	phylogeography, and systematics of the American pea crab genus Calyptraeotheres,

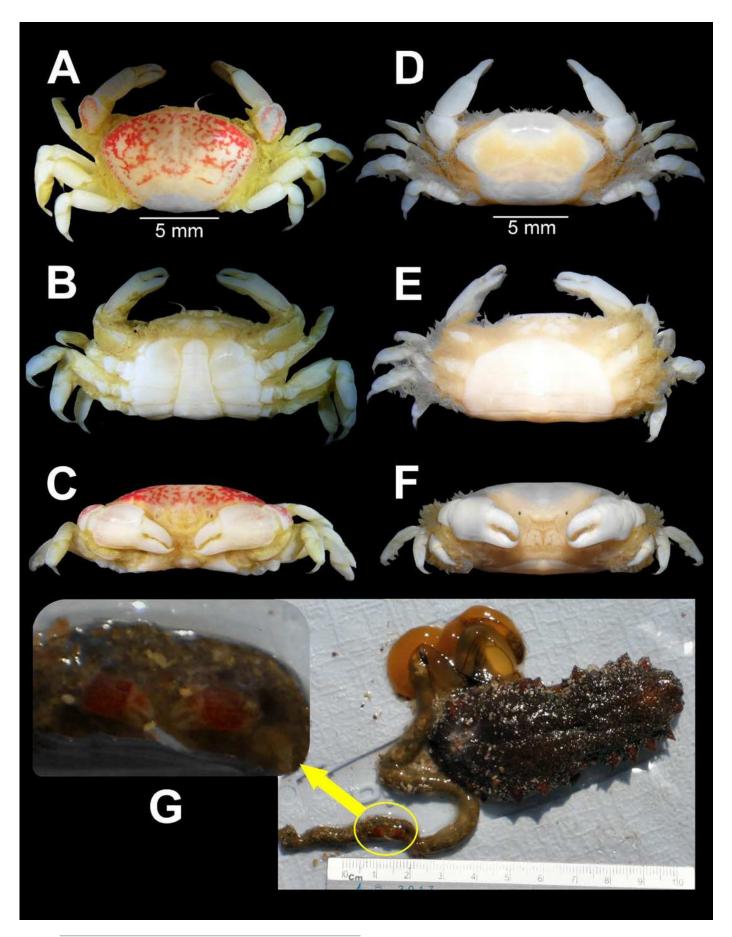
680	Campos, 1990, inferred from molecular markers. Zoological Journal of the Linnean
681	Society 169:27-42 https://doi.org/10.1111/zoj.12045
682	Palacios-Theil E, Cuesta JA, Felder DL. 2016. Molecular evidence for non-monophyly of the
683	pinnotheroid crabs (Crustacea: Brachyura: Pinnotheroidea), warranting taxonomic
684	reappraisal. <i>Invertebrate Systematics</i> 30:1–27 https://doi.org/10.1071/IS15023
685	Paz-García DA, Chávez-Romo HE, Correa-Sandoval F, Reyes-Bonilla H, López-Pérez A,
686	Medina-Rosas P, Hernández-Cortés MP. 2012. Genetic connectivity patterns of corals
687	Pocillopora damicornis and Porites panamensis (Anthozoa: Scleractinia) along the West
688	Coast of Mexico. <i>Pacific Science</i> 66(1): 43–61 https://doi.org/10.2984/66.1.3
689	Perez-Miguel M, Drake P, García-Raso EJ, Mamán-Menéndez J, Navas IJ, Cuesta AJ.
690	2019. European Pinnotheridae (Crustacea, Decapoda, Brachyura): species, distribution,
691	host use and DNA barcode. Marine Biodiversity 49:57-68 https://doi.org/10.1007/s12526-
692	<u>017-0754-8</u>
693	Poeppig E. 1836. Crustacea Chilensia nova aut minus nota descripsit. Archiv Für
694	Naturgeschichte 2(1):133–145.
695	Posada D, Buckley TR. 2004. Model selection and model averaging in phylogenetics:
696	advantages of Akaike information criterion and Bayesian approaches over Likelihood
697	Ratio Test. Systematic Biology 53(5):739–808
698	https://doi.org/10.1080/10635150490522304
699	Prieto-Rios, E, Solís-Marín FA, Borrero-Pérez GH, Díaz-Jaimes P. 2014. Filogeografía de
700	Holothuria (Halodeima) inornata Semper, 1868 (Echinodermata: Holothuroidea). Revista
701	Peruana de Biología 21(2):155–162 https://doi.org/10.15381/rpb.v21i2.9818

702	Prosser S, Martínez-Arce A, Elías-Gutiérrez M. 2013. A new set of primers for COI
703	amplification from freshwater microcrustaceans. Molecular Ecology Resources 13:1151-
704	1155 https://doi.org/10.1111/1755-0998.12132
705	Rathbun MJ. 1904. Description of three new species of American crabs. Proceedings of the
706	Biological Society of Washington 4(17):161–162.
707	Rathbun MJ. 1918. The grapsoid crabs of America. Bulletin of the United States National
708	Museum 97:1–461 https://doi.org/10.5479/si.03629236.97.i
709	Ratnasingham S, Hebert PDN. 2013. A DNA-based registry for all animal species: The
710	Barcode Index Number (BIN) system. PLoS ONE 8(7):e66213
711	https://doi.org/10.1371/journal.pone.0066213
712	Rossi N, Mantelatto FL. 2013. Molecular analysis of the freshwater prawn Macrobrachium
713	olfersii (Decapoda, Palaemonidae) supports the existence of a single species throughout its
714	distribution. PLoS ONE 8(1):e54698 https://doi.org/10.1371/journal.pone.0054698
715	Salgado-Barragán J. 2015. A new species of <i>Pinnixa</i> (Crustacea: Brachyura: Pinnotheridae)
716	from Mazatlan, Sinaloa, Mexico. Revista Mexicana de Biodiversidad 86(3):629-636
717	http://dx.doi.org/10.1016/j.rmb.2015.03.001
718	Santos-Beltrán C, Salazar-Silva P. 2011. Holothuroideos (Echinodermata: holoturoidea) de
719	playas rocosas, zona norte de Bahía Banderas, Nayarit, México. Ciencia y Mar 15(45):3-
720	11.
721	Schmitt WL, McCain JC, Davidson ES. 1973. Fam. Pinnotheridae, Brachyura I: Decapoda I.
722	In: Gruner HE, Holthuis LB, eds. Crustaceorum Catalogus 3:1-160.

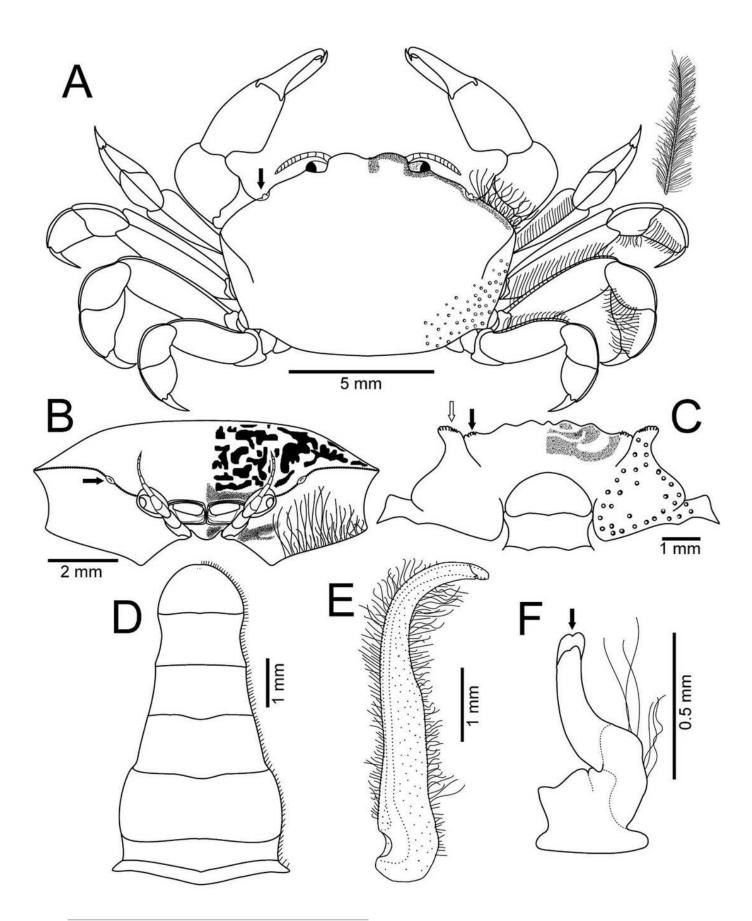


723	Solís-Marín FA, Arriaga-Ochoa JA, Laguarda-Figueras A, Frontana-Uribe SC, Durán-
724	González A. 2009. Holoturoideos (Echinodermata: Holothuroidea) del Golfo de
725	California. CONABIO-UNAM-ICMyL, México, 177 pp.
726	Spielmann G, Diedrich J, Haszprunar G, Busch U, Huber I. 2019. Comparison of three DNA
727	marker regions for identification of food relevant crustaceans of the order Decapoda.
728	European Food Research and Technology, 245:987-995 https://doi.org/10.1007/s00217-
729	<u>018-3199-9</u>
730	Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular
731	Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30:2725-
732	2729 https://doi.org/10.1093/molbev/mst197
733	Wares JP, Gaines SD, Cunningham, CW. 2001. A comparative study of asymmetric migration
734	events across a marine biogeographic boundary. Evolution 55:295-306
735	https://doi.org/10.1111/j.0014-3820.2001.tb01294.x
736	Will WK, Rubinoff D. 2004. Myth of the molecule: DNA barcodes for species cannot replace
737	morphology for identification and classification. Cladistics 20:47-55
738	https://doi.org/10.1111/j.1096-0031.2003.00008.x
739	Zhang C, Li Q, Wu X, Liu Q, Cheng Y. 2017. Genetic diversity and genetic structure of
740	farmed and wild Chinese mitten crab (Eriocheir sinensis) populations from three major
741	basins by mitochondrial DNA COI and Cyt b gene sequences. Mitochondrial DNA PART A
742	2–9 https://doi.org/10.1080/24701394.2017.1404048
743	Zhou H, Xu J, Yang M, Wu B, Yan B, Xiong Y. 2015. Population genetic diversity of
744	sesarmid crab (Perisesarma bidens) in China based on mitochondrial DNA. Mitochondrial
745	DNA, Early Online 1-8 https://doi.org/10.3109/19401736.2015.1015002

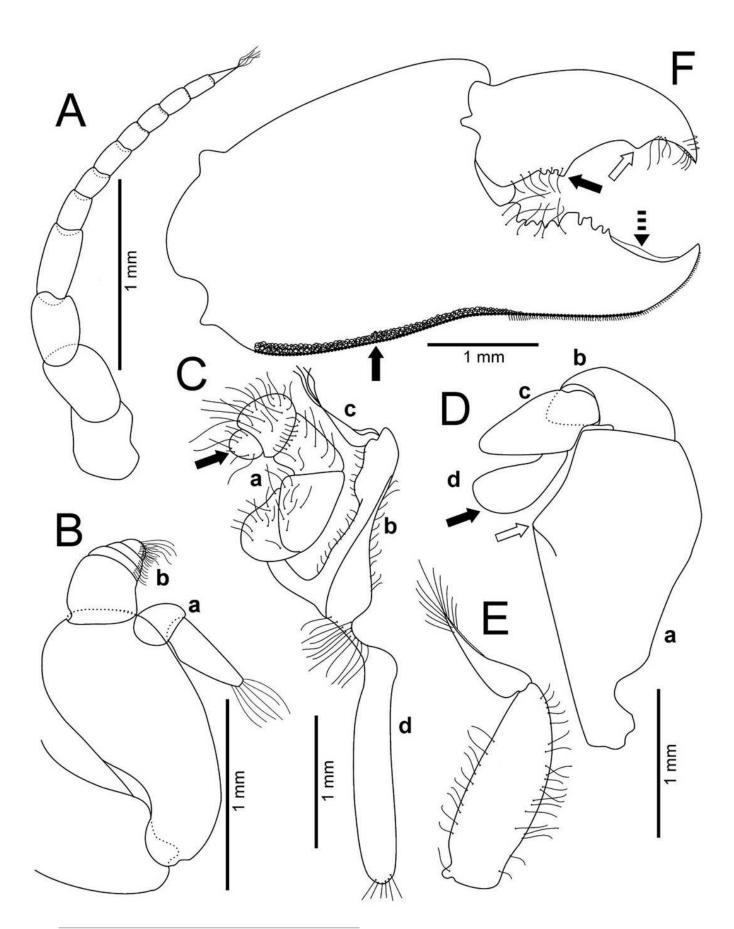
Sampling sites



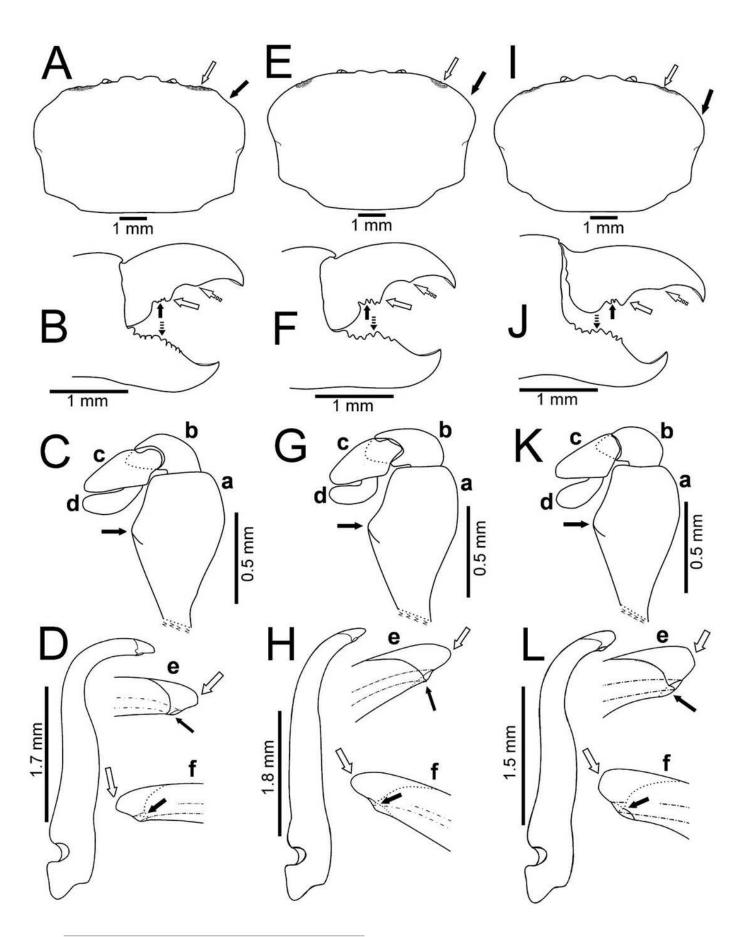
Holothuriophilus trapeziformis Nauck, 1880


A-C, male from Panteon beach, Oaxaca, Mexico (UMAR-DECA-308): A, dorsal view; B, ventral view; C, frontal view. D-F, female from Agua Blanca beach, Oaxaca, Mexico (UMAR-DECA-307): D, dorsal view; E, ventral view; F, frontal view. G, male inside the gut of *Holothuria* (*Halodeima*) *inornata*, from Pinitos beach, Sinaloa, Mexico.

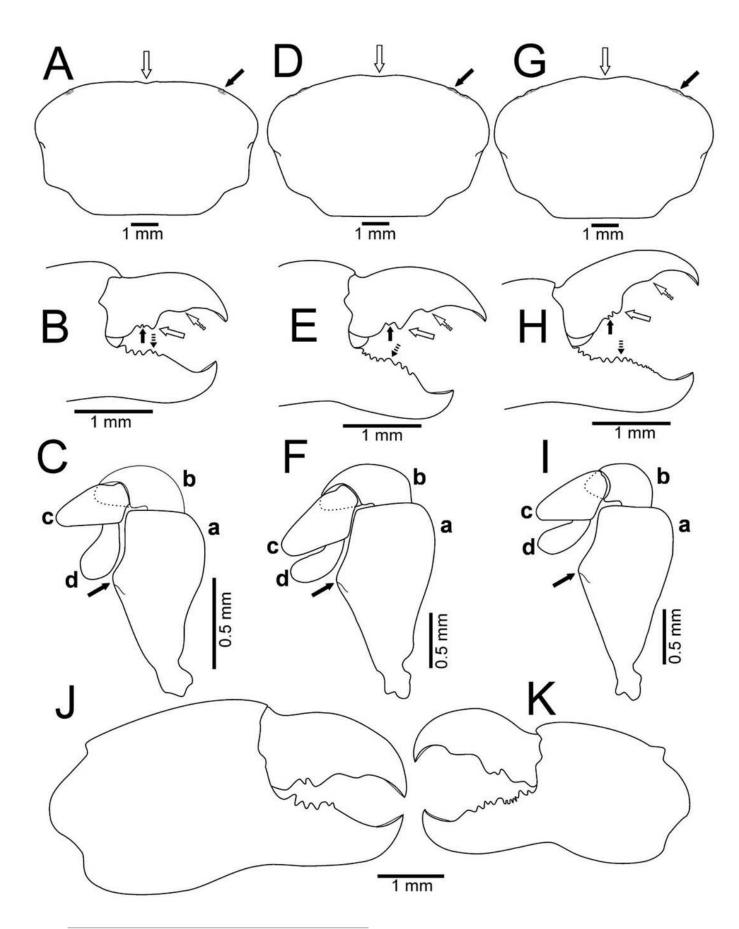
Holothuriophilus trapeziformis Nauck, 1880


A-D, male from Panteon beach, Oaxaca, Mexico (UMAR-DECA-308): A, dorsal view; B, frontal view; C, third-fourth sternal plate; D, abdomen; E, abdominal view of the left first gonopod; F, abdominal view of the left second gonopod; A, C, hollow circles indicating pits. Fine dots indicating pilosity. A-D, half of the illustration without ornamentation.

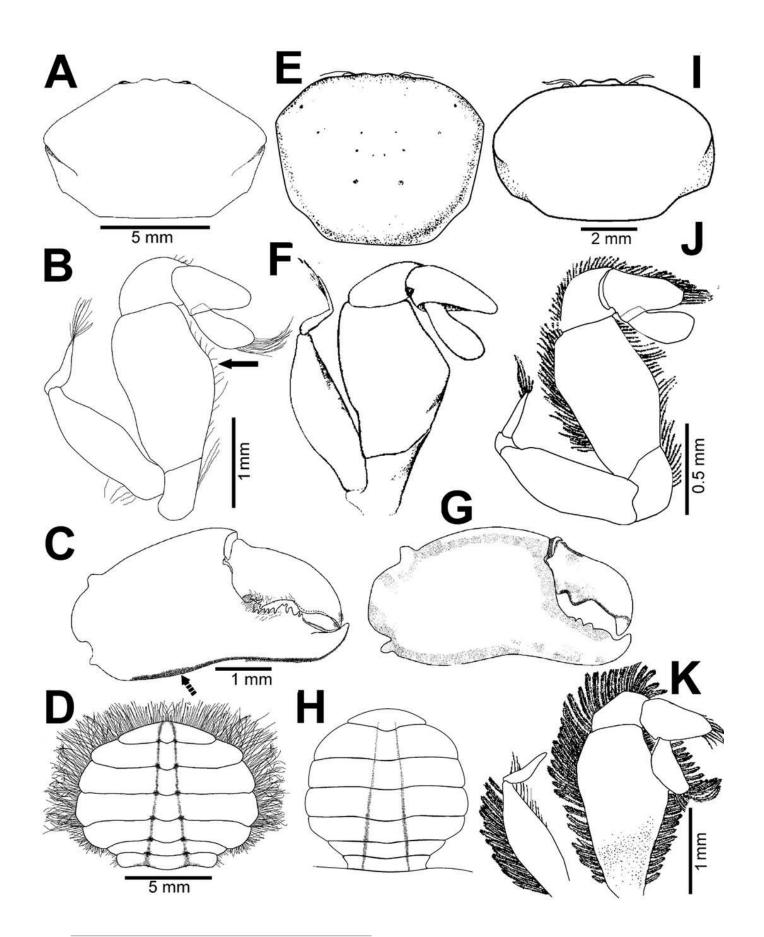
Holothuriophilus trapeziformis Nauck, 1880


A, antenna. B, antennule: a, superior palp; b, inferior palp; C, second maxilliped: a, endopod; b, exopod; c, exopod flagellum; D, third maxilliped: a, ischiomerus; b, carpus; c, propodus; d, dactylus; bold arrow indicating a projection. E, exopod of the third maxilliped. F, chela; bold arrow indicating mid-posterior teeth; dotted arrow, indicating the lamella; clear arrow, mediodistal projection; bold arrow in the inferior part, indicating granules.

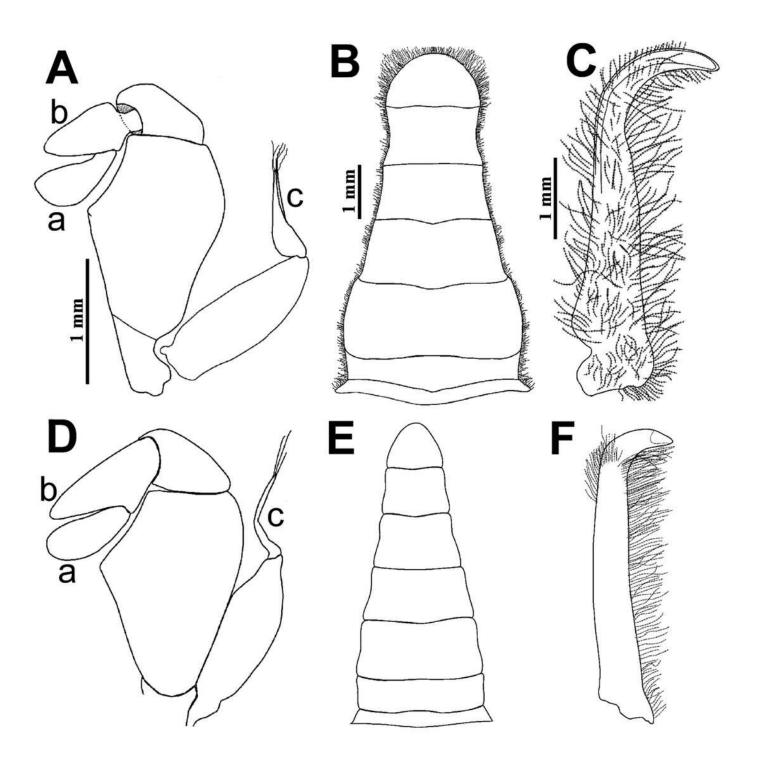
Comparison between males of *Holothuriophilus trapeziformis* Nauck, 1880 from the Pacific coast of Mexico


A A-D, Sinaloa (DECA-1190; CW= 8 mm); E-H, Guerrero (DECA-1148; CW= 8 mm); I-L, Oaxaca (DECA-1270; CW= 8 mm). A, E, I, carapace outline; B, F, J, right chela, external view; C, G, K, left Mxp3 endopod, external view; D, H, L, first gonopod, abdominal view; e, gonopod tip, abdominal view; f, gonopod tip, sternal view. Descriptions are in the main text.

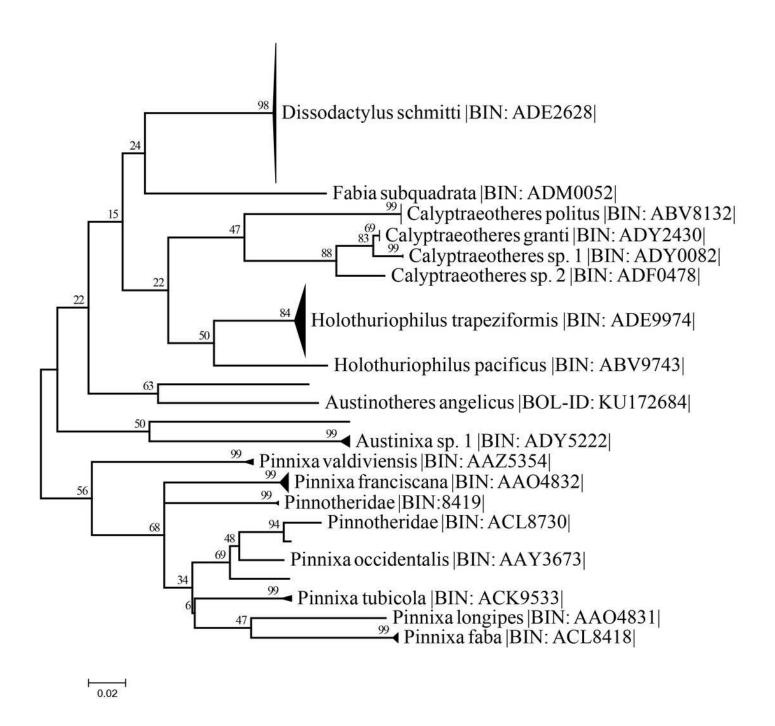
Comparison between ovigerous females of *Holothuriophilus trapeziformis* Nauck, 1880 from the Pacific coast of Mexico


A-C, Sinaloa (UMAR-DECA-1192; CW= 8 mm); D-F, Guerrero (DECA-1149; CW= 8 mm); G-I, Oaxaca (UMAR-DECA-1182; CW= 8 mm); J, K, chelae, external view, Oaxaca (UMAR-DECA-1172; CW= 9 mm). A, D, G, carapace outline; B, E, H, right chela, external view; C, F, I, left Mxp3 endopod, external view. Descriptions are in the main text.

Comparison between females: *Holothuriophilus trapeziformis* Nauck, 1880 and *H. pacificus* (Poeppig, 1836)


A-D, *H. trapeziformis* from Camaron beach, Oaxaca, Mexico (UMAR-CCA-1163): A, carapace; B, third maxilliped; C, chela; D, ovigerous abdomen. E-H, *H. pacificus* holotype of from San Vicente, Chile (Taken from Garth 1957): E, carapace; F, third maxilliped; G, chela; H, abdomen. I-J, lectotype of *H. trapeziformis* from Mazatlan, Mexico (Taken from Ahyong & Ng 2007): I, dorsal view of carapace; J, third maxilliped. K, *H. trapeziformis* from Guerrero, third maxilliped of the adult female (Taken from Campos, Peláez-Zárate, Solís-Marín 2012). Scale of E= x3.5, F= x18.6, G= x4.6, H= x2.9 (*fide* Garth 1957).

Comparison between males: *Holothuriophilus trapeziformis* Nauck, 1880 and *H. pacificus* (Poeppig, 1836)


A, D, third xilliped; a, dactylus; b, propodus; c, exopod flagellum. B, F, abdomen. C, F, first gonopod. A-C, from Panteon beach, Oaxaca, Mexico; C, abdominal view of the gonopod, Mexico (UMAR-DECA-308). D-F, from Talcahuano, Chile (Taken from Garth 1957).

Condensed unrooted Maximum likelihood tree based on mitochondrial cytochrome c oxidase (COI) with the General Time Reversible with gamma distribution (GTR+G) model

Data: BOLD process ID, species name, associated BIN. Branch values represent bootstrap probabilities (1000 permutations).

