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Background: Community assembly by trait selection (CATS) allows for the detection of environmental
filtering and estimation of the relative role of local and regional (meta-community-level) effects on
community composition from trait and abundance data without using environmental data. CATS has been
shown to be equivalent to fitting a Poisson regression. Abundance data do not necessarily follow a
Poisson distribution, and in these cases, other generalized linear models should be fitted to obtain
unbiased parameter estimates.

Aims: This paper discusses how the original algorithm for calculating the relative role of local and
regional effects has to be modified if Poisson model is not appropriate.

Results: It can be shown that the use of the logarithm of regional relative abundances as an offset is
appropriate only if a log-link function is applied. Otherwise, the link function should be applied to the
product of local total abundance and regional relative abundances. Since this product may be outside the
domain of the link function, the use of log-link is recommended, even if it is not the canonical link. An
algorithm is also suggested for calculating the offset when data are zero-inflated. The relative role of
local and regional effects is measured by Kullback-Leibler R2. The formula for this measure presented in
Shipley's paper is valid only if the abundances follow a Poisson distribution. Otherwise, slightly different
formulas have to be applied. Beyond theoretical considerations, the proposed refinements are illustrated
by numerical examples. CATS regression could be a useful tool for community ecologists, but it has to be
slightly modified when abundance data do not follow a Poisson distribution. This paper gives detailed
instructions on the necessary refinement.
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16 Abstract

17 Background: Community assembly by trait selection (CATS) allows for the detection of 

18 environmental filtering and estimation of the relative role of local and regional (meta-

19 community-level) effects on community composition from trait and abundance data without 

20 using environmental data. It has been shown Poisson regression of abundances against trait data 

21 results in the same parameter estimates. Abundance data do not necessarily follow a Poisson 

22 distribution, and in these cases, other generalized linear models should be fitted to obtain 

23 unbiased parameter estimates.

24 Aims: This paper discusses how the original algorithm for calculating the relative role of local 

25 and regional effects has to be modified if Poisson model is not appropriate.

26 Results: It can be shown that the use of the logarithm of regional relative abundances as an 

27 offset is appropriate only if a log-link function is applied. Otherwise, the link function should be 

28 applied to the product of local total abundance and regional relative abundances. Since this 

29 product may be outside the domain of the link function, the use of log-link is recommended, 

30 even if it is not the canonical link. An algorithm is also suggested for calculating the offset when 

31 data are zero-inflated. The relative role of local and regional effects is measured by Kullback-

32 Leibler R2. The formula for this measure presented by Shipley (2014) is valid only if the 

33 abundances follow a Poisson distribution. Otherwise, slightly different formulas have to be 

34 applied. Beyond theoretical considerations, the proposed refinements are illustrated by numerical 

35 examples.

36 CATS regression could be a useful tool for community ecologists, but it has to be slightly 

37 modified when abundance data do not follow a Poisson distribution. This paper gives detailed 

38 instructions on the necessary refinement.

39

40 Introduction

41 The community assembly by trait selection (CATS) method developed by Shipley et al. allows 

42 for the detection of environmental filtering of traits without using data on acting environmental 

43 variables (Shipley, Vile & Garnier, 2006; Shipley, 2010). Moreover, its extension (Shipley, 2014) 

44 can estimate the relative role of environmental filtering, meta-community effects (mass effect or 

45 dispersal limitation), and demographic stochasticity. In its original form, CATS minimizes the 

46 Kullback-Leibler divergence between the relative abundance expected a priori and the predicted 
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47 relative abundances under the constraint that weighted trait means (CWMs) have to be equal in 

48 the predicted and observed communities. This approach uses observed trait means as the input 

49 and does not require the observed abundances (see its implementation in FD package; Laliberté, 

50 Legendre & Shipley, 2014). This fact suggests that the method could be applied to any type of 

51 abundance data if relative abundances can be calculated (i.e., relative abundances are the weights 

52 in the CWM calculation).

53 Warton et al. (2015) have shown that a Poisson-regression for abundances using species’ traits as 

54 predictors and the logarithm of relative abundances expected a priori as an offset results in the 

55 same parameter estimates. The Poisson regression has three assumptions: (1) the abundance 

56 values follow a Poisson distribution; (2) the logarithm of expected abundances is a linear 

57 function of trait values; and (3) observations are independent (conditional on trait values). 

58 Violation of the third assumption has implications for interference (see eg. Warton, Shipley & 

59 Hastie, 2015; ter Braak, Peres-Neto & Dray, 2017 for discussion on interference, when 

60 independence assumtion is violated due to species interactions). However, it does not lead to 

61 biased estimates of model parameters. Violation of the first and second assumptions may result 

62 in biased parameter estimates. 

63 The “examples” section will illustrate that violation of the Poisson assumption may lead to false 

64 conclusions.

65 A Poisson distribution of abundances can be assumed when they are measured by a number of 

66 individuals. Even in this case, the abundances may be over-dispersed (i.e., the variance is higher 

67 than the mean), while a Poisson distribution implies equal mean and variance. Abundance is 

68 often measured in other units: estimated cover, biomass, and frequency of presence, and 

69 sometimes, only presence/absence data are available. Replacing the maximum entropy formalism 

70 with maximum likelihood (ML) fitting of generalized linear models (GLMs) allows for a 

71 generalization of CATS that relaxes the distribution assumption. Following Warton et al. (2015), 

72 we refer to GLMs for abundances with trait values as predictors as in CATS regression. These 

73 models are not mathematically equivalent to CATS, but they have the same goal as CATS using 

74 distributional assumptions that better fit the abundance data at hand. 

75 Depending on the unit of abundances, different distributions can be assumed. Presence/absence 

76 data can be modeled by logit-regression and assuming a binomial (Bernoulli) distribution 

77 (Warton & Hui, 2010). Assuming independent sampling points, the frequency of occurrence in 
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78 sampling points (e.g. pin points; Goodall, 1952) can also be modeled by a binomial distribution 

79 (see Damgaard  (2008, 2009) for relaxing of the independence assumption). If the number of 

80 individuals counted in a sampling with fixed intensity (e.g., fixed sampling area or trapping 

81 time), the simplest assumption is that abundances follow a Poisson distribution. However, 

82 abundance data may be over-dispersed (i.e., the variance is higher than mean), zero-inflated (the 

83 number of zeros is higher than expected from the fitted distribution), or both. 

84 Over-dispersed counts can be modeled by a negative binomial distribution (O’Hara & Kotze, 

85 2010) or Conway-Maxwell-Poisson distribution (Lynch, Thorson & Shelton, 2014). For count 

86 data with excessive zeros, zero-inflated or two-part (hurdle) models can be fitted (Zuur et al., 

87 2009; Blasco-Moreno et al., 2019). If the total number of individuals is fixed in sampling instead 

88 of the sampling intensity, the number of individuals in each species follows a multinomial 

89 distribution (Chong & Spencer, 2018). The abundance of plant species is often described by their 

90 cover (which is often visually estimated). Cover data can be analyzed by (zero-inflated) beta-

91 regression (Damgaard & Irvine, 2019). When individuals considerably differ in size, biomass 

92 may be a better abundance measure than the number of individuals. For modeling biomass data, 

93 a Tweedie distribution could be applied. It assumes that the mean-power relationship follows the 

94 Taylor law. If the power parameter p is in the range of 1<p<2, a Tweedie distribution is 

95 mathematically equivalent to a compound Poisson-gamma distribution (i.e., the sums of the 

96 Poisson-distributed number of individuals each have a gamma distributed mass). This 

97 distribution has a point mass at zero (i.e., an absence of species) (Dunstan et al., 2013).

98 All of these distributions can be applied in generalized linear models. The interpretation of fitted 

99 parameters is similar for all distributions: a positive parameter value means that a higher trait 

100 value results in higher expected abundance. However, the relationship is nonlinear (except when 

101 applying an identity link) and depends on the applied link function. Therefore, plotting the 

102 expected abundances against traits gives a more detailed picture. For interference, the same 

103 procedures can be applied irrespective of the distribution (Warton, Shipley & Hastie, 2015; ter 

104 Braak, Peres-Neto & Dray, 2017). Thus, at first glance, generalization of the CATS regression 

105 seems to be straightforward. However, there are two points that need more consideration: 

106 choosing/interpreting offset terms and calculating the explained variation. The aims of this paper 

107 are (1) to show that recommendations for the original CATS model should be reconsidered when 
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108 a Poisson distribution is replaced by another distribution and (2) to give a general solution for 

109 this replacement and detailed recommendations for the most often used distributions.

110

111 Modeling meta-community effect via offset

112 Beyond local trait selection, larger-scale effects can also influence species’ local abundance. 

113 High propagule pressure can increase the local abundance of species that are abundant in the 

114 surroundings. On the other hand, locally well-adapted species may be missing from the local 

115 community due to propagule limitation. The unique property of CATS is that it can measure the 

116 relative importance of local and meta-community-scale (dispersal) processes (Shipley, 2014).

117 If species survival, growth, and reproduction were independent of their traits, local abundances 

118 would differ from the meta-community-level means due to demographic stochasticity only 

119 (including stochasticity of dispersal). In this case, local abundances could be predicted well from 

120 mean abundances at the meta-community level, while using traits as predictors would not 

121 improve the fit. At the other extreme, when species abundances are independent of dispersal 

122 processes (i.e., no mass effect or propagule limitation) and fully determined by local processes, 

123 knowledge on the meta-community-level abundance would not be able to improve our ability to 

124 predict local abundances (Shipley, 2014). Therefore, the heart of CATS is the fitting of models 

125 with and without information on abundances in the meta-community level. Shipley (2014) called 

126 this information the “neutral prior.” However, Warton et al. (2015) called attention to the term 

127 “prior” as being associated with Bayesian statistics, where it has a specific meaning. To avoid 

128 confusion, we will refer to it as “abundances expected a priori,” where “a priori” means “before 

129 knowing local conditions.”

130 The abundances expected a priori can be included into CATS regression models via offset terms. 

131 Warton et al. (2015) suggested using the logarithm of relative abundances at the meta-

132 community level in a Poisson regression to reproduce the original CATS model. This study 

133 discusses whether this suggestion is generally valid irrespective of the link function.

134 The aim of CATS models is to predict relative abundances of species, not to explain differences 

135 in total abundances among sites, which may be caused by differences in sampling intensity. 

136 Therefore, they always contain an intercept. The relative abundance predicted by a model 

137 containing only an intercept and offset should be equal to the relative abundances expected a 

138 priori ():
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𝑦𝑖𝑆∑𝑖 = 1

𝑦𝑖 = 𝜋𝑖
(1)

139 where  is the predicted abundance of species i, S is the number of species, and i is relative 𝑦𝑖
140 abundances expected a priori of species i. For most of the fitted models (but not for zero-inflated 

141 and two-stage models), , where  is the location parameter of the fitted distribution. 𝑦𝑖 = 𝜇𝑖 𝜇𝑖
142 Therefore,  will be used instead of  where appropriate. If a canonical link is applied and the 𝜇𝑖 𝑦𝑖
143 model contains an intercept term, the sum of predicted values is equal to the sum of observed 

144 values (ytot). Thus, requirement (1) could be written in the following form:𝜇𝑖 = 𝜋𝑖𝑦𝑡𝑜𝑡 (2)

145 The GLM with an intercept and offset but no predictors can be written in the following general 

146 form: ℎ(𝜇𝑖) = 𝛽0 + 𝑂𝑖 (3)

147 where h() is the link function, 0 is the intercept, and Oi is the offset for species i. Substituting 

148 (2) into (3), we obtain the following system of linear equations (note that the left side of 

149 equations can be replaced by numbers calculated from data on hand): ℎ(𝜋𝑖𝑦𝑡𝑜𝑡) = 𝛽0 + 𝑂𝑖 (4)

150 This system contains S+1 variables (O1, O2, …, OS and 0), but only S equations, so it has no 

151 unique solution. It can be solved by choosing an arbitrary value for O1. Then, the other offsets 

152 can be calculated with the following formula:𝑂𝑖 = ℎ(𝜋𝑖𝑦𝑡𝑜𝑡) ‒ ℎ(𝜋1𝑦𝑡𝑜𝑡) + 𝑂1 (5)

153 In Poisson and negative binomial regression, the canonical link is the natural logarithm (Dobson, 

154 2002). Thus, 𝑂𝑖 = ln(𝜋𝑖𝑦𝑡𝑜𝑡) ‒ ln(𝜋1𝑦𝑡𝑜𝑡) + 𝑂1 = ln(𝜋𝑖) ‒ ln(𝜋1) + 𝑂1 (6)

155 In this case, it is appropriate to choose , which leads to the offset recommended by 𝑂1 =  ln(𝜋1)

156 Warton et al. (2015). For other link functions, the simplest choice is O1=0. However, this 

157 approach has two limitations. First,  has to be within the domain of the link function. For 𝜋𝑖𝑦𝑡𝑜𝑡
158 example, for binomial and beta distributions, where the canonical link is logit(x), offsets can be 

159 calculated only if ; otherwise,  cannot be calculated. The second 𝜋𝑖𝑦𝑡𝑜𝑡 < 1 ln(𝜋𝑖𝑦𝑡𝑜𝑡 (1 ‒ 𝜋𝑖𝑦𝑡𝑜𝑡))
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160 limitation is that a canonical link is not always the most appropriate link function, and 

161 sometimes, another link function has to be chosen. For example, for a Tweedie distribution with 

162 power parameter 1<p<2, the canonical link would be (Ohlsson & Johansson, 2006): ℎ(𝜇) =‒ 1𝑝 ‒ 1
𝜇 ‒ (𝑝 ‒ 1)

(7)

163 When the exact value of power parameter p is unknown, it can be estimated from data during 

164 model fitting, but in this case, the log-link is applied in R packages mgcv (Wood, 2017) and 

165 glmmTMB (Brooks et al., 2017). If a canonical link is not used, the sum of expected values may 

166 differ from the sum of observed values. But equation (1) remains true irrespective of the link 

167 function, and it can be converted to: 𝜇𝑖𝜇1
=
𝜋𝑖𝜋1

(8)

168 Combining equations (3) and (8) results in:Error! Reference source not found.ℎ ‒ 1(𝛽 + 𝑂𝑖)ℎ ‒ 1(𝛽 + 𝑂1)
=
𝜋𝑖𝜋1

(9)

169 where  is the inverse of link function. ℎ ‒ 1(𝑥)

170 Setting O1 to an arbitrary value leads to a nonlinear equation system with S equations and S 

171 variables. Solving such a system is often a hard task. The situation would be much simpler if the 

172 following were true: ℎ ‒ 1(𝛽 + 𝑂𝑖) = ℎ ‒ 1(𝛽)ℎ ‒ 1(𝑂𝑖) (10)

173 In this case, choosing  satisfies condition (9). Since  and  satisfy 𝑂𝑖 = ℎ(𝜋𝑖) ℎ(𝑥) = ln(𝑥) ℎ ‒ 1(𝑥) = 𝑒𝑥
174 condition (10), it is reasonable to use log-link even if it is not the canonical link (for example, 

175 instead of logit in a binomial model). In medical statistics, binomial GLM with log-link is called 

176 relative risk regression, which is often recommended due to the easier interpretation of 

177 proportions than odds ratios (Marschner, 2015). If log-link is used with a binomial distribution, 

178 iteratively reweighted least squares (the standard method for fitting GLMs) may fail to converge 

179 to the maximum likelihood estimate (Marschner & Gillett, 2012). Therefore, alternative 

180 estimation procedures were developed and are implemented in the logbin R package (Donoghoe 

181 & Marschner, 2018). Log-link for beta regression is also available in the betareg R package 

182 (Cribari-Neto & Zeileis, 2010). 
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183 Using the mentioned distributions, we suppose that all data come from the same distribution, and 

184 only their parameters depend on species. In this case, the relative abundances at the meta-

185 community level can be estimated by: 𝜋𝑖 =
𝑚𝑖∑𝑚𝑖 (11)

186 where  is the mean abundance of species i in plots representing the meta-community. Note that 𝑚𝑖
187 since only the ratio of relative abundances expected a priori are used, the offset could be simply 

188  instead of . 𝑂𝑖 = ln(𝑚𝑖) 𝑂𝑖 = 𝑙𝑛(𝜋𝑖)
189 If there are excessive zeros, it could be supposed that some of the zeros do not come from the 

190 distribution of “normal” abundances. Zero-inflated and two-part (hurdle) models are based on 

191 this assumption. In these models, there are two equations for two location-type parameters. 

192 A zero-inflated model supposes that positive counts and some of the zeros comes from a Poisson 

193 or negative binomial process, while some zeros are “structural zeros” (i.e., species cannot occur 

194 there). The two parameters in this case are the probability of structural zeros (p) and the expected 

195 value of the Poisson or negative binomial process () (Zuur et al., 2009). For estimating offsets, 

196 we must know the probability of structural zeros at the meta-community. Therefore, it seems that 

197 zero-inflated models have low practical relevance when a meta-community effect has to be 

198 modeled.

199 A two-part (hurdle) model fits two separate models: a binomial model for presence/absence data 

200 and a truncated Poisson or negative binomial model for positive abundances. In this case, the two 

201 parameters are the probability of presence (p) and mean of the Poisson or negative binomial 

202 distribution (), from which the fitted zero-truncated distribution is deduced (not the mean of the 

203 truncated distribution itself) (Zuur et al., 2009). For simplicity, let us imagine that we really fit a 

204 two-part model as two separate GLMs. The first GLM is a binomial model for binary data. 

205 Therefore, we estimate offsets using the standard procedure (but mean abundances at the meta-

206 community level have to be calculated from binary data). In the second GLM, we fit a truncated 

207 Poisson or truncated negative binomial distribution for the non-zero abundances. Similar to 

208 Poisson regression, it is assumed that  is a linear combination of trait values and the offset, 𝑙𝑛(𝜇𝑖)
209 but the expected abundance is the following for a Poisson distribution:
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𝑦𝑖 =
𝜇𝑖

1 ‒ exp( ‒ 𝜇𝑖) (12)

210 For a negative binomial distribution, the expected abundance is:𝑦𝑖 =
𝜇𝑖

1 ‒ (
𝜇𝑖 + 𝜃𝜃 ) ‒ 𝜃 (13)

211  is the expected or mean abundance of species i when it present, while  is the expected or 𝑦𝑖 𝜇𝑖
212 mean abundance when only structural zeros are excluded. For setting the offset, we need a priori 

213 expectation for the latter. 

214 The meta-community level mean of species’ abundance when present ( ) can be easily 𝑚+𝑖
215 estimated. Assuming a Poisson process, the mean abundance excluding structural zeros ( ) can 𝑚𝑖
216 be estimated by solving the following nonlinear equation:𝑚+𝑖 =

𝑚𝑖
1 ‒ exp( ‒ 𝑚𝑖) (14)

217 If a negative binomial distribution is assumed, a similar approach can be applied if  is known. 𝜃
218 Then,  could be used as an offset.ln(𝑚𝑖)
219

220 Relative importance of environmental selection and dispersal 

221 processes

222 The relative importance of local and meta-community-level processes can be calculated from 

223 variation explained by models containing only traits (as independent variables), only offset 

224 (calculated from meta-community-level abundances; see above), or both traits and offset 

225 (Shipley, 2014). Using the classic R2 as a measure of explained variance is suitable only in OLS 

226 regression.  Different generalizations of R2 are suggested for GLMs (Cameron & Windmeijer, 

227 1996, 1997; Menard, 2000; Nakagawa & Schielzeth, 2013). Shipley (2014) proposed using a 

228 generalization based on Kullback-Leibler divergence (Cameron & Windmeijer, 1997). 

229 I will show below that formula (4) from Shipley (2014) is valid for only a Poisson-model, and 

230 different formulas have to be used for other distributions. A definition of Kullback-Leibler R2 is 

231 not available for models with an offset; therefore, solution for this case by Shipley (2014) and its 

232 alternatives will be discussed. Increasing the number of predictors (traits) always improves the fit 
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233 of the model (i.e., increases the Kullback-Leibler R2). Therefore, R2 values of models with 

234 different numbers of predictors (traits) cannot be compared. Shipley (2014) proposed an 

235 “adjustment” procedure based on randomization of traits. Although this procedure is correct, it is 

236 time consuming for large datasets . Thus, an alternative deterministic adjustment is proposed.

237

238 R2 for models without offset

239 Kullback-Leibler R2 is a generalization of the classic R2 used in ordinary least squares 

240 regression:

𝑅2
= 1 ‒∑(𝑦𝑖 ‒ 𝑦𝑖)2∑(𝑦𝑖 ‒ 𝑦)2

=
∑(𝑦𝑖 ‒ 𝑦)2 ‒∑(𝑦𝑖 ‒ 𝑦𝑖)2∑(𝑦𝑖 ‒ 𝑦)2

(15)

241 where   and  are the squared Euclidean distances between observed values ∑(𝑦𝑖 ‒ 𝑦𝑖)2 ∑(𝑦𝑖 ‒ 𝑦)2

242 and predictions of models with and without predictors, respectively. Therefore, R2 is a 

243 proportional decrease of distance between model prediction and observed values due to the 

244 inclusion of predictors in the model. For other distributions, the squared Euclidean distance can 

245 be replaced with Kullback-Leibler divergence with the same interpretation: 

𝑅 2𝐾𝐿 = 1 ‒ 𝐾(𝐲;𝛍)𝐾(𝐲;𝛍𝟎)
=
𝐾(𝐲;𝛍𝟎) ‒ 𝐾(𝐲;𝛍)𝐾(𝐲;𝛍𝟎)

(16)

246 where y is the vector of observed values, and  and 0 are vectors of values predicted by the 

247 evaluated and intercept-only models, respectively.

248 Table 1 shows that distributions that could be used in CATS regression belong to the exponential 

249 family, so their density functions can be written in the following general form (McCullagh & 

250 Nelder, 1999): 𝑓(𝑦;𝜓,𝜙) = exp{𝑦𝜓 ‒ 𝑏(𝜓)𝑎(𝜙)
‒ 𝑐(𝑦,𝜙)} (17)

251 where  is the natural or canonical parameter,  is the dispersal parameter, and a, b, and c are 𝜓 𝜙
252 specific functions. The mean and variance of y are: 

E(𝑦) = 𝜇 = 𝑏'(𝜓)

Var(𝑦) = 𝑎(𝜙)𝑏''(𝜓)
(18)
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253 where b’ and b’’ are the first and second derivatives of function b. Note that negative binomial 

254 and Tweedie distributions belong to this family only if parameters  and p are known constants. 

255 Function  is called a canonical link function.ℎ(𝜇) = 𝜓
256 For members of the exponential family, Kullback-Leibler divergence can be calculated as the 

257 difference between the likelihood of a full model (i.e., a model where predicted and observed 

258 values are equal) and a fitted model (Cameron & Windmeijer, 1997): 𝐾(𝐲;𝛍) = 2[𝑙(𝛍𝐟𝐮𝐥𝐥;𝐲) ‒ 𝑙(𝛍;𝐲)] (19)

259 Thus, for members of the exponential family ,  could be deduced as a corrected version of 𝑅 2𝐾𝐿
260 likelihood ratio R2 or McFadden R2: 𝑅2𝐿 = 1 ‒ 𝑙(𝛍;𝐲)𝑙(𝛍𝟎;𝐲)

(20)

261 A drawback of  is that its maximum is not 1, but . Since its minimum is 𝑅2𝐿 1 ‒ [𝑙(𝛍𝐟𝐮𝐥𝐥;𝐲) 𝑙(𝛍𝟎;𝐲)]

262 zero,  can be rescaled to the interval of 0–1 by dividing it by its maximum, which results in 𝑅2𝐿
263 :𝑅 2𝐾𝐿 𝑅2𝐿

(1 ‒ 𝑙(𝛍𝐟𝐮𝐥𝐥;𝐲)𝑙(𝛍𝟎;𝐲) )
=
𝑙(𝛍𝟎;𝐲) ‒ 𝑙(𝛍;𝐲)𝑙(𝛍𝟎;𝐲)

𝑙(𝛍𝟎;𝐲) ‒ 𝑙(𝛍𝐟𝐮𝐥𝐥;𝐲)𝑙(𝛍𝟎;𝐲)
=

𝑙(𝛍𝟎;𝐲) ‒ 𝑙(𝛍;𝐲)𝑙(𝛍𝟎;𝐲) ‒ 𝑙(𝛍𝐟𝐮𝐥𝐥;𝐲)
= 𝑅 2𝐾𝐿

(21)

264 Substituting (19) into (16) results in:

𝑅 2𝐾𝐿 = 1 ‒ 𝑙(𝛍𝐟𝐮𝐥𝐥;𝐲) ‒ 𝑙(𝛍;𝐲)𝑙(𝛍𝐟𝐮𝐥𝐥;𝐲) ‒ 𝑙(𝛍𝟎;𝐲)
=

𝑙(𝛍;𝐲) ‒ 𝑙(𝛍𝟎;𝐲)𝑙(𝛍𝐟𝐮𝐥𝐥;𝐲) ‒ 𝑙(𝛍𝟎;𝐲)
(22)

265 McCullagh and Nelder (1999) called  the scaled deviance ( , so  can 2[𝑙(𝛍𝐟𝐮𝐥𝐥;𝐲) ‒ 𝑙(𝛍;𝐲)] 𝐷 ∗
) 𝑅 2𝐾𝐿

266 also be calculated from scaled deviances (  or deviances (D) of fitted and intercept-only 𝐷 ∗
)

267 models: 𝑅 2𝐾𝐿 = 1 ‒ 𝐷 ∗ (𝛍;𝐲)𝐷 ∗ (𝛍𝟎;𝐲)
= 1 ‒ 𝐷(𝛍;𝐲) 𝑎(𝜙)𝐷(𝛍𝟎;𝐲) 𝑎(𝜙)

= 1 ‒ 𝐷(𝛍;𝐲)𝐷(𝛍𝟎;𝐲)
(23)

268

269 If there is no offset, in a generalized linear model fitted by ML estimation with a canonical link, 

270 the expectations in an intercept-only model is equal to the mean of observed values: . 𝛍𝟎 = 𝑦
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271 Formulas for this case are listed in Appendix 1. Appendix 2 shows that formula (4) from Shipley 

272 (2014) is equivalent to the formula given for a Poisson regression in Appendix 1. 

273 These formulas assume that the likelihood is a function of only, and if there are other 

274 parameters, their values are constants known a priori (i.e., not estimated during regression). If 

275 these parameters are estimated in regression, we can obtain different estimates for the evaluated 

276 and the intercept-only models.  For a negative binomial distribution with unknown dispersion (𝜃
277 ), Cameron and Windmeijer  (1996) suggested using a parameter estimated for an evaluated 

278 model when the likelihood of full and intercept-only models is calculated. Applying this 

279 approach,  may decrease when a regressor is added to the model due to changes in estimated 𝑅 2𝐾𝐿
280 . The same approach can be applied for the power parameter of a Tweedie distribution. GLM 𝜃
281 fitting programs usually give the log-likelihood of the fitted model and the deviance of fitted and 

282 intercept-only models. 

283

284 R2 for models with offset

285 In the previous section,  was the prediction of model containing an intercept and predictors 

286 (traits), while 0 was the prediction of an intercept-only model. A possible solution for how we 

287 should include the offset is to define 0 as the prediction of a model without predictors (i.e., a 

288 model containing only an intercept and offset). At first glance, it seems to be a natural 

289 generalization of R2 shown in the previous section. However, there is a drawback in this 

290 approach: the effect of meta-community-level processes cannot be directly measured since R2 for 

291 models containing only an intercept and offset (but no traits) would always be zero. Shipley 

292 (2014) suggested an indirect measure of a pure meta-community effect: 𝑅2(traits; offset) ‒ 𝑅2(traits)

1 ‒ 𝑅2(random traits)
(24)

293 The nominator is an adjustment for removing bias (see next section on adjustment), so now, we 

294 should focus on the denominator. This subtraction is based on the assumption that  is 𝑅2(traits)

295 the variation explained by traits, while  is the variation explained by traits and 𝑅2(traits; offset)

296 offset (i.e., meta-community effect) together. However, this assumption is not satisfied when in 

297 calculation of R-squared 0 is the prediction of a model containing only an intercept and offset. 
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298 To understand why, we should recall the geometric interpretation of Kullback-Leibler R2 shortly 

299 mentioned above: R2 is the proportional decrease of distance between observed and predicted 

300 values (or proportional improvement of fit) due to the inclusion of predictors in the model. 

301 Therefore, in (24), both  and  are proportional improvements of fit due 𝑅2(traits) 𝑅2(traits; offset)

302 to the inclusion of traits, but they are proportional to different original distances of observed and 

303 predicted values. Therefore, their difference has no simple interpretation and does not measure 

304 the pure meta-community effect.

305 Instead of defining 0 as a prediction of a model without a predictor, it could be defined as a 

306 prediction of an intercept-only model, even if an offset is applied. This definition allows us to 

307 calculate a meaningful R2 for models with offset but no predictors as a direct measure of the 

308 meta-community effect. This definition may result in negative R2 when including an offset 

309 increases the distance between observed and predicted values instead of decreasing it. A negative 

310 value is nonsense if R2 is interpreted as explained variation, but it is meaningful if R2 is 

311 interpreted as a proportional change in the distance between observed and predicted values. This 

312 geometric interpretation seems more useful in CATS regression, where it has a meaning that 

313 includes meta-community-level relative abundances decreases the goodness-of-fit.

314 Note that in R environment, to avoid negative R2 values, the following formula is applied instead 

315 of (15):

𝑅2
= 1 ‒ ∑(𝑦𝑖 ‒ 𝑦𝑖)2∑(𝑦𝑖 ‒ 𝑦𝑖)2

+∑(𝑦𝑖 ‒ 𝑦)2
(25)

316 If there is no offset, (15) and (25) result in the same value, but they differ if offset is applied.  A 

317 generalization of (25) could be: 𝑅2
= 1 ‒ 𝐾(𝐲;𝛍)𝐾(𝐲;𝛍) + 𝐾(𝛍;𝛍𝟎)

(26)

318

319 Adjusted R2 and partitioning of explained variation

320 As a goodness-of-fit measure, a drawback of R2 (both in the classic form and its generalization) 

321 is that including an additional predictor in the model always increases R2, even if the predictor is 

322 independent of the dependent variable. Therefore, it has a positive expected value instead of zero 
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323 when a dependent variable is not related to the predictors. To remove this bias, Fisher (1925) 

324 suggested using the following adjustment:𝑅 2𝑎𝑑𝑗 = 1 ‒ (1 ‒ 𝑅2)
𝑛 ‒ 1𝑛 ‒ 𝑘 ‒ 1

(27)

325 where n is the number of data points, and k is the number of predictors.

326 Unfortunately, this adjustment is valid for only for “classic” R2 of ordinary least squares 

327 regression. Since Shipley (2014) has not found a similar solution for Kullback-Leibler R2, he 

328 proposed a procedure based on reshuffling trait values to remove the bias. Although the 

329 suggested procedure is correct, it has no unique result, in contrast to the correction using a closed 

330 form. Ricci (2010) has shown that there is a simple general adjustment for  when the 𝑅 2𝐾𝐿
331 dependent variable follows a distribution belonging to the exponential family. Let us write the 

332 formula for  using scaled deviances:𝑅 2𝐾𝐿
𝑅 2𝐾𝐿 =

𝐷 ∗ (𝛍𝟎;𝐲) ‒ 𝐷 ∗ (𝛍;𝐲)𝐷 ∗ (𝛍𝟎;𝐲)
(28)

333 Recall that  is the proportional improvement of model fit. Let us focus on the denominator, 𝑅 2𝐾𝐿
334 which is the absolute improvement. In a bias-corrected version, the absolute improvement should 

335 be zero when predictors have no effect on the dependent variable. Under this condition, for 

336 members of the exponential family,  approximately follows a Chi-square 𝐷 ∗ (𝛍𝟎;𝐲) ‒ 𝐷 ∗ (𝛍;𝐲)

337 distribution with degree of freedom equals to the number of predictors (k). Since the expected 

338 value of the Chi-square distribution is its degree of freedom, the following is an approximately 

339 bias-free goodness-of-fit measure:

𝑅 2𝐾𝐿,𝑎𝑑𝑗 =
𝐷 ∗ (𝛍𝟎;𝐲) ‒ 𝐷 ∗ (𝛍;𝐲) ‒ 𝑘𝐷 ∗ (𝛍𝟎;𝐲)

(29)

340 Appendix 3  shows that (27) is a special case of (29) for a Gaussian distribution with dispersion 

341 estimated from the data. Note that Ricci (2010) applied an alternative derivation of adjustment by 

342 generalization of the shrinkage factor and used the deviance instead of the scaled deviance in the 

343 formulas.

344 For partitioning variation, we should fit models containing both traits and offset and models with 

345 only traits and only offset. Let us denote the corresponding adjusted R2 values by R2(trait; 

346 offset), R2(trait), and R2(offset), respectively. R2(trait; offset) measures the whole variation 
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347 explained by studied traits and relative abundances at the meta-community level. The pure trait 

348 effect (i.e., variation explained only by traits) is R2(trait; offset)- R2(offset), while the pure meta-

349 community effect is R2(trait; offset)- R2(trait). Variation that can be explained by both traits and 

350 the meta-community effect is R2(trait)+R2(offset)- R2(trait; offset). These formulas are analogous 

351 to partitioning of the variation of community composition into environmental and spatial 

352 components (Borcard, Legendre & Drapeau, 1992; Peres-Neto et al., 2006). 

353

354 Examples

355 Examples are presented to illustrate the main messages of the paper. First, example 1 shows how 

356 setting an inappropriate distribution leads to biased parameter estimates. Next, Example 2 shows 

357 that it is important to choose an appropriate offset, and finally Example 3 illustrates why 

358 variation components should be estimated in a new way.

359 Examples uses new R package CATSregression publicly available on GitHub 

360 (https://github.com/BottaDZ/CATSregression/). The package’s vignette shows more examples 

361 using field data.

362

363 Example 1: fitting Poisson model to over-dispersed counts

364 The first example illustrates the problems that arise when an inappropriate model is fitted. The 

365 type of abundance often clearly determines the type of model to be fitted. However, when 

366 abundance is measured by a number of individuals, a Poisson or negative binomial model should 

367 be fitted depending on whether there is a random or aggregated spatial pattern of individuals. If 

368 the spatial pattern is random, the number of individuals will follow a Poisson distribution, where 

369 the variance is equal to the mean. An aggregated spatial pattern leads to over-dispersed counts 

370 (i.e., the variance is higher than mean), which can be modeled by a negative binomial 

371 distribution. 

372 The presence of over-dispersion can be checked by comparing the Akaike Information Criteria 

373 of Poisson and negative binomial models or using diagnostic plots of residuals (Figure 1). Dunn-

374 Smyth (or randomized quantile) residuals (Dunn & Smyth, 1996) are especially useful for this 

375 purpose because if the model’s assumptions (specified distribution and log-linear relationship) 
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376 are satisfied, they follow a standard normal distribution (Warton, Shipley & Hastie, 2015; Feng, Li 

377 & Sadeghpour, 2020).

378 This example uses simulated data. Abundances (y) of 20 species in a plot were simulated. 

379 Abundances follow a negative binomial distribution with a mean that has a log-linear relation to 

380 values of a trait. The dispersion parameter is constant, and trait values follow a normal 

381 distribution: 𝑦𝑖~𝑁𝑒𝑔𝐵𝑖𝑛(𝜇𝑖 = 𝑒𝑥𝑝(0.5 ∗ 𝑥𝑖),𝜃 = 1)𝑥𝑖~𝑁(𝑚 = 10,𝜎 = 3)
(30)

382 The simulation was repeated 50 times, and Poisson and negative binomial models were fitted to 

383 each simulated plots separately. Figure 1 shows a typical diagnostic plot, which has a strong 

384 nonlinearity of the QQ plot indicating that the distributional assumption of a Poisson regression 

385 is not satisfied. The diagnostic plots of a negative binomial model do not indicate any problem.

386 The estimated slopes are dispersed around the real value (0.5) in both Poisson and negative 

387 binomial models (Figure 2). The variation among estimates was higher in the Poisson 

388 distribution, while the confidence intervals were narrower due to the neglect of over-dispersion. 

389 These two facts together may result in over-interpretation of differences in the strength of 

390 selection among plots.

391

392 Example 2: choosing appropriate offset

393 The second example illustrates the importance of choosing an appropriate offset, without which 

394 fitted relative abundances may differ considerably from the relative abundances in the meta-

395 community, even if no traits are included in the model. The example uses the dataset of Raevel et 

396 al. (2012), which contains the abundance (number of individuals) of 97 species at 52 sites.  Data 

397 were transformed into a presence/absence scale, and then meta-community-level abundances 

398 were measured as the number of occurrences at the 52 sites. 

399 For modeling of the presence/absence data, a binomial distribution has to be applied. The 

400 canonical link for this distribution is the logit link. The proposed way of calculating the offset for 

401 the logit link in this paper cannot be applied because the product of the number of species in the 

402 plot and relative abundance at the meta-community scale was larger than one in 39 species-site 
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403 combinations (and it excludes 22 of 52 sites). Therefore, the logarithm of relative abundances in 

404 the meta-community was used. 

405 Two link functions were tested: the canonical (logit) link and log link, as suggested in this paper. 

406 The latter was fitted using the logbin package (Donoghoe & Marschner, 2018). 

407 A model containing only intercept and offset terms was fitted, so the predicted relative 

408 abundances in plots should equal to the relative abundance in the meta-community. This 

409 requirement was satisfied in the model using log link (not shown). However, when the canonical 

410 link was used, there is a non-linear relationship between two vectors of relative abundances 

411 (Figure 3).

412

413 Example 3: comparing formulas for estimation of variation 

414 components 

415 The aim of the next example is to compare variation components estimated by the method of 

416 Shipley (2014) and the new method proposed in this paper. Simulated data were used, where 

417 trends of variation components were predictable. Data were generated using the following 

418 model: 𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖)
log𝜆𝑖 = 𝑎 + log𝜋𝑖 + 𝑠 ∗ 𝑡𝑖 (31)

419 where  is the meta-community-level relative abundances,  is the strength of selection, and  𝜋𝑖 |𝑠| 𝑡𝑖
420 is the trait value. To remove changes due to total community size, the intercept (a) was set to: 𝑎 = log𝐴 ‒ log∑𝑖 𝜋𝑖𝑒𝑠𝑡𝑖 (32)

421 Thus,  for any value of s. ∑𝜆𝑖 = 𝐴
422 The species pool consists of 50 species, and their traits follow a standard normal distribution. 

423 The expected community size (A) was set to 2500, and the strength of selection (s) changes from 

424 0 to 3. Pure selection and pure meta-community effects were calculated for each simulated 

425 community separately using formulas from Shipley (2014) and the method proposed in this 

426 paper.

427 There is a good agreement between variation components calculated by the two ways (Figure 4). 

428 As expected, the pure meta-community effect decreases, while the pure selection effect increases 
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429 with increasing strength of selection, and the later was about zero at s=0 (Figure 5). The joint 

430 effect and unexplained variation do not change considerably with changing strength of selection.

431 c

432 Conclusions

433 CATS regression is a useful part of community ecologists’ toolbox to understand how the 

434 environment selects species through trait-environment relationships, as well as to estimate the 

435 relative role of local environmental selection and meta-community-level processes in the 

436 assembly of communities. In its original version using maximum entropy formalism (Shipley, 

437 Vile & Garnier, 2006; Shipley, 2010), the assumptions of the methods remain hidden. Converting 

438 the maximum entropy formalism into a GLM (Warton, Shipley & Hastie, 2015) made the 

439 assumptions explicit. Warton et al. (2015) focused on the most important assumption (the 

440 distribution of abundance values) and the central part of the method (the estimation of 

441 parameters). The original version assumes a Poisson distribution, and not only parameter 

442 estimates, but also the additional parts of the method (defining offset terms and calculating R-

443 squared values) may change when data follow an other distribution. 

444 Parameter estimation for different distributions is a well-known statistical problem, and a user 

445 can easily choose the appropriate function (or option of the applied function). This paper focused 

446 on additional parts of the method, which are more specific and have thus received little attention 

447 so far. Theoretical considerations and examples illustrated that naively using algorithms 

448 developed for a Poisson distribution may be misleading when data follow other distributions. 

449 The recommendations formulated in this paper could help to avoid these potential pitfalls.

450
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Table 1(on next page)

Defining distributions widely used for modeling abundances using notations of
exponential family

See equation (17) for explanation of notations
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1

Distribution 𝝍 𝒃(𝝍) 𝒂(𝝓) 𝒄(𝒚,𝝓)

Gaussian 

(Normal) 𝜇 𝜓2

2
𝜎2

𝜎2𝑙𝑛(2𝜋𝜎2) + 𝑦2

2𝜎2

Poisson
ln𝜇 𝑒𝜓 1 ‒ ln𝑦!

Binomial
ln

𝜇𝑛 ‒ 𝜇 𝑛ln(1 + 𝑒𝜓) 1 ln(𝑛𝑦)
Negative 

binomial
ln

𝜇𝜇 + 𝜃 ‒ 𝜃𝑙𝑛(1 ‒ 𝑒𝜓) 1 ln
Γ(𝜃)𝑦!Γ(𝑦 + 𝜃)

Tweedie

(1<p<2)
𝜇1 ‒ 𝑝
1 ‒ 𝑝 [𝜓(1 ‒ 𝑝)]

(2 ‒ 𝑝) (1 ‒ 𝑝)

2 ‒ 𝑝 𝜙 0                               if 𝑦 = 0
ln𝑊(𝑦,0) ‒ ln𝑦   if 𝑦 > 0

Zero-

truncated 

Poisson

ln𝜇 𝑒𝜓
+ ln[1 ‒ 𝑒𝑥𝑝( ‒ 𝑒𝜓)] 1 ‒ ln𝑦!

Zero-

truncated 

negative 

binomial

ln
𝜇𝜇 + 𝜃 ‒ 𝜃𝑙𝑛(1 ‒ 𝑒𝜓) + 𝑙𝑛[1 ‒ (1 ‒ 𝑒𝜓) ‒ 𝜃] 1 ln

Γ(𝜃)𝑦!Γ(𝑦 + 𝜃)

2 Notation:  is the gamma-function.Γ(𝑥)

3
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Figure 1
Diagnostic plots of models fitted to one community of Example 1

The fan shape of points in residuals vs. fitted values plot (upper row) and departure from the
expected line in QQ-plot (bottom row) indicate that Poisson model is inappropriate due to
over-dispersion.
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Figure 2
Estimated slopes with their 95% confidence intervals in 50 simulated plots of Example
1.

Red horizontal line indicates the real slope used in the simulation.
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Figure 3
Relationship between meta-community level and predicted relative abundances in
model without traits using logit link

Since local selection is not modelled, points should lie the red 1:1 line.

PeerJ reviewing PDF | (2021:10:66544:1:0:NEW 17 Dec 2021)

Manuscript to be reviewed



PeerJ reviewing PDF | (2021:10:66544:1:0:NEW 17 Dec 2021)

Manuscript to be reviewed



Figure 4
Comparing variation components calculated by Shipley's formulas and new formulas
proposed in this paper.

Components calculated by two ways show good agreement.
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Figure 5
Variation components in simulated communities that differ in strength of selection
calculated by formulas proposed in this paper.

As expected, meta-community effect decreases, while selection effect increases with
increasing strength of selection, and the former is near zero at s=0 when there is no
selection in the simulation.
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