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Background. Ground reaction forces (GRFs) are important for understanding human movement, but
their measurement is generally limited to a laboratory environment. Previous studies have used neural
networks to predict GRF waveforms during running from wearable device data, but these predictions are
limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to
running surface) GRF waveform using wearable devices across a range of running speeds and slopes
could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory
environment.

Purpose. We sought to develop a recurrent neural network capable of predicting continuous normal
(perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data.

Methods. 19 subjects ran on a force-measuring treadmill at five slopes (0°, ±5°, ±10°) and three speeds
(2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a
recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus
measured GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW and relative RMSE of 6.4 ±
1.5% across all conditions and subjects.

Results. The recurrent neural network predicted continuous normal GRF waveforms across a range of
running speeds and slopes with greater accuracy than neural networks implemented in previous studies.
This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-
time and improves the accurately of quantifying and monitoring external forces experienced by the body
when running.
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20 Abstract

21 Background. Ground reaction forces (GRFs) are important for understanding human movement, 

22 but their measurement is generally limited to a laboratory environment. Previous studies have 

23 used neural networks to predict GRF waveforms during running from wearable device data, but 

24 these predictions are limited to the stance phase of level-ground running. A method of predicting 

25 the normal (perpendicular to running surface) GRF waveform using wearable devices across a 

26 range of running speeds and slopes could allow researchers and clinicians to predict kinetic and 

27 kinematic variables outside the laboratory environment.

28

29 Purpose. We sought to develop a recurrent neural network capable of predicting continuous 

30 normal (perpendicular to surface) GRFs across a range of running speeds and slopes from 

31 accelerometer data. 

32

33 Methods. 19 subjects ran on a force-measuring treadmill at five slopes (0°, ±5°, ±10°) and three 

34 speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then 

35 trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The 

36 predicted versus measured GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW and 

37 relative RMSE of 6.4 ± 1.5% across all conditions and subjects. 

38

39 Results. The recurrent neural network predicted continuous normal GRF waveforms across a 

40 range of running speeds and slopes with greater accuracy than neural networks implemented in 

41 previous studies. This approach may facilitate predictions of biomechanical variables outside the 

42 laboratory in near real-time and improves the accurately of quantifying and monitoring external 

43 forces experienced by the body when running.
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44 Introduction

45 Ground reaction forces (GRFs) are applied to the body when the foot is in contact with the 

46 ground and their measurement has facilitated numerous insights into the etiology of running-

47 related injuries (Ceyssens et al., 2019). However, measurement of GRFs is generally restricted to 

48 a laboratory environment. To determine the effects of sport-specific environments on running 

49 kinetics and kinematics, previous studies have replicated aspects of an athlete’s competitive 

50 environment (e.g., running surface, slope) within a laboratory environment (Voloshina & Ferris, 

51 2015; Kipp, Taboga & Kram, 2017; Whiting et al., 2020). Alternatively, inertial measurement 

52 units (IMUs; wireless wearable devices that measure magnetism, linear acceleration, and angular 

53 velocity) have been used to measure athletes’ leg joint angles, stride kinematics, and segmental 

54 accelerations during competitive events (Reenalda et al., 2016; Ruder et al., 2019; Clermont et 

55 al., 2019). Although IMUs cannot directly measure GRFs,  previous studies have used 

56 algorithms to estimate discrete biomechanical variables like peak vertical GRF, ground contact 

57 time, vertical impulse, and vertical loading rate (Neugebauer, Hawkins & Beckett, 2012; Kiernan 

58 et al., 2018; Ancillao et al., 2018; Derie et al., 2020; Alcantara et al., 2021) from IMU data. 

59

60 Recently, neural networks have been used to predict GRF waveforms during running (Wouda et 

61 al., 2018; Pogson et al., 2020; Dorschky et al., 2020; Johnson et al., 2021), from which a variety 

62 of discrete variables can be calculated. Although predictions of the entire GRF waveform 

63 represent a more versatile outcome compared to predicting a discrete variable, previous studies 

64 have used neural network architectures that required waveforms to be normalized to the duration 

65 of a step (Dorschky et al., 2020) or stance phase (Wouda et al., 2018; Johnson et al., 2021). 

66 Temporal normalization is typically accomplished by identifying gait events in the GRF 

67 waveform and segmenting the neural network’s input signals, preventing the calculation of 

68 biomechanical variables with a temporal component (e.g., ground contact time, step frequency, 

69 vertical impulse, and loading rate) outside the laboratory where the GRF waveform is 

70 unavailable. Additionally, previous studies have predicted GRF waveforms only during level-

71 ground running (Wouda et al., 2018; Pogson et al., 2020; Dorschky et al., 2020; Johnson et al., 

72 2021), limiting the application to environments that are flat (e.g., level treadmill or athletics 

73 track). Road and trail running are internationally popular forms of physical activity(Running 

74 USA, 2019; International Trail Running Association, 2020) and require runners to navigate a 

75 variety of uphill and downhill slopes. A method that accurately predicts GRF waveforms from 

76 wearable device data across a range of running slopes, while maintaining the temporal 

77 component, could allow researchers, clinicians, and coaches to measure and monitor a variety of 

78 kinetic and kinematic variables in outdoor environments.

79

80 Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997) are a type of 

81 recurrent neural network that can overcome the traditional requirement of normalizing GRF 

82 waveforms to the duration of stance phase because LSTM networks can recurrently predict 

83 smaller, uniform portions of a larger sequence of any length. As such, a sequence of continuous 
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84 GRF data can be predicted if it can be broken up into uniform portions. For the prediction of a 

85 given portion, LSTM networks use information from previous portions, effectively 

86 “remembering” the portion’s context and have been used to predict sequential data during natural 

87 language processing tasks (Wang & Jiang, 2016). In the field of Biomechanics, LSTM networks 

88 have been used to make frame-by-frame predictions of GRF waveforms using motion capture 

89 data (Mundt et al., 2020) and predictions of the center of mass position relative to center of 

90 pressure from IMU data during walking (Choi, Jung & Mun, 2019). Developing an LSTM 

91 network to predict GRF waveforms from wearable device data would allow researchers to 

92 predict GRF waveforms not only during an isolated stance phase, but continuously for multiple 

93 steps or the entire duration of a run. IMUs have already been used to longitudinally measure 

94 biomechanical variables (Reenalda et al., 2016; Kiernan et al., 2018; Ruder et al., 2019; 

95 Clermont et al., 2019) and applying an LSTM network to such data could effectively provide a 

96 way to indirectly measure continuous GRF waveforms outside of the laboratory at a scale that 

97 was previously unattainable. Improving means of remotely measuring biomechanical variables 

98 with wearable devices may improve a clinician’s ability to identify injury risk factors, monitor 

99 rehabilitation, or develop interventions (Gurchiek, Cheney, & McGinnis, 2019). 

100

101 The purpose of this exploratory study was to develop an LSTM network that could predict 

102 continuous normal (perpendicular to running surface) GRF waveforms across a range of running 

103 speeds and slopes using data from accelerometers. We sought to develop a network that could 

104 predict GRF waveforms with accuracy better than state-of-the-art predictions of time-normalized 

105 vertical GRF data during level-ground running using data from multiple IMUs: a root mean 

106 square error (RMSE) of 0.21 BW (Dorschky et al., 2020) and relative RMSE (rRMSE; RMSE 

107 normalized to the average range of the compared waveforms; Eq. 1) of 13.92% (Johnson et al., 

108 2021).

109

110 Materials & Methods

111 Subjects 

112 We analyzed a pre-existing dataset (Baggaley et al., 2019; Khassetarash et al., 2020; Vernillo et 

113 al., 2020) where 21 subjects ran at a combination of running speeds and slopes. Two subjects 

114 were excluded from the current analysis due to equipment data acquisition errors, leaving 19 

115 subjects remaining (10 Male, 9 Female; 29 ± 9 years, 173 ± 9 cm, 68.1 ± 9.9 kg). All subjects 

116 provided informed written consent and the experimental protocol was approved by the 

117 University of Calgary Conjoint Health Research Ethics Board (#REB14-1117).

118

119 Experimental Protocol

120 Following a 5 min warm up at a self-selected speed, each subject completed thirty 30 s trials on a 

121 force-measuring treadmill (2000 Hz; Bertec, OH, USA), which included five slopes (0°, ±5°, 

122 ±10°) at three speeds (2.5, 3.33, 4.17 m/s) per slope, and three step frequencies (preferred and ± 

123 10%) at 3.33 m/s for each slope. Three custom biaxial accelerometers (2000 Hz) were adhered 
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124 with tape to subjects during all conditions: two on the right shoe and one on the sacrum. The 

125 accelerometers on the shoe were only used to determine the foot strike pattern for each condition 

126 using a previously validated method (Giandolini et al., 2014), which provided the percentage of a 

127 trial's foot strikes classified as either rearfoot, midfoot, or forefoot strikes. The biaxial 

128 accelerometer was placed on the sacrum such that the vertical axis in the accelerometer’s local 

129 coordinate system was oriented superiorly, but we did not perform a calibration to align 

130 accelerometer and treadmill coordinate systems (Figure 1). We did not align the accelerometer 

131 and treadmill coordinate systems because an LSTM network can likely learn the transformation 

132 between the coordinate systems and requiring this preprocessing calibration may limit the utility 

133 of an LSTM network outside a laboratory setting.

134

135 Data Processing 

136 We analyzed 5 seconds of data (approximately 13 foot-ground contacts) from each trial and 

137 downsampled the normal GRF, vertical sacral acceleration, and anteroposterior sacral 

138 acceleration to 500 Hz to reduce the computational cost and match the sampling frequency of 

139 prior studies (Day et al., 2021; Alcantara et al., 2021). We normalized GRFs to bodyweight 

140 (BW) and filtered them using a 4th order low-pass Butterworth filter with a 30 Hz cut-off. We 

141 filtered the sacral acceleration data with a 4th order low-pass Butterworth filter with a 20 Hz cut-

142 off. Preliminary analysis revealed that a 20 Hz cut-off improved prediction accuracy compared to 

143 5 Hz, 10 Hz, 30 Hz, and no filter and preserved approximately 89% and 82% of the vertical and 

144 anteroposterior signal power, respectively. 

145

146 Vertical sacral accelerometer data were further processed so that all negative values were 

147 replaced with zeros. Vertical center of mass acceleration is primarily negative during the aerial 

148 phase of running (Blickhan 1989) and preliminary analysis revealed that replacing negative 

149 vertical sacral accelerometer data with zeros helped the LSTM network avoid predictions of 

150 negative normal GRFs during the aerial phase. For each condition, we used the 2500 frame (5 s 

151 trial @ 500 Hz) sequences of vertical and anteroposterior sacral accelerometer data to predict the 

152 simultaneously collected 2500 frame sequence of normal GRFs. The recurrent nature of the 

153 LSTM network requires sequential data to be divided into smaller portions that are iteratively 

154 used to make predictions. To accomplish this, we divided acceleration data for each trial into 

155 overlapping windows with a 6 frame (12 ms) width and padded the beginning and end of each 

156 trial’s acceleration data with the first and final values, respectively, to ensure the number of 

157 windows equaled the number of normal GRF frames (2500) and that the windows were centered 

158 on the corresponding frame of the normal GRFs (Figure 1). Preliminary analysis revealed that a 

159 window width of 6 frames was the smallest window we could use without decreasing LSTM 

160 network prediction accuracy and we found no improvement in prediction accuracy when using 

161 window sizes up to 60 frames (120 ms). Thus, the LSTM network iteratively predicted a single 

162 frame of the normal GRF at time t using acceleration data from frames t-3 through t+2 (Figure 1). 

163
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164 Feature Engineering

165 A total of 13 features were used as inputs in the LSTM network (Figure 1). We calculated the 

166 mean, standard deviation (SD), and range of vertical and anteroposterior acceleration data for 

167 each 12 ms window and used them as input features. The use of summary statistics as input 

168 features has been shown to maintain neural network accuracy while benefiting from a reduced 

169 computational cost (Figo et al., 2010). These three summary statistics were normalized to a range 

170 of 0 – 1 and represent 6 (3 features x 2 acceleration axes) of the 13 input features. The remaining 

171 input features were selected due to their effect on running kinetics and kinematics: subject 

172 height, body mass, running speed, slope, and percentage of steps classified as either rearfoot, 

173 midfoot, or forefoot strikes (Almeida, Davis & Lopes, 2015; Khassetarash et al., 2020; Vernillo 

174 et al., 2020; Vincent et al., 2020; Alcantara et al., 2021). We chose not to include step frequency 

175 as an input feature, despite the presence of the ±10% preferred step frequency conditions, to 

176 increase the variability in the data used to predict GRF waveforms. Doing so theoretically 

177 represents a greater challenge for the LSTM network as there is additional variability between 

178 trials that is not being explicitly accounted for with an input variable.

179

180 Neural Network Architecture

181 The neural network consisted of a Bidirectional LSTM and a multilayer perceptron (MLP) with 

182 three fully connected layers containing 128, 384, and 320 neurons, respectively (Figure 2). The 

183 Bidirectional LSTM consists of two LSTM layers where the order of the input sequence is 

184 reversed for the second layer. Reversing the sequence for the second LSTM layer allows the 

185 network to utilize information from future portions of the sequence just as the first LSTM layer 

186 utilizes information from prior portions. The outputs from each LSTM layer are then averaged 

187 before being passed along to the MLP. The number and size of the layers were determined using 

188 the Hyperband hyperparameter optimization algorithm (Li et al., 2018) on the data of two 

189 randomly selected subjects. The LSTM network was trained using a batch size of 32, learning 

190 rate of 0.001, and mean square error loss function. Network weights and biases were updated 

191 using the adaptive moment estimation (Adam) optimization algorithm at the end of each epoch 

192 (Kingma & Ba, 2017) and training lasted a maximum of 1000 epochs or until the mean square 

193 error failed to decrease by 0.001 BW after 30 consecutive epochs. The neural network was 

194 developed using the Tensorflow (v2.2.0) python library (Abadi et al., 2016). 

195

196 Network Validation

197 We assessed the accuracy and generalizability of the network using a Leave-One-Subject-Out 

198 (LOSO) cross validation method (Halilaj et al., 2018). LOSO cross validation is a variation of K-

199 fold cross validation that requires the dataset to be subset by subject, with one subject’s data 

200 withheld for testing purposes and the rest of the subjects’ data used to train the network. This 

201 process is repeated until the network has been tested on every subject’s data, ultimately 

202 providing an ensemble of networks and their respective accuracy metrics. Performing LOSO 

203 cross validation can be computationally costly, as the network must be trained and tested a 
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204 number of times equal to the number of subjects (n = 19), but the benefits of this method include 

205 the ensemble of accuracy metrics and assurance that a given subject’s data are not included in 

206 both the training and testing subsets, which can artificially increase the reported accuracy of a 

207 network (Saeb et al., 2017; Chaibub Neto et al., 2019). 

208

209 In addition to the LOSO cross validation method, we performed a test-train split of one 

210 representative subject’s data according to slope (±5° trials reserved for testing, 0° and ±10° 

211 slopes used for training) to test the accuracy of the model when predicting speed-slope 

212 combinations that were not present during training. We selected Subject 14 as a representative 

213 subject because their RMSE during LOSO cross validation was similar to the average RMSE 

214 across all subjects (Figure 3) and their GRF waveforms illustrated an interaction between 

215 running slope and normal GRF impact peak magnitude (Gottschall & Kram, 2005). This single-

216 subject validation method prioritizes accuracy over generalizability (ability to make accurate 

217 predictions for a variety of individuals) and represents a potential circumstance where an LSTM 

218 network is trained on data collected from a single athlete prior to their competitive season and 

219 later used to predict only that athlete’s GRF data from wearable device data during their 

220 competitive season.

221

222 Prediction error for each trial’s GRF waveforms was quantified as the root mean square error 

223 (RMSE) and relative RMSE (rRMSE), which is RMSE normalized to the average range of 

224 compared waveforms, expressed as a percentage and defined as

225 𝑟𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

0.5 ×  ∑2𝑖 = 1

(max (𝑥𝑖) ‒ min (𝑥𝑖))

 ×  100 ,
(1)

226

227 where  and  are the GRF waveforms predicted by the LSTM network and measured by the 𝑥1 𝑥2

228 force-measuring treadmill (Ren, Jones & Howard, 2008). Additionally, we used a threshold of 

229 5% BW to identify stance phase and calculated the active peak of the normal GRF waveform, 

230 normal impulse, normal GRF loading rate, contact time, and step frequency from the predicted 

231 and measured GRF data. The normal GRF active peak was calculated as the maximum normal 

232 GRF value occurring between 40 – 60% of stance phase because the magnitude of the impact 

233 peak can exceed the active peak during downhill running and occurs during early stance phase (0 

234 – 30%) (Gottschall & Kram, 2005; Vernillo et al., 2020). We calculated impulse as the integral 

235 of the normal GRF waveform during the stance phase with respect to time, loading rate as the 

236 average slope of the normal GRF waveform during the first 25 ms of stance phase (Yong et al., 

237 2018), contact time as the duration when the normal GRF was greater than 5% BW, and step 

238 frequency as the number of initial foot-ground contacts per second. We report the mean absolute 

239 percent error (MAPE) of these discrete variables for each subject. Data analysis was performed 

240 in python (v3.6.9) and R (v4.0.4) using custom libraries (Wickham, 2009, 2019; Alcantara, 2019; 
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241 pandas development team, 2020; R Core Team, 2020; Wickham et al., 2020; Virtanen et al., 

242 2020; Harris et al., 2020). 

243

244 We enforced two biomechanical boundaries upon the predicted GRF waveforms to ensure that 

245 data fell within established biomechanical limits and could be used to calculate the discrete 

246 biomechanical variables of interest. First, the predicted GRF waveform had to have an equal 

247 number of foot-ground contacts as the GRF waveform measured by the force-measuring 

248 treadmill, determined using the same 5% BW threshold. Second, the step frequency over the 

249 duration of the predicted GRF waveform had to be ≤ 4 Hz. We selected these criteria based on 

250 previous research of running biomechanics, as thresholds of 5% BW have been previously used 

251 to identify the stance phase for the calculation of kinetic or kinematic variables (Day et al., 2021; 

252 Alcantara et al., 2021) and during uphill and downhill running, step frequency is ≤ 4 Hz 

253 (Cavagna et al., 1997; Snyder & Farley, 2011). Trials that failed to meet either of these criteria 

254 were used to calculate the LSTM network’s overall prediction failure rate and removed from 

255 subsequent analyses. 

256

257 Results

258 We analyzed 529 trials for the present study. The predicted GRF waveforms for 32 trials (6%) 

259 failed to meet one or both criteria and were considered failed predictions. Specifically, we 

260 identified 22 trials (4%) that required a threshold greater than 5% BW to identify an equal 

261 number of steps between predicted and measured GRF waveforms and 10 trials (2%) that had a 

262 step frequency greater than 4 Hz. Thus, 94% of GRF waveforms predicted by the LSTM network 

263 fell within the imposed biomechanical boundaries. 

264

265 Leave-One-Subject-Out cross validation revealed that the LSTM network predictions of each 

266 subject’s normal GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW (Figure 3) and 

267 rRMSE of 6.4 ± 1.5% compared to GRF waveforms measured by the force-measuring treadmill 

268 across all conditions (Table 1). RMSE values were generally lower during slow uphill running 

269 (2.5 m/s, +10°; 0.13 BW) compared to fast downhill running (4.17 m/s, -10°; 0.20 BW) (Figures 

270 4 and 5). The MAPE for step frequency was 0.1 ± 0.1%, contact time was 4.9 ± 4.0%, impulse 

271 was 6.4 ± 6.9%, normal GRF active peak was 8.5 ± 8.2%, and loading rate was 27.6 ± 36.1% 

272 (Table 2). 

273

274 The prediction error for one representative subject’s (Subject 14) normal GRF waveforms at ±5° 

275 during single-subject validation was lower than those resulting from the LOSO cross validation, 

276 with an average ± SD RMSE of 0.08 ± 0.02 BW and rRMSE of 3.3 ± 0.9%. The MAPE of step 

277 frequency (0.1 ± 0.1 %), contact time (3.0 ± 2.3%), impulse (2.5 ± 1.9%), normal GRF active 

278 peak (2.7 ± 2.0%), and loading rate (17.6 ± 16.9%) calculated from predicted GRF waveforms 

279 were also generally lower than those resulting from LOSO cross validation.

280
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281 Discussion

282 We developed a recurrent neural network capable of predicting continuous normal GRF 

283 waveforms across a range of running speeds (2.5 – 4.17 m/s), slopes (0°, ±5°, ±10°), and step 

284 frequencies (preferred, ±10%) from accelerometer data. Our findings indicate that an LSTM 

285 network with the runner’s mass, height, running speed, slope, foot strike pattern, and sacral 

286 acceleration as input features can predict normal GRF waveforms across a range of speeds and 

287 slopes with an RMSE of 0.12 – 0.20 BW and rRMSE of 5.4 – 7.3% (Figure 4). For comparison, 

288 previous studies report an RMSE of 0.39 ± 0.26 BW (Wouda et al., 2018), an RMSE of 0.21 ± 

289 0.03 BW (Dorschky et al., 2020), and an rRMSE of 13.92% (Johnson et al., 2021) when using 

290 neural networks to predict the stance phase vertical GRF waveform during level-ground running. 

291 In contrast to previous studies, the LSTM network does not require preliminary stance phase 

292 identification or time normalization, which preserves the temporal component of the predicted 

293 GRF waveform. This characteristic of the LSTM network allowed us to calculate stride 

294 kinematic variables like step frequency and contact time with a MAPE < 5%. Additionally, the 

295 recurrent nature of the LSTM network facilitates frame-by-frame predictions of GRF waveforms 

296 and can be used to make predictions over any duration of running. Thus, an LSTM network 

297 could be used to quantify changes in normal GRF waveforms over the course of a prolonged run 

298 (e.g., a marathon race).

299

300 The accuracy of predicted GRF waveforms varied across speeds and slopes, with a combination 

301 of faster running speeds and negative slopes producing greater RMSE values than slower 

302 running speeds and positive slopes (Figure 4). The greater RMSE values during downhill 

303 running may be due to the LSTM network’s inability to account for changes in impact peak 

304 magnitude across slopes (Figure 5). Previous studies have found that the presence of an impact 

305 peak in the normal GRF waveform is subject-specific, affected by changes in running slope, and 

306 associated with acceleration of the effective mass of the lower extremity during early stance 

307 phase (McMahon, Valiant & Frederick, 1987; Gottschall & Kram, 2005; Vernillo et al., 2020). 

308 Thus, predictions of normal GRF waveforms across slopes may be further improved by 

309 incorporating accelerations measured at the feet or lower legs. 

310

311 We also quantified the accuracy of the LSTM network when trained and tested on data from the 

312 same subject. Although not a valid method of determining the LSTM network’s generalizability, 

313 single-subject validation provides insight into how well a personalized neural network could 

314 predict an individual’s GRF waveforms for unknown combinations of speed and slope in the 

315 future. We found that predicted GRF waveforms of a representative subject (Subject 14) during 

316 the ±5° slope conditions had an average ± SD RMSE of 0.08 ± 0.02 BW, compared to 0.16 ± 

317 0.03 BW during LOSO cross validation. These findings indicate that a subject-specific LSTM 

318 network was twice as accurate as the LOSO cross validated LSTM network. A single-subject 

319 approach may be particularly beneficial for researchers, coaches, or clinicians who have the 

320 resources to train personalized LSTM networks and wish to monitor a specific athlete’s 
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321 biomechanics over the course of a competitive season. For example, an athlete could run at a 

322 variety of speeds and slopes while wearing accelerometers during a baseline data collection on a 

323 force-measuring treadmill at the start of their competitive season and a personalized LSTM 

324 network could be trained on their data. Then, if accelerometer data were collected from an 

325 athlete during training runs, their normal GRF waveforms and a variety of discrete values could 

326 be predicted and monitored longitudinally. 

327

328 The MAPE values for step frequency, contact time, impulse, and normal GRF active peak were ≤ 

329 8.5%, but the loading rate MAPE was 27.6 ± 36.1%. The lower MAPE values for step frequency, 

330 contact time, impulse, and normal GRF active peak indicate that the LSTM network consistently 

331 identified the general shape of the GRF waveform and the boundaries of the stance phase despite 

332 changes in speed, slope, and step frequency. However, the network did not consistently predict 

333 the presence of an impact peak during early stance phase (Figure 5, -10° trial), which affected the 

334 predicted slope of the GRF waveform during early stance phase and thus the accuracy of loading 

335 rate values. Although the prominence of an impact peak in the normal GRF waveform is affected 

336 by foot strike pattern and slope (Gottschall & Kram, 2005), two of the inputs for the LSTM 

337 network, the decreased accuracy when estimating loading rate may be because we did not 

338 include accelerometer data from the lower extremities and impact accelerations are attenuated at 

339 the sacrum compared to the tibia (Baggaley et al. 2019). A previous study found moderate-strong 

340 correlations between axial tibial acceleration and vertical GRF impact peak magnitude (r = 0.76) 

341 and timing (r = 0.94) during running (Hennig & Lafortune, 1991), and future research aimed at 

342 improving the accuracy of loading rate estimates should include tibial acceleration as an input 

343 feature. We did not include accelerometer data from the shoes as inputs for the LSTM network 

344 because the data were not available for both feet. 

345

346 Recurrent neural networks represent a promising strategy for predicting continuous normal GRFs 

347 from wearable devices in outdoor environments. The LSTM network required data from three 

348 accelerometers (one on the sacrum and two on the right shoe to determine foot strike pattern), 

349 but we also performed a post-hoc analysis of prediction accuracy without the foot strike pattern 

350 data to quantify the network’s accuracy when only using data from one sacral accelerometer. The 

351 post-hoc analysis revealed that excluding foot strike pattern data slightly increased the average ± 

352 SD RMSE from 0.16 ± 0.04 BW to 0.17 ± 0.05 BW and rRMSE from 6.4 ± 1.5% to 6.7 ± 1.7%. 

353 Excluding foot strike pattern data affected the MAPE of discrete variables by < 3% (Table 3). 

354 These findings indicate that the LSTM network can predict normal GRF waveforms from a 

355 single accelerometer on the sacrum more accurately than neural networks implemented in 

356 previous studies (RMSE = 0.21 – 0.39 BW, rRMSE = 13.92%), which required data from 3 – 7 

357 wearable devices (Wouda et al., 2018; Dorschky et al., 2020; Johnson et al., 2021). 

358

359 We further analyzed the importance of input features to the LSTM network by calculating 

360 prediction accuracy after systematically permuting each input feature across the trials for the 
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361 representative subject. This process of calculating Permutation Feature Importance (PFI) 

362 effectively severs the learned relationship between an input feature for a given trial and the 

363 corresponding GRF waveform (Molnar 2019). PFI is calculated as the ratio between the RMSE 

364 of the LSTM network with a given feature permuted and the original prediction RMSE of the 

365 LSTM network. After 100 permutations for each input feature, we found that the input feature 

366 with the highest PFI was vertical acceleration (6.29), followed by anteroposterior acceleration 

367 (1.62), foot strike pattern (1.14), slope, (1.13), speed (1.07), height (1.00), and body mass (1.00). 

368 These findings indicate that the inclusion of body mass and height did not improve prediction 

369 accuracy and that the LSTM network relies most on the acceleration data when predicting the 

370 normal GRF waveform across a range of speeds and slopes. 

371

372 Using a recurrent neural network in combination with accelerometers and a global positioning 

373 system (GPS) device to obtain speed and slope data could potentially allow runners to receive 

374 biomechanical feedback during an outdoor run. Watches with GPS capabilities are commonly 

375 used by runners (Janssen et al., 2020), have been used to provide real-time feedback of step 

376 frequency (Willy et al., 2016), and could provide running speed and slope data to the LSTM 

377 network to predict GRF waveforms in near-real time (Scott, Scott & Kelly, 2016). Discrete 

378 biomechanical variables could then be calculated from predicted normal GRF waveforms and 

379 sent to a clinician, coach, researcher, or the runner themselves. A similar approach has been 

380 implemented during outdoor walking and running using an integrated IMU-GPS device placed in 

381 a backpack, but it is unclear how accurate or generalizable this approach is as the network was 

382 trained and tested on data from three subjects and the reported accuracy metrics were combined 

383 for walking and running (Davidson et al. 2019). To facilitate calculation of GRF-based variables 

384 during outdoor running using accelerometers, we have made the LSTM networks, which were 

385 trained on all subjects, with and without the need for foot strike data, publicly available at 

386 www.github.com/alcantarar/Recurrent_GRF_Prediction. We have included a tutorial on how to 

387 use an LSTM to continuously predict a signal from wearable device data, an approach that may 

388 be used to improve a clinician’s ability to remotely quantify a patient’s GRFs or monitor 

389 rehabilitation progress (Gurchiek, Cheney & McGinnis, 2019). 

390

391 There are potential limitations to consider alongside our findings. The accelerometers used in the 

392 present study were biaxial and the inclusion of mediolateral sacrum accelerations may have 

393 further improved prediction as the mediolateral behavior of the center of mass is sensitive to 

394 changes in running speed (Nilsson et al. 1989) and slope. Additionally, accelerometers were 

395 adhered to subjects using tape and a less secure attachment method may introduce movement 

396 artefact into the accelerometer data. Previous research suggests that attachment method can 

397 affect peak tibial acceleration during running (Johnson et al., 2020), but the lower leg 

398 experiences larger accelerations than the sacrum during running (Baggaley et al., 2019) and thus 

399 is more sensitive to different attachment methods. However, variations in accelerometer 

400 orientation between subjects may have contributed to the range of RMSE values (0.11 – 0.31 
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401 BW) during LOSO cross validation (Tan et al. 2019). Additionally, variations in soft tissue 

402 movement artefact between the subjects used to train the LSTM network and other populations 

403 may introduce prediction error (Peters et al. 2010). Using the LSTM network to predict normal 

404 GRF waveforms from a sacral accelerometer adhered differently than in the present study may 

405 affect prediction accuracy, but the 20 Hz low-pass filter we applied to the accelerometer data can 

406 potentially mitigate this effect. Additionally, predictions made with the LSTM network may not 

407 be generalizable for speeds or slopes that fall outside the range of the training data (2.5 – 4.17 

408 m/s and ±10°), for different running surfaces, as biomechanics change when running on steep 

409 slopes (e.g. 20 – 40°) (Giovanelli et al., 2016; Whiting et al., 2020), for prolonged runs, on 

410 variable terrain (Voloshina & Ferris, 2015), with changes in speed (Alcantara et al., 2021), or in 

411 response to muscle fatigue (Derrick, Dereu & McLean, 2002). Lastly, the LSTM network was 

412 trained on data collected on a stiff force-measuring treadmill and thus accelerometer data 

413 collected during running on less stiff surfaces (e.g., grass) may result in greater prediction errors 

414 given the effects of surface stiffness on running biomechanics and thus energy absorption 

415 (Derrick, Hamill & Caldwell, 1998; Ferris, Louie & Farley, 1998). 

416

417 Conclusions

418 We developed a recurrent neural network that used accelerometer data to predict continuous 

419 normal GRF waveforms across a range of running speeds (2.5 – 4.17 m/s) and slopes (0°, ±5°, 

420 ±10°) with an average ± SD RMSE of 0.16 ± 0.04 BW and rRMSE of 6.4 ± 1.5%. Unlike neural 

421 networks implemented in prior studies, the recurrent neural network does not require preliminary 

422 identification of the stance phase or temporal normalization and allows for near real-time 

423 predictions of normal GRF waveforms during running. Accurate predictions of normal GRF 

424 waveforms using wearable devices will improve the ability to longitudinally monitor 

425 biomechanical variables in non-laboratory environments.

426

427 References

428 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, 

429 Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, 

430 Kaiser L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray D, Olah C, 

431 Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, 

432 Vasudevan V, Viegas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng 

433 X. 2016. TensorFlow: Large-Scale machine learning on heterogeneous distributed 

434 systems. arXiv:1603.04467 [cs].

435 Alcantara RS. 2019. Dryft: A Python and MATLAB package to correct drifting ground reaction 

436 force signals during treadmill running. Journal of Open Source Software 4:1910. DOI: 

437 10.21105/joss.01910.

438 Alcantara RS, Day EM, Hahn ME, Grabowski AM. 2021. Sacral acceleration can predict whole-

439 body kinetics and stride kinematics across running speeds. PeerJ 9:e11199. DOI: 

440 10.7717/peerj.11199.

PeerJ reviewing PDF | (2021:08:64560:1:0:NEW 10 Dec 2021)

Manuscript to be reviewed



441 Almeida MO, Davis IS, Lopes AD. 2015. Biomechanical differences of foot-strike patterns 

442 during running: A systematic review with meta-analysis. Journal of Orthopaedic & 

443 Sports Physical Therapy 45:738–755. DOI: 10.2519/jospt.2015.6019.

444 Ancillao A, Tedesco S, Barton J, O’Flynn B. 2018. Indirect measurement of ground reaction 

445 forces and moments by means of wearable inertial sensors: A systematic review. Sensors 

446 (Basel, Switzerland) 18. DOI: 10.3390/s18082564.

447 Baggaley M, Vernillo G, Martinez A, Horvais N, Giandolini M, Millet GY, Edwards WB. 2019. 

448 Step length and grade effects on energy absorption and impact attenuation in running. 

449 European Journal of Sport Science:1–11. DOI: 10.1080/17461391.2019.1664639.

450 Blickhan R. 1989. The spring-mass model for running and hopping. Journal of Biomechanics 

451 22:11-12 1217-1227. DOI: 10.1016/0021-9290(89)90224-8.

452 Cavagna GA, Mantovani M, Willems PA, Musch G. 1997. The resonant step frequency in 

453 human running. Pflügers Archiv 434:678–684. DOI: 10.1007/s004240050451.

454 Ceyssens L, Vanelderen R, Barton C, Malliaras P, Dingenen B. 2019. Biomechanical risk factors 

455 associated with running-related injuries: A systematic review. Sports Medicine 49:1095–

456 1115. DOI: 10.1007/s40279-019-01110-z.

457 Chaibub Neto E, Pratap A, Perumal TM, Tummalacherla M, Snyder P, Bot BM, Trister AD, 

458 Friend SH, Mangravite L, Omberg L. 2019. Detecting the impact of subject 

459 characteristics on machine learning-based diagnostic applications. npj Digital Medicine 

460 2:1–6. DOI: 10.1038/s41746-019-0178-x.

461 Choi A, Jung H, Mun JH. 2019. Single inertial sensor-based neural networks to estimate COM-

462 COP inclination angle during walking. Sensors (Basel, Switzerland) 19. DOI: 

463 10.3390/s19132974.

464 Clermont CA, Benson LC, Edwards WB, Hettinga BA, Ferber R. 2019. New considerations for 

465 wearable technology data: Changes in running biomechanics during a marathon. Journal 

466 of Applied Biomechanics 35:401–409. DOI: 10.1123/jab.2018-0453.

467 Davidson P, Virekunnas H, Sharma D, Piché R, Cronin N. 2019. Continuous Analysis of 

468 Running Mechanics by Means of an Integrated INS/GPS Device. Sensors (Basel, 

469 Switzerland) 19:1480. DOI: 10.3390/s19061480.

470 Day EM, Alcantara RS, McGeehan MA, Grabowski AM, Hahn ME. 2021. Low-pass filter cutoff 

471 frequency affects sacral-mounted inertial measurement unit estimations of peak vertical 

472 ground reaction force and contact time during treadmill running. Journal of 

473 Biomechanics:110323. DOI: 10.1016/j.jbiomech.2021.110323.

474 Derie R, Robberechts P, Van den Berghe P, Gerlo J, De Clercq D, Segers V, Davis J. 2020. 

475 Tibial acceleration-based prediction of maximal vertical loading rate during overground 

476 running: A machine learning approach. Frontiers in Bioengineering and Biotechnology 8. 

477 DOI: 10.3389/fbioe.2020.00033.

478 Derrick TR, Dereu D, McLean SP. 2002. Impacts and kinematic adjustments during an 

479 exhaustive run. Medicine and Science in Sports and Exercise. 34(6):998-1002. DOI: 

480 10.1097/00005768-200206000-00015.

481 Derrick TR, Hamill J, Caldwell GE. 1998. Energy absorption of impacts during running at 

482 various stride lengths. Medicine and Science in Sports and Exercise 30:128–135. DOI: 

483 10.1097/00005768-199801000-00018.

484 Dorschky E, Nitschke M, Martindale CF, van den Bogert AJ, Koelewijn AD, Eskofier BM. 

485 2020. CNN-based estimation of sagittal plane walking and running biomechanics from 

PeerJ reviewing PDF | (2021:08:64560:1:0:NEW 10 Dec 2021)

Manuscript to be reviewed



486 measured and simulated inertial sensor data. Frontiers in Bioengineering and 

487 Biotechnology 8:604. DOI: 10.3389/fbioe.2020.00604.

488 Ferris DP, Louie M, Farley CT. 1998. Running in the real world: Adjusting leg stiffness for 

489 different surfaces. Proceedings of the Royal Society of London. Series B: Biological 

490 Sciences 265:989–994. DOI: 10.1098/rspb.1998.0388.

491 Figo D, Diniz P, Ferreira D, Cardoso J. 2010. Preprocessing techniques for context recognition 

492 from accelerometer data. Personal and Ubiquitous Computing 14:645–662. DOI: 

493 10.1007/s00779-010-0293-9.

494 Giandolini M, Poupard T, Gimenez P, Horvais N, Millet GY, Morin J-B, Samozino P. 2014. A 

495 simple field method to identify foot strike pattern during running. Journal of 

496 Biomechanics 47:1588–1593. DOI: 10.1016/j.jbiomech.2014.03.002.

497 Giovanelli N, Ortiz ALR, Henninger K, Kram R. 2016. Energetics of vertical kilometer foot 

498 races; is steeper cheaper? Journal of Applied Physiology 120:370–375. DOI: 

499 10.1152/japplphysiol.00546.2015.

500 Gottschall JS, Kram R. 2005. Ground reaction forces during downhill and uphill running. 

501 Journal of Biomechanics 38:445–452. DOI: 10.1016/j.jbiomech.2004.04.023.

502 Gurchiek RD, Cheney N, McGinnis RS. 2019. Estimating Biomechanical Time-Series with 

503 Wearable Sensors: A Systematic Review of Machine Learning Techniques. Sensors 

504 (Basel, Switzerland) 19:5227. DOI: 10.3390/s19235227.

505 Halilaj E, Rajagopal A, Fiterau M, Hicks JL, Hastie TJ, Delp SL. 2018. Machine learning in 

506 human movement biomechanics: Best practices, common pitfalls, and new opportunities. 

507 Journal of biomechanics 81:1–11. DOI: 10.1016/j.jbiomech.2018.09.009.

508 Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, 

509 Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, 

510 Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, 

511 Weckesser W, Abbasi H, Gohlke C, Oliphant TE. 2020. Array programming with 

512 NumPy. Nature 585:357–362. DOI: 10.1038/s41586-020-2649-2.

513 Hennig EM, Lafortune MA. 1991. Relationships between ground reaction force and tibial bone 

514 acceleration parameters. International Journal of Sport Biomechanics 7:303–309.

515 Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation 9:1735–

516 1789.

517 International Trail Running Association. 2020. 2020 Trail running infographics.

518 Janssen M, Walravens R, Thibaut E, Scheerder J, Brombacher A, Vos S. 2020. Understanding 

519 different types of recreational runners and how they use running-related technology. 

520 International Journal of Environmental Research and Public Health 17. DOI: 

521 10.3390/ijerph17072276.

522 Johnson WR, Mian A, Robinson MA, Verheul J, Lloyd DG, Alderson J. 2021. Multidimensional 

523 ground reaction forces and moments from wearable sensor accelerations via deep 

524 learning. IEEE Transactions on Biomedical Engineering 68:289–297. DOI: 

525 10.1109/TBME.2020.3006158.

526 Johnson CD, Outerleys J, Tenforde AS, Davis IS. 2020. A comparison of attachment methods of 

527 skin mounted inertial measurement units on tibial accelerations. Journal of Biomechanics 

528 113:110118. DOI: 10.1016/j.jbiomech.2020.110118.

529 Khassetarash A, Vernillo G, Martinez A, Baggaley M, Giandolini M, Horvais N, Millet GY, 

530 Edwards WB. 2020. Biomechanics of graded running: Part II—Joint kinematics and 

PeerJ reviewing PDF | (2021:08:64560:1:0:NEW 10 Dec 2021)

Manuscript to be reviewed



531 kinetics. Scandinavian Journal of Medicine & Science in Sports 30:1642–1654. DOI: 

532 10.1111/sms.13735.

533 Kiernan D, Hawkins DA, Manoukian MAC, McKallip M, Oelsner L, Caskey CF, Coolbaugh 

534 CL. 2018. Accelerometer-based prediction of running injury in National Collegiate 

535 Athletic Association track athletes. Journal of Biomechanics 73:201–209. DOI: 

536 10.1016/j.jbiomech.2018.04.001.

537 Kingma DP, Ba J. 2017. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs].

538 Kipp S, Taboga P, Kram R. 2017. Ground reaction forces during steeplechase hurdling and 

539 waterjumps. Sports Biomechanics 16:152–165. DOI: 10.1080/14763141.2016.1212917.

540 Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A. 2018. Hyperband: A novel bandit-

541 based approach to hyperparameter optimization. Journal of Machine Learning Research 

542 18:1–52.

543 McMahon TA, Valiant G, Frederick EC. 1987. Groucho running. Journal of Applied Physiology 

544 62:2326–2337. DOI: 10.1152/jappl.1987.62.6.2326.

545 Molnar C. 2019. Permutation Feature Importance. In: Interpretable machine learning: A guide 

546 for making black box models explainable. https://christophm.github.io/interpretable-ml-

547 book/. 210-220.  

548 Mundt M, Koeppe A, David S, Bamer F, Potthast W, Markert B. 2020. Prediction of ground 

549 reactio

550 n force and joint moments based on optical motion capture data during gait. Medical 

551 Engineering & Physics 86:29–34. DOI: 10.1016/j.medengphy.2020.10.001.

552 Neugebauer JM, Hawkins DA, Beckett L. 2012. Estimating youth locomotion ground reaction 

553 forces using an accelerometer-based activity monitor. PLOS ONE 7:e48182. DOI: 

554 10.1371/journal.pone.0048182.

555 Nilsson J, Thortensson A. 1989. Ground reaction forces at different speeds of human walking 

556 and running. Acta Physiological Scandinavica 136:217-227. DOI: 10.1111/j.1748-

557 1716.1989.tb08655.x.

558 pandas development team. 2020. pandas-dev/pandas: Pandas.

559 Peters A, Galna B, Sangeux M, Morris M, Baker R. 2010. Quantification of soft tissue artifact in 

560 lower limb human motion analysis: A systematic review. Gait & Posture 31:1-8. DOI: 

561 10.1016/j.gaitpost.2009.09.004.

562 Pogson M, Verheul J, Robinson MA, Vanrenterghem J, Lisboa P. 2020. A neural network 

563 method to predict task- and step-specific ground reaction force magnitudes from trunk 

564 accelerations during running activities. Medical Engineering & Physics 78:82–89. DOI: 

565 10.1016/j.medengphy.2020.02.002.

566 R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, 

567 Austria: R Foundataion for Statistical Computing.

568 Reenalda J, Maartens E, Homan L, Buurke JH (Jaap). 2016. Continuous three dimensional 

569 analysis of running mechanics during a marathon by means of inertial magnetic 

570 measurement units to objectify changes in running mechanics. Journal of Biomechanics 

571 49:3362–3367. DOI: 10.1016/j.jbiomech.2016.08.032.

572 Ren L, Jones RK, Howard D. 2008. Whole body inverse dynamics over a complete gait cycle 

573 based only on measured kinematics. Journal of Biomechanics 41:2750–2759. DOI: 

574 10.1016/j.jbiomech.2008.06.001.

PeerJ reviewing PDF | (2021:08:64560:1:0:NEW 10 Dec 2021)

Manuscript to be reviewed



575 Ruder M, Jamison ST, Tenforde A, Mulloy F, Davis IS. 2019. Relationship of foot strike pattern 

576 and landing impacts during a marathon. Medicine and Science in Sports and Exercise 

577 51:2073–2079. DOI: 10.1249/MSS.0000000000002032.

578 Running USA. 2019. 2019 U.S Running Trends Report.

579 Saeb S, Lonini L, Jayaraman A, Mohr DC, Kording KP. 2017. The need to approximate the use-

580 case in clinical machine learning. GigaScience 6. DOI: 10.1093/gigascience/gix019.

581 Scott MTU, Scott TJ, Kelly VG. 2016. The validity and reliability of global positioning systems 

582 in team sport: A brief review. The Journal of Strength & Conditioning Research 

583 30:1470–1490. DOI: 10.1519/JSC.0000000000001221.

584 Snyder KL, Farley CT. 2011. Energetically optimal stride frequency in running: the effects of 

585 incline and decline. The Journal of Experimental Biology 214:2089–2095. DOI: 

586 10.1242/jeb.053157.

587 Tan T, Chiasson DP, Hu H, Shull PB. 2019. Influence of IMU position and orientation 

588 placement errors on ground reaction force estimation. Journal of Biomechanics 

589 97:109416. DOI: 10.1016/j.biomech.2019.109416.

590 Vernillo G, Martinez A, Baggaley M, Khassetarash A, Giandolini M, Horvais N, Edwards WB, 

591 Millet GY. 2020. Biomechanics of graded running: Part I - Stride parameters, external 

592 forces, muscle activations. Scandinavian Journal of Medicine & Science in Sports 

593 30:1632–1641. DOI: 10.1111/sms.13708.

594 Vincent HK, Kilgore JE, Chen C, Bruner M, Horodyski M, Vincent KR. 2020. Impact of body 

595 mass index on biomechanics of recreational runners. PM&R 12:1106–1112. DOI: 

596 https://doi.org/10.1002/pmrj.12335.

597 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, 

598 Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, 

599 Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore 

600 EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris 

601 CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P. 2020. SciPy 1.0: 

602 fundamental algorithms for scientific computing in Python. Nature Methods 17:261–272. 

603 DOI: 10.1038/s41592-019-0686-2.

604 Voloshina AS, Ferris DP. 2015. Biomechanics and energetics of running on uneven terrain. 

605 Journal of Experimental Biology 218:711–719. DOI: 10.1242/jeb.106518.

606 Wang S, Jiang J. 2016. Learning natural language inference with LSTM. arXiv:1512.08849 [cs].

607 Whiting CS, Allen SP, Brill JW, Kram R. 2020. Steep (30°) uphill walking vs. running: COM 

608 movements, stride kinematics, and leg muscle excitations. European Journal of Applied 

609 Physiology 120:2147–2157. DOI: 10.1007/s00421-020-04437-y.

610 Wickham H. 2009. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag. 

611 DOI: 10.1007/978-0-387-98141-3.

612 Wickham H. 2019. stringr: Simple, Consistent Wrappers for Common String Operations.

613 Wickham H, François R, Henry L, Müller K. 2020. dplyr: A Grammar of Data Manipulation.

614 Willy RW, Buchenic L, Rogacki K, Ackerman J, Schmidt A, Willson JD. 2016. In-field gait 

615 retraining and mobile monitoring to address running biomechanics associated with tibial 

616 stress fracture. Scandinavian Journal of Medicine & Science in Sports 26:197–205. DOI: 

617 https://doi.org/10.1111/sms.12413.

618 Wouda FJ, Giuberti M, Bellusci G, Maartens E, Reenalda J, van Beijnum B-JF, Veltink PH. 

619 2018. Estimation of vertical ground reaction forces and sagittal knee kinematics during 

PeerJ reviewing PDF | (2021:08:64560:1:0:NEW 10 Dec 2021)

Manuscript to be reviewed



620 running using three inertial sensors. Frontiers in Physiology 9. DOI: 

621 10.3389/fphys.2018.00218.

622 Yong JR, Silder A, Montgomery KL, Fredericson M, Delp SL. 2018. Acute changes in foot 

623 strike pattern and cadence affect running parameters associated with tibial stress 

624 fractures. Journal of Biomechanics 76:1–7. DOI: 10.1016/j.jbiomech.2018.05.017.

625

PeerJ reviewing PDF | (2021:08:64560:1:0:NEW 10 Dec 2021)

Manuscript to be reviewed



Figure 1
Overview of the Long Short-Term Memory (LSTM) network’s input features and function.

(A) The LSTM network’s input features included body mass, height, running speed, slope,
and percentage of a trial’s steps classified as rearfoot (RFS), midfoot (MFS), or forefoot (FFS)
strikes. (B) Vertical and anteroposterior sacral acceleration data were divided into
overlapping 6 frame (12 ms) windows, one for each frame of the normal ground reaction
force (GRF) data. The mean, standard deviation (SD), and range of vertical and
anteroposterior sacral acceleration values were calculated for each window and used as input
features to the LSTM network. For the prediction of a normal GRF value at a given time (t),
the respective window of acceleration data begins at t-3 and ends at t+2. (C) Normal GRFs

were predicted frame-by-frame by the LSTM network using the 13 input features.
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Figure 2
Neural Network Architecture

The Long Short-Term Memory (LSTM) network consisted of a Bidirectional LSTM layer with a
hyperbolic tangent activation function followed by a multilayer perceptron (MLP) with
rectified linear unit activation functions for three hidden layers with 128, 384, and 320
neurons, respectively. The Bidirectional LSTM layer is unraveled to illustrate its recurrent
nature and dashed lines signify inputs (x) and outputs (h) at time t-1 and t+1. A dropout rate of

20% was applied to the input layer of the network and a dropout rate of 40% was applied to
the output of the Bidirectional LSTM layer to limit network overfitting. For each prediction of
the normal ground reaction force (GRF) at a given time (t), the network received 13 features
as inputs (xt; Figure 1), passed the output from the Bidirectional LSTM layer (ht) to the MLP,

and predicted a single value (yt) with a linear activation function in the output layer.
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Figure 3
Ground reaction force waveform prediction error for each subject across all conditions

The average root mean square error (RMSE) across subjects was 0.16 BW (dotted line). Filled
circles represent each trial, and the color indicates slope (0°, ±5°, ±10°) at three speeds
(2.5, 3.33, 4.17 m/s). Open circles represent each subject’s average RMSE, horizontal bars

are the median RMSE, box plot edges indicate the interquartile range (IQR; 25th and 75th

percentile), and the whiskers encompass values that fall within 1.5*IQR. Subjects are sorted
from lowest to highest RMSE.
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Figure 4
Ground reaction force waveform prediction error for each condition

The average ± SD root mean square error (RMSE) of the predicted ground reaction force
(GRF) waveforms compared to the GRF waveform measured by the force-measuring treadmill
for each condition during leave-one-subject-out (LOSO) cross validation.
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Figure 5
Predicted and measured normal GRF waveforms across slopes for a representative
subject

Normal ground reaction force (GRF) waveforms predicted by the recurrent neural network
(dashed red lines) and measured by the force-measuring treadmill (solid blue lines) at 3.33
m/s and all slopes (0°, ±5°, ±10°) are presented for Subject 14. Subject 14 was selected
because they had similar RMSE values (0.17 ± 0.07 BW) as the average across all subjects
(0.16 ± 0.04 BW) and their GRF waveforms illustrate an interaction between running slope
and normal GRF impact peak magnitude.
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Table 1(on next page)

Mean ± SD root mean square error (RMSE) and relative RMSE (rRMSE) for normal GRF
waveforms predicted by the LSTM network compared to the measured normal GRF
waveforms for each subject.
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Subject RMSE [BW] rRMSE [%]

1 0.11 ± 0.04 4.0 ± 1.1

2 0.11 ± 0.02 4.1 ± 0.7

3 0.12 ± 0.02 4.4 ± 0.9

4 0.12 ± 0.03 4.6 ± 1.2

5 0.12 ± 0.04 4.7 ± 0.9

6 0.12 ± 0.03 5.2 ± 1.4

7 0.13 ± 0.03 5.1 ± 1.2

8 0.15 ± 0.08 5.3 ± 3.3

9 0.15 ± 0.03 5.4 ± 1.0

10 0.15 ± 0.04 5.2 ± 1.3

11 0.15 ± 0.03 5.8 ± 0.8

12 0.16 ± 0.03 6.1 ± 1.1

13 0.16 ± 0.06 5.7 ± 1.5

14 0.17 ± 0.07 6.9 ± 2.5

15 0.17 ± 0.04 7.9 ± 2.0

16 0.19 ± 0.05 6.7 ± 1.7

17 0.21 ± 0.07 7.2 ± 2.5

18 0.29 ± 0.03 14.0 ± 1.7

19 0.31 ± 0.07 13.7 ± 2.7

Mean ± SD 0.16 ± 0.04 6.4 ± 1.5%

1
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Table 2(on next page)

Mean ± SD of the discrete biomechanical variables.

Values were calculated from normal ground reaction force (GRF) waveforms predicted by the
LSTM network (“Predicted”) and normal GRF waveforms measured from the force-measuring
treadmill (“Measured”) across all speeds and subjects for each slope.

PeerJ reviewing PDF | (2021:08:64560:1:0:NEW 10 Dec 2021)

Manuscript to be reviewed



Step Frequency [Hz] Contact Time [ms] Impulse [BW*s] Active Peak [BW] Loading Rate [BW/s]

Slope Predicted Measured Predicted Measured Predicted Measured Predicted Measured Predicted Measured

-10° 3.1 ± 0.3 3.1 ± 0.3 215 ± 26 214 ± 29 0.33 ± 0.03 0.33 ± 0.05 2.38 ± 0.24 2.36 ± 0.40 64.7 ± 19.9 68.4 ± 20.6

-5° 3.1 ± 0.3 3.1 ± 0.3 222 ± 23 223 ± 27 0.34 ± 0.04 0.34 ± 0.04 2.41 ± 0.25 2.45 ± 0.36 54.9 ± 16.7 60.6 ± 19.4

0° 3.1 ± 0.3 3.1 ± 0.3 228 ± 24 229 ± 27 0.33 ± 0.04 0.34 ± 0.04 2.42 ± 0.22 2.51 ± 0.36 42.0 ± 12.8 49.0 ± 17.2

+5° 3.2 ± 0.3 3.2 ± 0.3 228 ± 25 232 ± 26 0.32 ± 0.03 0.33 ± 0.04 2.36 ± 0.21 2.40 ± 0.33  34.8 ± 8.5 39.3 ± 13.3

+10° 3.4 ± 0.3 3.4 ± 0.3 223 ± 26 227 ± 26 0.30 ± 0.04 0.30 ± 0.04 2.24 ± 0.22 2.20 ± 0.29  30.1 ± 8.3 31.3 ± 12.7

1
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Table 3(on next page)

Error metrics for the predicted waveforms and discrete variables when training the Long
Short-Term Memory (LSTM) network with and without foot strike pattern as an input
feature.

Root mean square error (RMSE) and relative RMSE (rRMSE) are presented for predicted
normal ground reaction force (GRF) waveforms. Mean absolute percent error (MAPE) values
are presented for the discrete variables calculated from normal GRF waveforms predicted by
both LSTM networks.
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LSTM With Foot Strike

(Sacral + Right Foot 

Accelerometers)

LSTM Without Foot Strike

(Only Sacral 

Accelerometer)

GRF Waveform

RMSE [BW] 0.16 ± 0.04 0.17 ± 0.05

rRMSE 6.4 ± 1.5% 6.7 ± 1.7%

Discrete Variables 

MAPE

Step Frequency 0.1 ± 0.1% 0.1 ± 0.1%

Contact Time 4.9 ± 4.0% 5.6 ± 4.5%

Impulse 6.4 ± 6.9% 6.0 ± 7.1%

Active Peak 8.5 ± 8.2% 7.7 ± 6.3%

Loading Rate 27.6 ± 36.1% 30.3 ± 41.6%

1
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