Communities of T4-like bacteriophages associated with bacteria in Lake Baikal: diversity and biogeography (#63663)

First submission

Guidance from your Editor

Please submit by 7 Aug 2021 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

6 Figure file(s)

6 Table file(s)

1 Other file(s)

DNA data checks

Have you checked the authors <u>data deposition statement?</u>

Can you access the deposited data?

Has the data been deposited correctly?

Is the deposition information noted in the manuscript?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Communities of T4-like bacteriophages associated with bacteria in Lake Baikal: diversity and biogeography

Sergey Anatoljevich Potapov $^{\text{Corresp.},1}$, Irina Vasilievna Tikhonova 1 , Andrey Yurjevich Krasnopeev 1 , Mariya Yurjevna Suslova 1 , Natalia Albertovna Zhuchenko 1 , Valentin Valerianovich Drucker 1 , Olga Ivanovna Belykh 1

Corresponding Author: Sergey Anatoljevich Potapov Email address: poet1988@list.ru

We assessed the genetic diversity of T4-like bacteriophages in the fraction greater than 0.2 μ m from the pelagic zone, coastal zone and shallow bays of Lake Baikal by the gene fragment of the major capsid protein, gp23. High throughput sequencing allowed us to obtain from 12454 to 41802 sequences of the g23 gene in the fraction associated with bacteria. The results revealed that the sequences found in this study together with the sequences that we had previously retrieved from the plankton samples (fraction less than 0.2 μ m) and biofilms (without separation onto fractions) formed the Baikal cluster. The sequences from shallow bays largely differed from those in the pelagic and coastal samples and formed individual subcluster in the UPGMA tree. According to the RefSeq database, most OTUs had the cultivated closest relatives belonging to cyanophages.

 $^{^{}m 1}$ Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia

1 Communities of T4-like bacteriophages associated

with bacteria in Lake Baikal: diversity and

3 biogeography

4 5

- 6 Sergey Anatoljevich Potapov ¹, Irina Vasilievna Tikhonova¹, Andrey Yurjevich Krasnopeev¹,
- 7 Maria Yurjevna Suslova¹, Natalia Albertovna Zhuchenko¹, Valentin Valerianovich Drucker¹,
- 8 Olga Ivanovna Belykh¹

9

- 10 ¹ Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk,
- 11 Ulan-Batorskaya 3, 664033, Russia

12

- 13 Corresponding Author:
- 14 Sergey Anatoljevich Potapov¹
- 15 Ulan-Batorskaya 3, Irkutsk, 664033, Russia
- 16 Email address: poet1988@list.ru

17 18

Abstract

- 19 We assessed the genetic diversity of T4-like bacteriophages in the fraction greater than 0.2 μm
- 20 from the pelagic zone, coastal zone and shallow bays of Lake Baikal by the gene fragment of the
- 21 major capsid protein, gp23. High throughput sequencing allowed us to obtain from 12454 to
- 22 41802 sequences of the g23 gene in the fraction associated with bacteria. The results revealed
- 23 that the sequences found in this study together with the sequences that we had previously
- retrieved from the plankton samples (fraction less than 0.2 μm) and biofilms (without separation
- 25 onto fractions) formed the Baikal cluster. The sequences from shallow bays largely differed from
- those in the pelagic and coastal samples and formed individual subcluster in the UP A tree.
- 27 According to the RefSeq database, most OTUs had the cultivated closest relatives belonging to
- 28 cyanophages.

29 30

Introduction

- 31 Viruses are obligate intracellular parasites consisting of a single-stranded or double-stranded
- 32 RNA or DNA molecule enclosed within a protein capsid; enveloped viruses have an additional
- 33 membrane envelope (supercapsid). Viruses are distinguished by a huge number and high genetic
- 34 diversity (Suttle, 2007), thereby representing an inexhaustible pool for research date,
- according to ICTV Master Species List (ICTV, 2019), 3973 species belong to DNA viruses and
- 36 2617 to RNA viruses, but most of the sequences obtained to date from viromes are known to
- 37 be "viral dark matter" (Krishnamurthy & Wang, 2017), and there are much more real biological
- 38 species of viruses (Gregory et al., 2019).

- 39 The bulk of the sequences obtained by metagenomic sequencing of DNA-containing viruses in
- 40 aquatic ecosystems, which can be identified from databases, belongs to the order Caudovirales
- 41 (Cai et al., 2016; Garin-fernandez et al., 2018; Gong et al., 2018; Taboada et al., 2018; Gregory
- 42 et al., 2019; Wu et al., 2020). Due to the rapid transformation of viral taxonomy, the order
- 43 Caudovirales expanded to 14 families. Among them, the family *Myoviridae* is the best known
- and most studied. It includes 8 subfamilies and 153 genera
- 45 (https://talk.ictvonline.org/taxonomy/).
- 46 The family *Myoviridae* contains DNA phages that are genetically and morphologically similar to
- 47 the well-studied coliphage T4 (Ackermann & Krisch, 1997). At the same time, myoviruses have
- 48 elatively wide range of hosts (Sullivan, Waterbury & Chisholm, 2003).
- 49 Due to the lack of universal genes in viruses, signature genes are studied using primers targeting
- a specific group. The 3 gene fragment encoding major capsid protein is the most reliable
- marker for the analysis of the biodiversity of T4-like phages of the family *Myoviridae* (Tetart et
- 52 al., 2001; Adriaenssens & Cowan, 2014). Based on the analysis of gp23 sequences, T4-like
- 53 phages are divided into several groups: "true" T-evens represented by bacteriophage T4 and
- 54 closely related phages infecting enterobacteria (e.g. T2, T6), PseudoT-evens and SchizoT-evens
- 55 (phages of the genera Aeromonas, Vibrio, etc.) as well as more distant ExoT-evens (cyano- and
- 56 pelagiphages, etc.) (Desplats & Krisch, 2003). Moreover, T4-like viruses are divided into three
- 57 subgroups: Far T4 (including *Rhodothermus* phage RM378 (Hjorleifsdottir et al., 2014)), Near
- 58 T4 (including T-evens, PseudoT-evens and SchizoT-evens) and Cyano T4 (including ExoT-
- 59 evens) (Comeau & Krisch, 2008).
- 60 It is widely acknowledged that viruses play a global role in the Earth's biosphere, influencing
- 61 many ecological processes and biogeochemical cycles (Suttle, 2007). In the aquatic environment,
- 62 viruses are an important factor in the regulation of the number and structure of microbial
- 63 communities (Kutter & Sulakvelidze, 2005). In freshwater ecosystems such as Lake Biwa
- 64 (Japan), the percentage of daily bacterial production destroyed by viruses was estimated as high
- and accounted for $52.7 \pm 16.2\%$ in the upper layer and $13.6 \pm 5.2\%$ in the deeper layer (Pradeep
- Ram et al., 2010). In Lake Pavin (France), the average seasonal contribution from bacteriophages
- 67 to bacterial lysis reached 16.2% (Sime-Ngando et al., 2016).
- 68 Currently, the diversity of T4-like phages in the viral fraction (less than 0.4 and 0.2 μm) is
- 69 mainly studied flópez-Bueno et al., 2009; Butina et al., 2010; Jamindar et al., 2012; Parvathi,
- 70 Zhong & Jacquet, 2012; Bellas & Anesio, 2013; Goldsmith et al., 2015; Wang et al., 2015;
- 71 Millard, Pearce & Zwirglmaier, 2016; Liu, Cai & Zhang, 2017; Potapov et al., 2018). Organisms
- 72 larger than 0.2 or 0.4 μm (bacterial fraction) are removed using various methods because it is
- 73 methodologically more preferable to work with a viral fraction that does not contain bacterial
- 74 cells. Information about the composition and role of viruses associated with microbial
- 75 communities is scarce and covered mainly in metagenomic studies (De Cárcer et al., 2016;
- 76 Zeigler Allen et al., 2017; Aylward et al., 2017; Palermo et al., 2019; Okazaki et al., 2019;
- 77 Coutinho et al., 2020).

Previously, it was shown that the filtration of samples through filters with a pore size of 0.2 um duces the number of phages in the filtrate by an average of two-thirds (transmission electron 79 microscopy counting method) (Paul, Jiang & Rose, 1991). In a later study, the proportion of 80 viruses retained on a 0.2 um filter did not exceed 15% of the overall number of virus-like 81 82 particles (epifluorescence microscopy counting method) (Auguet, Montanié & Lebaron, 2006). For lytic phages including myoviruses, three states of life cycle were described: i) free during 83 extracellular search; ii) located in a certain space with no host, which is, for example, associated 84 with an inert particle; iii) actively infects bacteria (Kutter & Sulakvelidze, 2005). T4-like viruses 85 having strong lytic properties likely experience rapid exchange of intracellular and free phages. 86 87 For instance, phages T4 and λ have latent periods of 20 min and 50 min, respectively (De Paepe & Taddei, 2006). Owing to the rapid change in the phage state from free to associated and vice 88 versa, determination of solely viral fraction (less than 0.2 µm) can distort the results of genetic 89 analysis of diversity. Furthermore, the study of a bacterial fraction can reveal the relationship 90 91 between bacteria and bacteriophages infecting them, this will give an understanding about the phages that are in the propagation stage. 92 is study aims to check the difference of the phage sequences i) from samples with a viral 93 traction, ii) without separation into fractions and iii) from phages with a bacterial fraction. 94 95 Moreover, based on all obtained g23 sequences and using cluster analysis, we try to understand the influence of the geographical distance on the diversity of bacteriophages in Lake Baikal and 96 97 compare them with other ecosystems.

98 99

100

102103

104

105

106

107

Materials & Methods

101 Sampling sites.

Samples were collected at five sites of Lake Baikal in August 2019. The sampling sites were as follows: Mukhor Bay near the Kuchelga River (MK), a centre of Mukhor Bay (MC), a coastal zone near the Turka (Turk) settlement (328 m off the coast), and Posolsk Sor Bay (Posol_S); the sampling depth at these stations was 0 m. At the central station of the Listvyanka settlement – the Tankhoy settlement section, sampling was carried out in the layer from 0 5 m (LT_05) and from 10 to 15 m (LT_1015) (the sample was taken with a Niskin bathometer). Figure 1 shows the sampling map. Coordinates are shown in Supplementary Table 1.

108109110

Figure 1. Map of the sampling area.

111112

Water Chemistry Analysis

- For determinations of chlorophyll *a* concentration, 1 L of water was filtered through a 0.4 μm polycarbonate filter (Sartorius, Germany). Algal pigments were extracted with acetone (90%)
- overnight in the dark at 4 °C (after ultrasonic treatment). The supernatant was centrifuged and
- 116 chlorophyll a was measured with a Cintra-2020 spectrophotometer (GBC, Scientific Equipment,

- Australia) at 664, 647 and 630 nm and calculated based on equations provided by Parsons et al.
- 118 (Parsons, Maita & Lalli, 1984).
- 119 Total phosphorus content was determined using a photoelectric colorimeter KFK-2, (ZOMZ,
- 120 Zagorskii optiko-mekhanicheskii zavod [Zagorskii optical mechanics factory], Russia) after
- 121 persulfate oxidation. Total nitrogen content was determined by persulfate oxidation in an
- alkaline medium using a spectrophotometer PE-5300VI (Ekroskhim (previously "Ekohim"),
- 123 Russia) (Wetzel & Likens, 2000).

DNA extraction and preparation of amplicons

- Water samples (1 liter) from each site (MK, MC, Turk, Posol_S, LT_05, LT_1015) were filtered
- through sterile polycarbonate filters with a pore size of 0.2 μm (Sartorius, Germany) without
- using prefilters, and they were frozen onboard the research vessel during the expeditions DNA
- was extracted by the standard phenol-chloroform method in the laboratory imers MZIATois
- and MZIA6 were used (Filée et al., 2005). The PCR mixture consisted of the following
- 131 components: Master mix 2x Taq M (Alkor Bio, Russia), 0.1 µM primers, nuclease-free water,
- and DNA template. PCRs were performed with the following PCR cycle parameters:
- denaturation at 95°C for 15 min, 30 cycles of denaturation at 95°C for 30 s, annealing at 50°C
- for 30 s, extension at 72°C for 1 min, and a final extension at 72°C for 10 min. DNA was
- purified from the PCR mixture using a suspension of magnetic particles CleanMag DNA
- 136 (Evrogen, Russia). Library preparation and sequencing on Illumina MiSeq 2*300 were
- performed in the "Genomics Core Facility" (ICBFM SB RAS, Novosibirsk, Russia).

138139

Bioinformatic analysis

- 140 Sequence quality analysis was carried out using FastQC software tool (Andrews, 2010).
- 141 Trimming was performed using the Trimmomatic v. 0.36 tool (Bolger, Lohse & Usadel, 2014)
- using the following parameters: SLIDINGWINDOW:4:20 LEADING:3 TRAILING:3
- MINLEN:50. Further processing was performed using the Usearch v. 11.0.667 tool (Edgar,
- 144 2010). Paired-end reads were combined using the *-fastq mergepairs* command. The primers
- were not removed because, in contrast to bacterial sequences, viral sequences are degenerate and
- thus carry information about diversity. Then unique sequences (-derep fulllength) were sorted
- out. The next step was clustering at the wind identity level, UPARSE-OTU algorithm (-
- 148 *cluster otus*), as well as the removal of chimeras, singletons and doubletons. The chosen level
- was previously substantiated (Potapov et al., 2018). Nucleotide sequences were converted into
- amino acid ones using the BioEdit v. 7.0.9.0 program (Hall, 1999). The annotation was
- performed using the BLASTP analysis (default expect threshold) based on the RefSeq and
- 152 GenBank (NR) databases
- Amino acids wer aligned in the Mega 7 software (Kumar, Stecher & Tamura, 2016) using the
- 154 Muscle algorithm. A phylogenetic tree was constructed through Bayesian analysis using the
- 155 MrBayes software (v. 3.2.6). Two independent Markov chain Monte Carlo (MCMC) analyses
- were launched for 15 million generations with 25% burn-in (rejection of initial generations) and

- 157 four chains (one cold and three hot ones). All calculations were performed on HPC-cluster
- "Akademik V.M. Matrosov" ("Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru"). 158
- Based on the amino acid sequences, the distance matrix was obtained through the unweighted 159
- UniFrac metric (multiple sequence alignment Muscle, model Blosum62, normalized=TRUE), 160
- 161 followed by a hierarchical cluster analysis (hclust) (Murtagh, 1992) method "average"
- (=UPGMA), using phyloseq (v. 1.21.0) and phangorn (v. 2.2.0) packages, implemented in the R 162
- 163 software (v. 3.2.4).
- Non-metric multidimensional scaling (NMDS) was based on indiance of g23 amino acid 164
- sequences and physicochemical parameters. We used an unweighted (qualitative) UniFrac 165
- 166 method with the phyloseq (v. 1.21.0), phangorn (v. 2.2.0) and vegan (v. 2.4-3) packages
- implemented in the R software (v. 3.2.4). 167
- Nucleotide diversity values were calculated using DNASP v. 6.12 (Rozas et al., 2017). The 168
- sequences were aligned by MUSCLE v. 3.8.1551 with default settings (Edgar, 2004). 169
- 170 The intersection graph was constructed using the UpSetR (v. 1.4.0) package (Lex et al., 2014)
- implemented in the R software, combination matrix intersect. The OTU table generated in 171
- QIIME v. 1.9.1 (Caporaso et al., 2010) (make otu table.py) based on the OTU sequences 172
- obtained from Usearch served as the input file. 173

176

177

178

179 180

181 182 183

Results

Environment parameters

Table 1 shows the results of physicochemical analysis. According to the indicators given in the table. the productivity of shallow bays corresponds to the mesotrophic status, and the productivity of the waters of the pelagic stations corresponds to the oligotrophic status according to R. A. Vollenweider (Vollenweider & Kerekes, 1982).

Table 1:

Physical and chemical parameters of water.

184 185 186

187 188

189 190

191

192

193

194

195 196

NMDS plot with samples from this study and physicochemical parameters are shown in Figure 2. Chlorophyll a and total nitrogen are positively associated with the sample from Posolsk Sor Bay (Posol S); the water temperature, pH and total phosphorus – with the samples from Mukhor Bay (MC, MK) all parameters have a significance level of less than 0.011. The highest concentration of the total phosphorus, total nitrogen and chlorophyll a has been recorded in shallow bays, which is not surprising for Lake Baikal because the maximum rate of formation of organic matter occurs here due to a large number of primary producers (cyanobacteria) (Watanabe & Drucker, 1999; Belykh & Sorokovikova, 2003) proper ture, in turn, is an important factor, influencing the growth rate of bacteria and having a significant positive effect on bacterial production (Straškrábová et al., 2005). An increase in temperature stimulates the

development of phytoplankton, enhances its photosynthetic activity, and the water body is

enriched with dissolved organic matter. The pH level is slightly shifted to the alkaline side, which is typical for the waters of Lake Baikal. As shown previously, a key factor in determining the infectivity of a virus is the pH value. For example, a low pH (<4) significantly reduces phage survival (Jurczak-Kurek et al., 2016).

Figure 2. NMDS analysis based on g23 sequences and physicochemical parameters. pH potential of hydrogen, P – total phosphorus, Chl – chlorophyll a, N – total nitrogen.

Analysis of g23 sequences

Overall, we obtained 250 representative viral sequences (OTU) of the *g23* gene fragment based on the 97% clustering. The lengths of the sequences at the nucleotide level, taking into account the primers, ranged from 355 to 547 nucleotides (average length 439 nuc.) ie main data obtained from processing during the preparation of sequences are shown in Table 2.

Table 2:

- 212 Summary information about the sampling site and results of the processing stages.
- 213 Sampling date: August 2019

Among the cultivated bacteriophages, the highest identity is at amino acid level (from 64.4 to 7.9%), and the minimum e-value was with cyanophages: *Synechococcus* phage S-SSM7, *Synechococcus* phage S-SM2, *Synechococcus* phage Bellamy, and *Synechococcus* phage S-CAM1 (Table 3). The bulk of the sequences was annotated as belonging to cyanophages. This fact likely indicates the active infection of their hosts with this group of viruses in the study period and reflects the associated interaction of phages with cyanobacteria. In summer, especially in early August, there is a seasonal peak of cyanobacterial bloom in Lake Baikal (Belykh & Sorokovikova, 2003). *Pelagibacter* phage HTVC008M was the second closest relative in terms of the frequency of occurrence: MK – 13.7%, MC – 29.2%, Turk – 20%, Posol_S – 10.8%, LT_05 – 16.7%, and LT_1015 – 14.3%. Moreover, *Serratia* phage BF (YP_009599751), *Agrobacterium* phage Atu_ph07 (YP_009611880), *Caulobacter* phage Cr30 (YP_009098938), *Sinorhizobium* phage phiN3 (YP_009212304), *Acidovorax* phage ACP17 (YP_009609699), and *Cronobacter* phage vB_CsaM_leB (YP_009831235) are among the closest relatives.

Table 3:

The closest relatives with the lowest e-value for each sample (database RefSeq, amino acid level).

The protein sequences had uncultivated relatives from various ecosystems (Table 4), and most relatives from the GenBank database were similar to the Baikal sequences that had been previously obtained from biofilms (from 19.6 to 28.6%) and pelagic zone (from 6.8 to 30%) of

Lake Baikal. The largest number of the closest relatives for samples LT_05, LT_1015 and Turk was from lakes Bourget and Annecy (from 10.8 to 25.7%). An interesting result is the identity of a large number of sequences from small eutrophic bays (MK, MC and Posol_S) with sequences from wetland sediment (from 18.9 to 25.5%) (Li et al., 2018), whereas pelagic representatives from samples Turk, LT_05 and LT_1015 had only from 2.8 to 3.3% of similar sequences.

Table 4:

The number of sequences in this study similar to the sequences from other sources, % (database GenBank, amino acid level).

assess alpha diversity, we conducted a comparative analysis of sequences based on nucleoudes (nucleotide diversity, π) (Table 5). In addition to the sequences from this study, the sequences were taken from various sources available in the NCBI database assed on microdiversity data, among the sequences obtained in this study, Posol_S is the least diverse g23 community in Lake Baikal, and MK is the most diverse one contrast, the sequences from the polar Lake Limnopolar and dairy water (Ireland) were distinguished by a larger nucleotide diversity. In general, noteworthy is the high nucleotide diversity of the Baikal sequences.

Table 5:

Nucleotide diversity of the g23 gene fragment.

LT_1015 have the largest number of intersections (31), which is natural because they were taken from different layers at the same station. The larger number of intersections with the LT_05 (23), LT_1015 (20) and Turk (14) sequences is typical of the BSOTU (Baikal Sample OTU, pelagic water) sequences (Potapov et al., 2018) cumples MK and MC have 22 intersections. It was expectable, as these samples were taken from the same bay tipe Maloye More Strait). Posol_S and MK have 12 shared OTUs_Therefore, the sequences from the pelagic zone have a common pool of similar sequences, and mose from bays are more similar to each other. The greater identity of LT_05 and LT_1015 with sample Turk (near the Turka settlement) is likely because, on the day of the expedition, the water of the littoral sample Turk collected 328 m from the coast was mixed with pelagic waters during a storm caused by north-westerly wind.

Figure 3. UpSetR plot created by representative nucleotide sequences of OTUs. The dots indicate the total OTU count in a sample; the dots connected by lines – shared OTUs. Intersection size \geq 8. Mode = "intersect".

Phylogenetic analysis

277

278

279280

281

282

283

307 308

309

310

311

312

313314

315

Phylogenetic analysis of the amino acid *g23* sequences with the cultivated representative T4-like viruses of the family *Myoviridae* and with the sequences from various natural sources revealed that the sequences from this study are mixed in the tree and do not form separate clades consistent with fraction or ecotope (Fig. 4). We conditionally divided them into 13 clusters (marked with Roman numerals) the cluster was considered formed if there were more than three sequences. The bulk of the clusters contained *g23* sequences of phages from natural sources, whose hosts are still unknown because there are no cultivated representatives and hence the confirmation of phylogenetic affiliation.

Cluster I included 51 OTUs from all samples in our study. This cluster had the only 284 cultivated bacteriophage. Caulobacter phage Cr30, obtained from the culture of Gram-negative 285 oligotrophic bacteria. Caulobacter crescentus, widespread in freshwater lakes. 286 Cluster II (37 OTUs) contained four cultivated representatives: the thermophilic bacterium phage 287 RM378 assigned to the group Far T4; Serratia phage BF obtained from the strain of the Serratia 288 289 marcescens UCC2017 opportunistic bacteria; Escherichia phage 121Q, the laboratory host of which is Escherichia coli MuLB70.1; Agrobacterium phage Atu ph07 isolated from the 290 Agrobacterium tumefaciens bacteria opportunistic for humans (Adnan et al., 2013). This cluster 291 probably contained phages of opportunistic bacteria. Cluster III was represented by the group 292 Exo T-evens with isolates of picocyanobacterial and SAR11 phages. Clusters IV-IX, XI, and XII 293 did not contain any cultivated phages and represented a mixture of sequences from various 294 ecosystems. For example, Cluster VI contained a single sequence from the marine ecosystem. 295 Interestingly, the previous Baikal g23 sequences were closely related to marine T4 cyanophages 296 (Butina et al., 2010), which is probably due to the filling of the databases with the studies on 297 298 freshwater ecosystems uster X (38 OTUs) consisted of one cultivated representative, Acidovorax phage ACP17 (Rahimi-Midani et al., 1970), infecting the Acidovorax citrulli 299 bacteria. Cluster XIII comprised phages of pathogenic and opportunistic bacteria belonging to 300 the group Near T4. 301

Two OTUs (Posol_S_OTU59 and Posol_S_OTU37) were not included in any cluster as well as 303 Sinorhizobium phage phiN3 represented by a separate branch. 304

Figure 4. Bayesian phylogenetic tree based on alignment of 388 gp23 major capsid protein sequences. Dots mark cultivated bacteriophages.

Biogeography of gp23 sequences

GenBank database: Kongsfjorden, proglacial lake (Svalbard, Norway) (Bellas & Anesio, 2013), coral colony (Orpheus Island, Australia) (Buerger et al., 2018), hydrothermal vent (East Scotia Ridge) (Millard, Pearce & Zwirglmaier, 2016), Chesapeake Bay (USA) (Jamindar et al., 2012), Lake Baikal (Russia) (Butina et al., 2010; Potapov et al., 2018, 2020), Lake Annecy and Bourget (France) (Zhong & Jacquet, 2014), wetland (China) (Zheng et al., 2013), Lake Kotokel (Russia) (Butina et al., 2013), Lake Donghu (China) (Huang, Cheng & Xu, 2011), Lake East (China)

(Wang et al., 2015), Lake Limnopolar (Antarctica, Livingston Island) (López-Bueno et al., 2009), dairy wastewater (Ireland) (Knapik & Prentice, 2012), the Selenga River (Russia) (Butina et al., 2015), wetland sediments (China) (Li et al., 2018), sediments of the Pearl River estuary (China) (He et al., 2017), paddy field (China) (Li et al., 2019), and paddy field (Japan) (Cahyani et al., 2009) (Fig. 5).

Figure 5. Map showing the samples included in the analysis for this study.

 three groups on the dendrogram: marine, freshwater, soil, and sediments (Fig. 6). LT_05 and LT_1015, sequences from the samples collected at the central station of the Listvyanka settlement – the Tankhoy settlement section, layer from 0 to 5 m and from 10 to 15 m, are located closer to the site with the sequences from sample Turk as mentioned above, which is due to the mixing with pelagic waters. LT_05, LT_1015 and Turk form a common cluster together with the sequences previously obtained from the pelagic zone of Lake Baikal (BSOTU) (Potapov et al., 2018) and the sequences from sponge biofilms (Potapov et al., 2020). Three samples from shallow Baikal bays (MK, MC and Posol_S) group together, confirming clustering by the similar trophic conditions within the Baikal group.

gure 6. Cluster dendrogram (UPGMA). Samples from this study are marked in bold. SB – southern basin, Lake Baikal, NB – northern basin, Lake Baikal, BSOTU – Baikal samples OTU, LAB – lakes Bourget and Annecy. Untagged samples are either unpublished or have no open access articles.

- The sequences from biofilms of stones, which we named GreenStone and CyaStone (Potapov et al., 2020), form a joint cluster with planktonic *g23* sequences from the pelagic zone of the southern basin of Lake Baikal. Samples from Lake Kotokel, Lake East, Lake Donghu, and the wetland of China form a cluster that we designated as eutrophic.
- The greatest identity of the Baikal *g23* is observed with the sample from subalpine lakes Bourget (oligo-mesotrophic) and Annecy (oligotrophic) (Zhong & Jacquet, 2014), which we also previously indicated in our study (Potapov et al., 2018).
- The sequences from the Arctic proglacial lakes and Lake Limnopolar are closer to the sequences from the Selenga River and dairy water (Ireland).
- Despite the difference in the sequencing method and fraction greater than 0.2 µm, the sequences in this study are located in the Baikal cluster with the sequences obtained from the fraction less than 0.2 µm and without separation into fractions.

Excussion

Here, we studied the *g23* communities of bacteriophages associated with bacteria in a fraction greater than 0.2 µm from challow bays, coastal zone and pelagic zone of Lake Baikal. The sampling sites were chosen not only to carry out a comparative analysis in terms of

- 356 geographical distance but also to reveal the differences in the pools of g23 sequences selected in
- 357 different zones of Lake Baikal with different trophic statuses.
- 358 The shallow bay of Posolsk Sor Bay (maximum depth 3.5 m) is located on the southeast coast of
- Lake Baikal, about 20 km south of the Selenga River delta. Mukhor Bay is one of the warmest
- and shallowest bays located in the Maloye More Strait that is situated between the mainland and
- Olkhon Island. Both bays warm well in July and August and are the most visited tourist sites of
- Lake Baikal. In August 2019, there was a mass development of diazotrophic cyanobacteria in the
- 363 waters of the bays: Gloeotrichia echinulata bloomed in Posolsk Sor Bay, and the species of the
- 364 genus *Dolichospermum* in Mukhor Bay.
- Late July and early August is a period of bloom of both pico- and nanoplanktonic cyanobacteria
- 366 in Lake Baikal. Picocyanobacteria are found in huge numbers in Lake Baikal, reaching an
- abundance of 1.5 million cells/ml (Belykh & Sorokovikova, 2003). Intensive vegetation of
- 368 Dolichospermum species has been recorded for a long time from June to September in all parts
- of Lake Baikal, with the maximum concentration of up to 10 million cells/l in bays (Popovskaya,
- 370 2000). In this regard, it is logical to assume the presence of cyanophages, natural regulators of
- 371 the number of cyanobacteria. As mentioned above, many sequences belonged to cyanophages
- according to RefSeq, but phylogenetic analysis revealed only on uster with cultivated
- 373 cyanophages. Eight clusters did not have cultivated representatives; therefore, their taxonomic
- identification is unknown. They may be similar to cultivated Baikal cyanophages that have not
- 375 been obtained so far.
- 376 In addition to cyanophages, *Pelagibacter* phage HTVC008M (the family *Myoviridae*) infecting
- 377 Candidatus Pelagibacter ubique (Alphaproteobacteria, freshwater SAR11) was the closest
- 378 relative of the Baikal representatives of T4-phages. Previously, high synteny with this strain of
- the Baikal sequences was determined (Cabello-Yeves et al., 2018).
- Noteworthy is a great number of similar sequences in samples from shallow areas of Lake Baikal
- 381 (from 18.9 to 25.5%) and wetland sediment (Li et al., 2018), which is much greater than in the
- samples from the pelagic zone of Lake Baikal and wetland sediments (from 2.9 to 3.3%). This
- 383 possibly indicates the similar composition and conditions for the existence of bacterial
- 384 communities from the Baikal bays (shallow water, high productivity and elevated temperature)
- and the shallow, well-warmed productive wetland sediments.
- 386 A large number of g23 sequences from lakes Bourget and Annecy similar to the Baikal
- 387 sequences in this study is likely owing to the identity of the lakes' hydrophysical and
- 388 hydrochemical parameters (altitude above sea level, total P, total N, nitrates and pH), as we
- previously indicated in the analysis of g23 sequences from the pelagic zone of Lake Baikal
- 390 (Potapov et al., 2018).
- 391 Although the cluster analysis compared sequences obtained by the Sanger method and high
- 392 uroughput sequencing (HTS), as well as in two different fractions, they were separated by the
- 393 trophic status of the study sites of Lake Baikal and other water bodies. Therefore, according to
- our previous studies (Butina et al., 2013), the g23 communities form regions in the tree

395	depending on the productivity of the waters rhaps, trophic status of water determines the
396	composition of both bacteria and phages.
397	GMA analysis revealed that viral diversity does not follow the latitudinal gradient, and the

PGMA analysis revealed that viral diversity does not follow the latitudinal gradient, and the geographical distance does not influence the composition of bacteriophages according to the "everything is everywhere, but the environment selects" theory. At the same time, it corresponds to one of the distribution models: the limitation of distribution and environmental conditions determine the community composition. This conclusion confirms the isolated formation of viral g23 communities and, possibly, endemism of bacteriophages of the Earth's oldest lake. \pm nalysis g23 genes indicates that separation by fractions is not of key importance, and the quantitative loss of bacteriophages during filtration does not significantly change the biodiversity of communities. At the same time, a limited dataset was used in the analysis; thereby further research is required.

406 407

398 399

400

401

402

403

404

405

408

410

411

412 413

414

415

416

409

conclusions

In this study, we obtained g23 sequences of bacteriophages from the pelagic and coastal zones and bays of Lake Baikal, in a fraction greater than 0.2 µm. Our results revealed a high diversity of g23 communities of bacteriophages of the family Myoviridae in Lake Baikal. Cluster analysis confirmed the uniqueness of the Baikal sequences, as evidenced by their grouping with each other rather than with sequences from other ecosystems. Viral communities from different aquatic ecosystems rather cluster by the productivity of the water bodies than by their geographical confinement.

417

418

419

420

421

422 423

424 425

426

427

Acknowledgements

The Authors are grateful to the crew of R/V "G. Titov" for their assistance in sampling. We thank Andrey Fedotov and Yuliya Vitushenko for their helpful advice. The authors are grateful to Irkutsk Supercomputer Center SB RAS for providing the access to HPC-cluster "Akademik V. M. Matrosov" (MrBayes calculations).

428

429

430 431

References

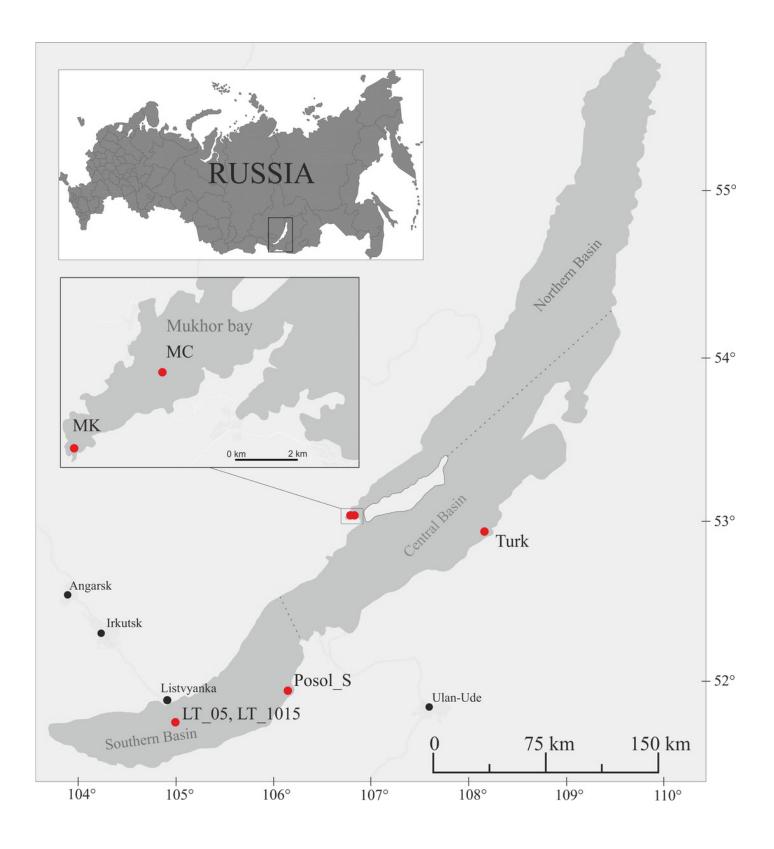
- 432 Ackermann H-W, Krisch HM. 1997. A catalogue of T4-type bacteriophages. Archives of
- 433 Virology 142:2329–2345. DOI: 10.1007/s007050050246.
- 434 Adnan M, Khan S, Patel M, Al-Shammari E, Ashankyty IMA. 2013. Agrobacterium: a potent
- human pathogen. Reviews in Medical Microbiology 24:94–97. DOI:
- 436 10.1097/MRM.0b013e3283642449.
- 437 Adriaenssens EM, Cowan DA. 2014. Using signature genes as tools to assess environmental
- 438 viral ecology and diversity. Applied and Environmental Microbiology 80:4470–4480. DOI:
- 439 10.1128/AEM.00878-14.
- Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. Available at
- 441 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- 442 Auguet JC, Montanié H, Lebaron P. 2006. Structure of virioplankton in the charente estuary
- 443 (France): Transmission electron microscopy versus pulsed field gel electrophoresis. In:
- 444 Microbial Ecology. Springer, 197–208. DOI: 10.1007/s00248-005-0043-0.
- Aylward FO, Boeuf D, Mende DR, Wood-Charlson EM, Vislova A, Eppley JM, Romano AE,
- DeLong EF. 2017. Diel cycling and long-term persistence of viruses in the ocean's euphotic
- zone. Proceedings of the National Academy of Sciences of the United States of America
- 448 114:11446–11451. DOI: 10.1073/pnas.1714821114.
- Bellas CM, Anesio AM. 2013. High diversity and potential origins of T4-type bacteriophages on
- 450 the surface of Arctic glaciers. Extremophiles 17:861–870. DOI: 10.1007/s00792-013-0569-x.
- 451 Belykh OI, Sorokovikova EG. 2003. Autotrophic picoplankton in Lake Baikal: abundance,
- 452 dynamics, and distribution. Aquatic Ecosystem Health & Management 6:251–261. DOI:
- 453 10.1080/14634980301489.
- 454 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence
- data. Bioinformatics (Oxford, England) 30:2114–2120. DOI: 10.1093/bioinformatics/btu170.
- 456 Buerger P, Weynberg KD, Wood-Charlson EM, Sato Y, Willis BL, van Oppen MJH. 2018.
- Novel T4 bacteriophages associated with black band disease in corals. Environmental
- 458 Microbiology. DOI: 10.1111/1462-2920.14432.
- 459 Butina TV, Belykh OI, Maksimenko SY, Belikov SI. 2010. Phylogenetic diversity of T4-like
- 460 bacteriophages in Lake Baikal, East Siberia. FEMS Microbiology Letters 309:122–129. DOI:
- 461 10.1111/j.1574-6968.2010.02025.x.
- Butina TV, Belykh OI, Potapov SA, Sorokovikova EG. 2013. Diversity of the major capsid
- genes (g23) of T4-like bacteriophages in the eutrophic Lake Kotokel in East Siberia, Russia.
- 464 Archives of Microbiology 195:513–520. DOI: 10.1007/s00203-013-0884-8.
- 465 Butina TV, Usova OS, Potapov SA, Belykh OI, Fedotov AP, Belikov SI. 2015. Molecular
- 466 genetic study of T4-like bacteriophages in plankton of Selenga River. Seriya «Biologiya.
- Ekologiya» of the «Izvestiya Irkutskogo gosudarstvennogo universiteta» 12:12–22.
- 468 Cabello-Yeves PJ, Zemskay TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov V V.,
- Rodriguez-Valera F. 2018. Genomes of novel microbial lineages assembled from the sub-ice
- waters of Lake Baikal. Applied and Environmental Microbiology 84. DOI:
- 471 10.1128/AEM.02132-17.

- 472 Cahyani VR, Murase J, Ishibashi E, Asakawa S, Kimura M. 2009. T4-type bacteriophage
- 473 communities estimated from the major capsid genes (g23) in manganese nodules in Japanese
- paddy fields. Soil Science and Plant Nutrition 55:264–270. DOI: 10.1111/j.1747-
- 475 0765.2009.00363.x.
- 476 Cai L, Zhang R, He Y, Feng X, Jiao N. 2016. Metagenomic analysis of Virioplankton of the
- subtropical Jiulong river estuary, China. Viruses 8:1–13. DOI: 10.3390/v8020035.
- 478 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña
- 479 AG, Goodrich JK, Gordon JI, Huttley G a, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone
- 480 C a, Mcdonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters W a,
- 481 Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-
- 482 throughput community sequencing data Intensity normalization improves color calling in SOLiD
- 483 sequencing. Nature Publishing Group 7:335–336. DOI: 10.1038/nmeth0510-335.
- 484 De Cárcer DA, Pedrós-Alió C, Pearce DA, Alcamí A. 2016. Composition and interactions
- among bacterial, microeukaryotic, and T4-like viral assemblages in lakes from both polar zones.
- 486 Frontiers in Microbiology 7:1–11. DOI: 10.3389/fmicb.2016.00337.
- 487 Comeau AM, Krisch HM. 2008. The capsid of the T4 phage superfamily: The evolution,
- 488 diversity, and structure of some of the most prevalent proteins in the biosphere. Molecular
- 489 Biology and Evolution 25:1321–1332. DOI: 10.1093/molbev/msn080.
- 490 Coutinho FH, Cabello-Yeves PJ, Gonzalez-Serrano R, Rosselli R, López-Pérez M, Zemskaya TI,
- 491 Zakharenko AS, Ivanov VG, Rodriguez-Valera F. 2020. New viral biogeochemical roles
- revealed through metagenomic analysis of Lake Baikal. Microbiome 8:163. DOI:
- 493 10.1186/s40168-020-00936-4.
- Desplats C, Krisch HM. 2003. The diversity and evolution of the T4-type bacteriophages.
- 495 Research in Microbiology 154:259–267. DOI: http://dx.doi.org/10.1016/S0923-2508(03)00069-
- 496 X.
- 497 Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high
- throughput. Nucleic Acids Research 32:1792–1797. DOI: 10.1093/nar/gkh340.
- 499 Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics
- 500 26:2460–2461. DOI: 10.1093/bioinformatics/btq461.
- Filée J, Tétart F, Suttle CA, Krisch HM. 2005. Marine T4-type bacteriophages, a ubiquitous
- 502 component of the dark matter of the biosphere. Proceedings of the National Academy of
- 503 Sciences of the United States of America 102:12471–6. DOI: 10.1073/pnas.0503404102.
- Fujihara S, Murase J, Tun CC, Matsuyama T, Ikenaga M, Asakawa S, Kimura M. 2010. Low
- diversity of T4-type bacteriophages in applied rice straw, plant residues and rice roots in
- Japanese rice soils: Estimation from major capsid gene (g23) composition. Soil Science and
- 507 Plant Nutrition 56:800–812. DOI: 10.1111/j.1747-0765.2010.00513.x.
- Garin-fernandez A, Pereira-flores E, Oliver F, Wichels A. 2018. Marine Genomics The North
- 509 Sea goes viral: Occurrence and distribution of North Sea bacteriophages. Marine Genomics
- 510 41:31–41. DOI: 10.1016/j.margen.2018.05.004.

- 511 Goldsmith DB, Brum JR, Hopkins M, Carlson CA, Breitbart M. 2015. Water column
- 512 stratification structures viral community composition in the Sargasso Sea. Aquatic Microbial
- 513 Ecology 76:85–94. DOI: 10.3354/ame01768.
- 514 Gong Z, Liang Y, Wang M, Jiang Y, Yang Q, Xia J, Mcminn A. 2018. Viral diversity and its
- relationship with environmental factors at the surface and deep sea of Prydz Bay, Antarctica.
- 516 9:1–17. DOI: 10.3389/fmicb.2018.02981.
- 517 Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, Ardyna M,
- 518 Arkhipova K, Carmichael M, Cruaud C, Dimier C, Domínguez-Huerta G, Ferland J, Kandels S,
- 519 Liu Y, Marec C, Pesant S, Picheral M, Pisarev S, Poulain J, Tremblay JÉ, Vik D, Acinas SG,
- Babin M, Bork P, Boss E, Bowler C, Cochrane G, de Vargas C, Follows M, Gorsky G, Grimsley
- 521 N, Guidi L, Hingamp P, Iudicone D, Jaillon O, Kandels-Lewis S, Karp-Boss L, Karsenti E, Not
- 522 F, Ogata H, Poulton N, Raes J, Sardet C, Speich S, Stemmann L, Sullivan MB, Sunagawa S,
- Wincker P, Culley AI, Dutilh BE, Roux S. 2019. Marine DNA viral macro- and microdiversity
- from pole to pole. Cell 177:1109–1123.e14. DOI: 10.1016/j.cell.2019.03.040.
- Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program
- for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95–98. DOI: citeulike-article-
- 527 id:691774.
- 528 He M, Cai L, Zhang C, Jiao N, Zhang R. 2017. Phylogenetic diversity of T4-type phages in
- sediments from the subtropical Pearl River Estuary. Frontiers in Microbiology 8. DOI:
- 530 10.3389/fmicb.2017.00897.
- Hjorleifsdottir S, Aevarsson A, Hreggvidsson GO, Fridjonsson OH, Kristjansson JK. 2014.
- Isolation, growth and genome of the Rhodothermus RM378 thermophilic bacteriophage.
- 533 Extremophiles 18:261–270. DOI: 10.1007/s00792-013-0613-x.
- Huang H-Z, Cheng K, Xu M. 2011. Genetic diversity of T4 virioplankton, inferred from g23
- 535 gene, in Wuhan Donghu Lake. CHINA ENVIRONMENTAL SCIENCECE 31:443–447.
- 536 ICTV. 2019. Master Species List 2019.v1. Available at https://talk.ictvonline.org/files/master-
- 537 species-lists/m/msl/9601
- 538 Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru.
- Jamindar S, Polson SW, Srinivasiah S, Waidner L, Wommack KE. 2012. Evaluation of two
- 540 approaches for assessing the genetic similarity of virioplankton populations as defined by
- genome size. Applied and Environmental Microbiology 78:8773–8783. DOI:
- 542 10.1128/AEM.02432-12.
- 543 Jia Z, Ishihara R, Nakajima Y, Asakawa S, Kimura M. 2007. Molecular characterization of T4-
- 544 type bacteriophages in a rice field. Environmental Microbiology 9:1091–1096. DOI:
- 545 10.1111/j.1462-2920.2006.01207.x.
- 546 Jurczak-Kurek A, Gasior T, Nejman-Faleńczyk B, Bloch S, Dydecka A, Topka G, Necel A,
- Jakubowska-Deredas M, Narajczyk M, Richert M, Mieszkowska A, Wróbel B, Wegrzyn G,
- 548 Wegrzyn A. 2016. Biodiversity of bacteriophages: morphological and biological properties of a
- large group of phages isolated from urban sewage. Scientific Reports 6:34338. DOI:
- 550 10.1038/srep34338.

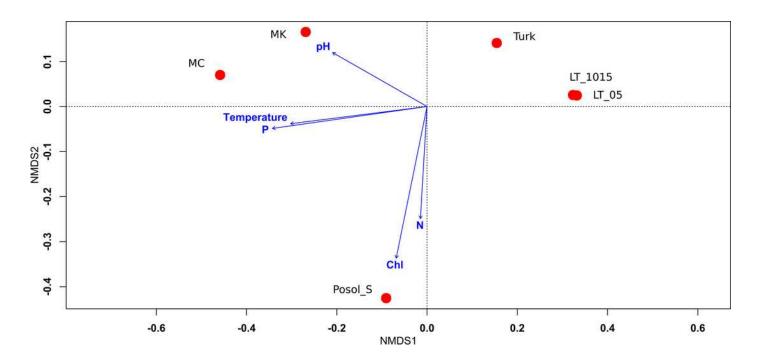
- Kavagutti VS, Andrei A-Ş, Mehrshad M, Salcher MM, Ghai R. 2019. Phage-centric ecological
- 552 interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome
- 553 7:135. DOI: 10.1186/s40168-019-0752-0.
- Knapik K, Prentice MB. 2012. Wide bacteriophage diversity in a single terrestrial aquatic site.
- 555 Available at
- 556 https://www.ncbi.nlm.nih.gov/popset?LinkName=protein_popset&from_uid=396575579
- Krishnamurthy SR, Wang D. 2017. Origins and challenges of viral dark matter. Virus Research
- 558 239:136–142. DOI: 10.1016/j.virusres.2017.02.002.
- 559 Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis
- version 7.0 for bigger datasets. Molecular biology and evolution 33:msw054. DOI:
- 561 10.1093/molbev/msw054.
- Kutter E, Sulakvelidze A. 2005. Bacteriophages: Biology and Applications. Boca Raton-London-
- 563 New York- Washington: CRC Press.
- Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. 2014. UpSet: Visualization of
- intersecting sets. IEEE Transactions on Visualization and Computer Graphics 20:1983–1992.
- 566 DOI: 10.1109/TVCG.2014.2346248.
- Li Y, Liu H, Pan H, Zhu X, Liu C, Zhang Q, Luo Y, Di H, Xu J. 2019. T4-type viruses:
- 568 Important impacts on shaping bacterial community along a chronosequence of 2000-year old
- paddy soils. Soil Biology and Biochemistry 128:89–99. DOI: 10.1016/j.soilbio.2018.10.007.
- 570 Li X, Sun Y, Liu J, Yao Q, Wang G. 2018. Myoviridae environmental samples. Available at
- 571 https://www.ncbi.nlm.nih.gov/popset?LinkName=protein_popset&from_uid=1496533459
- 572 Liu L, Cai L, Zhang R. 2017. Co-existence of freshwater and marine T4-like myoviruses in a
- 573 typical subtropical estuary. FEMS Microbiology Ecology 93. DOI: 10.1093/femsec/fix119.
- López-Bueno A, Tamames J, Velázquez D, Moya A, Quesada A, Alcamí A. 2009. High
- 575 diversity of the viral community from an Antarctic lake. Science 326:858–861. DOI:
- 576 10.1126/science.1179287.
- 577 Mabizela NB, Litthauer D. 2016.Unculturable T4-like and T7-like phages from South African
- 578 deep gold mines. Available at
- 579 https://www.ncbi.nlm.nih.gov/popset?LinkName=protein_popset&from_uid=256033955
- 580 Millard AD, Pearce D, Zwirglmaier K. 2016. Biogeography of bacteriophages at four
- 581 hydrothermal vent sites in the Antarctic based on g23 sequence diversity. FEMS Microbiology
- 582 Letters 363:1–12. DOI: 10.1093/femsle/fnw043.
- 583 Murtagh F. 1992. Comments on "Parallel algorithms for hierarchical clustering and cluster
- validity." IEEE Transactions on Pattern Analysis and Machine Intelligence 14:1056–1057. DOI:
- 585 10.1109/34.159908.
- Okazaki Y, Nishimura Y, Yoshida T, Ogata H, Nakano S. 2019. Genome resolved viral and
- 587 cellular metagenomes revealed potential key virus host interactions in a deep freshwater lake.
- 588 Environmental Microbiology 21:4740–4754. DOI: 10.1111/1462-2920.14816.

- De Paepe M, Taddei F. 2006. Viruses' life history: towards a mechanistic basis of a trade-off
- between survival and reproduction among phages. PLoS Biology 4:e193. DOI:
- 591 10.1371/journal.pbio.0040193.
- 592 Palermo CN, Fulthorpe RR, Saati R, Short SM. 2019. Metagenomic analysis of virus diversity
- and relative abundance in a eutrophic freshwater Harbour. Viruses 11:792. DOI:
- 594 10.3390/v11090792.
- Parsons TR, Maita Y, Lalli C. 1984. A Manual of Chemical and Biological Methods for
- 596 Seawater Analysis. New York: Pergamon Press.
- Parvathi A, Zhong X, Jacquet S. 2012. Dynamics of various viral groups infecting autotrophic
- plankton in Lake Geneva. Advances in Oceanography and Limnology 3:171–191. DOI:
- 599 10.1080/19475721.2012.738157.
- Paul JH, Jiang SC, Rose JB. 1991. Concentration of viruses and dissolved DNA from aquatic
- environments by vortex flow filtration. Applied and Environmental Microbiology 57:2197–2204.
- 602 DOI: 10.1128/aem.57.8.2197-2204.1991.
- Popovskaya G. 2000. Ecological monitoring of phytoplankton in Lake Baikal. Aquatic
- 604 Ecosystem Health and Management 3:215–225. DOI: 10.1016/S1463-4988(00)00021-X.
- Potapov S, Belykh O, Krasnopeev A, Galachyants A, Podlesnaya G, Khanaev I, Tikhonova I.
- 2020. Diversity and biogeography of bacteriophages in biofilms of Lake Baikal based on g23
- sequences. Journal of Great Lakes Research 46. DOI: 10.1016/j.jglr.2019.06.007.
- Potapov S, Belykh O, Krasnopeev A, Gladkikh A, Kabilov M, Tupikin A, Butina T. 2018.
- Assessing the diversity of the g23 gene of T4-like bacteriophages from Lake Baikal with high-
- 610 throughput sequencing. FEMS microbiology letters 365. DOI: 10.1093/femsle/fnx264.
- Pradeep Ram A, Nishimura Y, Tomaru Y, Nagasaki K, Nagata T. 2010. Seasonal variation in
- of viral-induced mortality of bacterioplankton in the water column of a large mesotrophic lake
- 613 (Lake Biwa, Japan). Aquatic Microbial Ecology 58:249–259. DOI: 10.3354/ame01381.
- Rahimi-Midani A, Lee YS, Kang S-W, Kim M-K, Choi T-J. 1970. First isolation and molecular
- 615 characterization of bacteriophages infecting acidovorax citrulli, the causal agent of bacterial fruit
- 616 blotch. The Plant Pathology Journal 34:59–64. DOI: 10.5423/PPJ.NT.08.2017.0190.
- Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE,
- 618 Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets.
- Molecular Biology and Evolution 34:3299–3302. DOI: 10.1093/molbev/msx248.
- Sandaa R-A, Kristiansen H. 2016. T4-type bacteriophages from different marine environments.
- 621 Available at
- 622 https://www.ncbi.nlm.nih.gov/popset?LinkName=protein_popset&from_uid=157273680
- 623 Sime-Ngando T, Bettarel Y, Colombet J, Palesse S, Ram ASP, Charpin M, Amblard C. 2016.
- 624 Lake Pavin: a pioneer site for ecological studies of freshwater viruses. In: Lake Pavin. Cham:
- 625 Springer International Publishing, 229–244. DOI: 10.1007/978-3-319-39961-4 14.
- 626 Straškrábová V, Izmesť yeva LRR, Maksimova EAA, Fietz S, Nedoma J, Borovec J, Kobanova
- 627 GII, Shchetinina EV V., Pislegina EV V., Stra??kr??bov?? V, Izmest'yeva LRR, Maksimova
- 628 EAA, Fietz S, Nedoma J, Borovec J, Kobanova GII, Shchetinina EV V., Pislegina EV V. 2005.

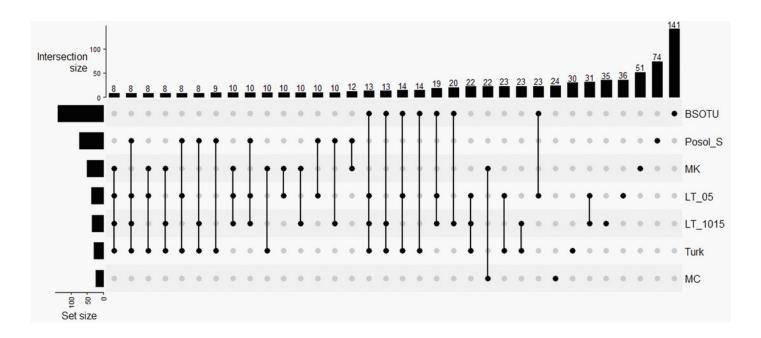


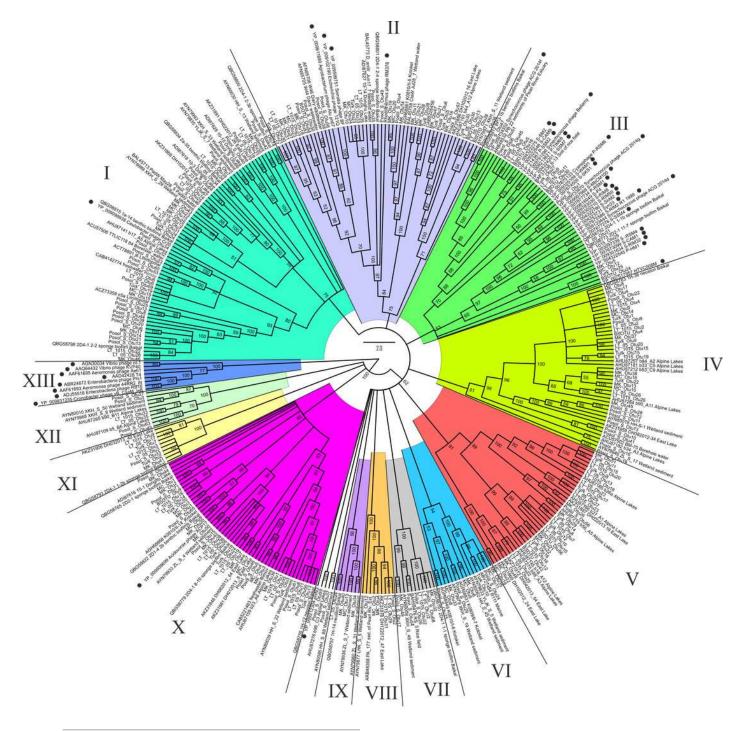
- Primary production and microbial activity in the euphotic zone of Lake Baikal (Southern Basin)
- 630 during late winter. Global and Planetary Change 46:57–73. DOI:
- 631 10.1016/j.gloplacha.2004.11.006.
- 632 Sullivan MB, Waterbury JB, Chisholm SW. 2003. Cyanophages infecting the oceanic
- 633 cyanobacterium Prochlorococcus. Nature 424:1047–1051. DOI: 10.1038/nature01929.
- 634 Suttle CA. 2007. Marine viruses major players in the global ecosystem. 5:801–812. DOI:
- 635 10.1038/nrmicro1750.
- Taboada B, Isa P, Gutiérrez-Escolano AL, del Ángel RM, Ludert JE, Vázquez N, Tapia-Palacios
- 637 MA, Chávez P, Garrido E, Espinosa AC, Eguiarte LE, López S, Souza V, Arias CF. 2018. The
- 638 Geographic Structure of Viruses in the Cuatro Ciénegas Basin, a Unique Oasis in Northern
- 639 Mexico, Reveals a Highly Diverse Population on a Small Geographic Scale. Applied and
- 640 Environmental Microbiology 84. DOI: 10.1128/AEM.00465-18.
- Tetart F, Desplats C, Kutateladze M, Monod C, Desplats C, Kutateladze M, Monod C,
- Ackermann H-WW, Krisch HM. 2001. Phylogeny of the major head and tail genes of the wide-
- ranging T4-type bacteriophages. Journal of bacteriology 183:358–366. DOI:
- 644 10.1128/JB.183.1.358-366.2001.
- Vollenweider RA, Kerekes J. 1982. Eutrophication of waters. Monitoring assessment and
- 646 control. Paris.
- Wang MN, Ge XY, Wu YQ, Yang X Lou, Tan B, Zhang YJ, Shi ZL. 2015. Genetic diversity and
- temporal dynamics of phytoplankton viruses in East Lake, China. Virologica Sinica 30:290–300.
- 649 DOI: 10.1007/s12250-015-3603-6.
- Watanabe Y, Drucker VV. 1999. Phytoplankton blooms in Lake Baikal, with reference to the
- lake's present state of eutrophication. In: Kawanabe H, Coulter GG, Roosevelt AC eds. Ancient
- 652 Lakes: Their Cultural and Biological Diversity. Kenobi Productions: Belgium, 217–225.
- Wetzel RG, Likens GE. 2000. Limnological Analyses. New York, NY: Springer New York.
- 654 DOI: 10.1007/978-1-4757-3250-4.
- Wu S, Zhou L, Zhou Y, Wang H, Xiao J, Yan S, Wang Y. 2020. Diverse and unique viruses
- discovered in the surface water of the East China Sea. BMC Genomics 21:441. DOI:
- 657 10.1186/s12864-020-06861-y.
- Ekman M, Zeigler Allen L, McCrow JP, Ininbergs K, Dupont CL, Badger JH, Hoffman JM, Ekman M,
- Allen AE, Bergman B, Venter JC. 2017. The Baltic Sea virome: diversity and transcriptional
- activity of DNA and RNA viruses. mSystems 2:e00125-16. DOI: 10.1128/mSystems.00125-16.
- Zheng C, Wang G, Liu J, Song C, Gao H, Liu X. 2013. Characterization of the major capsid
- genes (g23) of T4-type bacteriophages in the wetlands of Northeast China. Microbial Ecology
- 663 65:616–625. DOI: 10.1007/s00248-012-0158-z.
- 264 Zhong X, Jacquet S. 2014. Differing assemblage composition and dynamics in T4-like
- myophages of two neighbouring sub-alpine lakes. Freshwater Biology 59:1577–1595. DOI:
- 666 10.1111/fwb.12365.

Map of the sampling area.

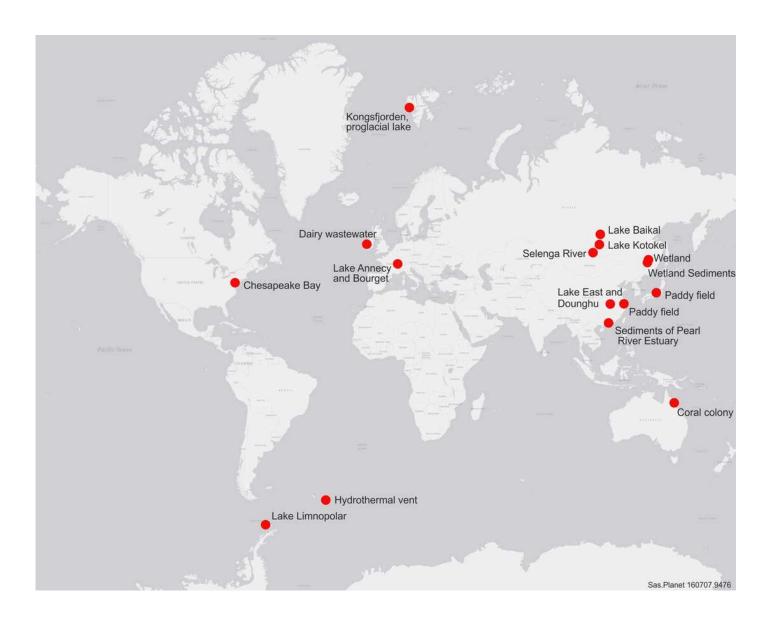


NMDS analysis based on g23 sequences and physicochemical parameters.

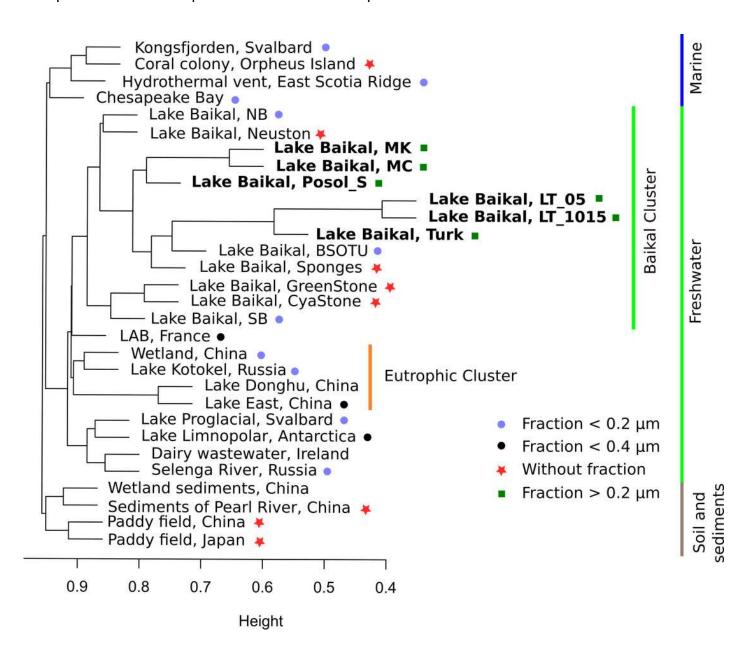

pH - potential of hydrogen, P - total phosphorus, Chl - chlorophyll a, N - total nitrogen.


UpSetR plot created by representative nucleotide sequences of OTUs.

The dots indicate the total OTU count in a sample; the dots connected by lines – shared OTUs. Intersection size \geq 8. Mode = "intersect".


Bayesian phylogenetic tree based on alignment of 388 gp23 major capsid protein sequences.

Dots mark cultivated bacteriophages.



Map showing the samples included in the analysis for this study.

Cluster dendrogram (UPGMA).

Samples from this study are marked in bold. SB – southern basin, Lake Baikal, NB – northern basin, Lake Baikal, BSOTU – Baikal samples OTU, LAB – lakes Bourget and Annecy. Untagged samples are either unpublished or have no open access articles.

Table 1(on next page)

Physical and chemical parameters of water.

	MK	MC	Turk	Posol_S	LT_05	LT_1015
Temperature, °C	19.6	21.5	17.3	19	12	6.2
pН	8.2	8.6	8.3	8.2	8.2	8.2
P total, μg/l	12.8	13.5	10	12	7.8	8.2
N total, mg/l	0.23	0.26	1.3	2	0.11	0.13
Chl a , μ /l	4.8	4.8	1.1	25	1.8	2.1

Table 2(on next page)

Summary information about the sampling site and results of the processing stages. Sampling date: August 2019

Sample	GC – content,	Total raw reads	After trimming (reads)	Singletons / doubletons	Chimeras	Number of OTUs after removal of chimeras, singletons and doubletons, 97% identity
MK	47	41802	37745	13579/989	1	51
MC	46	16462	15446	5777/443	1	24
Turk	47	12454	11394	5062/333	1	30
Posol_S	45	19940	18044	8146/470	0	74
LT_05	46	15368	13818	5090/370	0	36
LT_1015	47	13180	11902	4552/317	0	35

Table 3(on next page)

The closest relatives with the lowest e-value for each sample (database RefSeq, amino acid level).

Sample	Sequences belonging to cyanophages, %	Sequence	The closest relative	Query cover, %	Identity, %	E-value
MK	60.8	Otu13	Synechococcus phage S- SSM7	99.3	64.4	5.56E-60
MC	58.3	Otu10	Synechococcus phage S- SSM7	99.3	64.4	5.56E-60
Turk	63.3	Otu6	Synechococcus phage S- SM2	99.4	72	1.67E-73
Posol_S	73	Otu51	Synechococcus phage Bellamy	99.4	72.6	1.93E-75
LT_05	66.7	Otu31	Synechococcus phage S- CAM1	99.4	77.9	5.85E-78
LT_1015	65.7	Otu29	Synechococcus phage S- CAM1	99.4	77.9	3.06E-78

Table 4(on next page)

The number of sequences in this study similar to the sequences from other sources, % (database GenBank, amino acid level).

Isolation source	MK	MC	Turk	Posol_S	LT_05	LT_1015	Reference
Biofilms, Lake Baikal (Russia)	19.6	20.8	20	27	27.8	28.6	(Potapov et al., 2020)
Pelagic water, Lake Baikal (Russia)	9.8	12.5	30	6.8	25	22.9	(Potapov et al., 2018)
Lakes Bourget and Annecy (France)	17.6	16.7	23.3	10.8	22.2	25.7	(Zhong & Jacquet, 2014)
Lake Donghu (China)	3.9	4.7	3.3	2.7	8.3	5.7	(Huang, Cheng & Xu, 2011)
Lake East (China)	9.8	8.3	6.7	8.1	5.6	5.7	(Wang et al., 2015)
Wetland sediment (China)	25.5	20.8	3.3	18.9	2.8	2.9	(Li et al., 2018)
Borehole water (South Africa)	2	4.2	3.3	4.1	2.8	2.9	(Mabizela & Litthauer, 2016)
Dairy wastewater (Ireland)	-	-	3.3	2.7	2.8	2.9	(Knapik & Prentice, 2012)
Paddy water (China)	-	-	-	1.4	2.8	2.9	(Zheng et al., 2013)
Rimov reservoir (Czech Republic)	2	-	3.3	4.1	-	-	(Kavagutti et al., 2019)
Marine environment	-	-	3.3	-	-	-	(Sandaa & Kristiansen, 2016)
Wetland water (China)	5.9	4.2	-	1.4	1	-	(Zheng et al., 2013)
Sediments of Pearl River Estuary (China)	2	4.2	-	1.4	1	-	(He et al., 2017)
Lake Kotokel (Russia)	2	4.2	-	5.4	-	-	(Butina et al., 2013)
Lake Limnopolar (Antarctica)	-	-	-	2.7	-	-	(López- Bueno et al., 2009)
Paddy field soil (Japan)	-	-	-	1.4	-	-	(Fujihara et al., 2010)
Surface soil of rice field (Japan)	-	-	-	1.4	-	-	(Jia et al., 2007)

Table 5(on next page)

Nucleotide diversity of the g23 gene fragment.

Sample	Nucleotide diversity, π	References
MK	0.36	This study
MC	0.35	-//-
Turk	0.35	-//-
Posol_S	0.31	-//-
LT_05	0.33	-//-
LT_1015	0.34	-//-
Kongsfjorden (Svalbard)	0.33	(Bellas & Anesio, 2013)
Coral colony (Orpheus Island)	0.23	(Buerger et al., 2018)
Hydrothermal vent (East Scotia Ridge)	0.30	(Millard, Pearce &
		Zwirglmaier, 2016)
Chesapeake Bay	0.29	(Jamindar et al., 2012)
Lake Baikal, pelagic water (South basin)	0.28	(Potapov et al., 2018)
Lake Baikal (South basin)	0.33	(Butina et al., 2010)
Lake Baikal (North basin)	0.30	-//-
Lake Baikal, Neuston	0.27	(Potapov et al., 2020)
Lake Baikal, Sponges	0.36	-//-
Lake Baikal, CyanoStone	0.32	-//-
Lake Baikal, GreenStone	0.31	-//-
Lake Limnopolar (Antarctica)	0.37	(López-Bueno et al.,
		2009)
Lake Proglacial (Svalbard)	0.34	(Bellas & Anesio, 2013)
Lake Kotokel (Russia)	0.34	(Butina et al., 2013)
Lake East (China)	0.29	(Wang et al., 2015)
Lake Donghu (China)	0.31	(Huang, Cheng & Xu,
		2011)
Lake Annecy and Bourget (France)	0.28	(Zhong & Jacquet, 2014)
Dairy water (Ireland)	0.37	(Knapik & Prentice,
		2012)
Wetland, water (China)	0.32	(Zheng et al., 2013)
Sediments of Pearl River Estuary (China)	0.28	(He et al., 2017)
Wetland sediments (China)	0.29	(Li et al., 2018)
Paddy field (Japan)	0.33	(Cahyani et al., 2009)
Paddy field (China)	0.35	(Li et al., 2019)