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We assessed the genetic diversity of T4-like bacteriophages in the fraction greater than
0.2 μm from the pelagic zone, coastal zone and shallow bays of Lake Baikal by the gene
fragment of the major capsid protein, gp23. High throughput sequencing allowed us to
obtain from 12454 to 41802 sequences of the g23 gene in the fraction associated with
bacteria. The results revealed that the sequences found in this study together with the
sequences that we had previously retrieved from the plankton samples (fraction less than
0.2 μm) and biofilms (without separation onto fractions) formed the Baikal cluster. The
sequences from shallow bays largely differed from those in the pelagic and coastal
samples and formed individual subcluster in the UPGMA tree. According to the RefSeq
database, most OTUs had the cultivated closest relatives belonging to cyanophages.
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18 Abstract

19 We assessed the genetic diversity of T4-like bacteriophages in the fraction greater than 0.2 μm 
20 from the pelagic zone, coastal zone and shallow bays of Lake Baikal by the gene fragment of the 
21 major capsid protein, gp23. High throughput sequencing allowed us to obtain from 12454 to 
22 41802 sequences of the g23 gene in the fraction associated with bacteria. The results revealed 
23 that the sequences found in this study together with the sequences that we had previously 
24 retrieved from the plankton samples (fraction less than 0.2 μm) and biofilms (without separation 
25 onto fractions) formed the Baikal cluster. The sequences from shallow bays largely differed from 
26 those in the pelagic and coastal samples and formed individual subcluster in the UPGMA tree. 
27 According to the RefSeq database, most OTUs had the cultivated closest relatives belonging to 
28 cyanophages.
29

30 Introduction

31 Viruses are obligate intracellular parasites consisting of a single-stranded or double-stranded 
32 RNA or DNA molecule enclosed within a protein capsid; enveloped viruses have an additional 
33 membrane envelope (supercapsid). Viruses are distinguished by a huge number and high genetic 
34 diversity (Suttle, 2007), thereby representing an inexhaustible pool for research. To date, 
35 according to ICTV Master Species List (ICTV, 2019), 3973 species belong to DNA viruses and 
36 2617 – to RNA viruses, but most of the sequences obtained to date from viromes are known to 
37 be “viral dark matter“ (Krishnamurthy & Wang, 2017), and there are much more real biological 
38 species of viruses (Gregory et al., 2019). 
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39 The bulk of the sequences obtained by metagenomic sequencing of DNA-containing viruses in 
40 aquatic ecosystems, which can be identified from databases, belongs to the order Caudovirales 
41 (Cai et al., 2016; Garin-fernandez et al., 2018; Gong et al., 2018; Taboada et al., 2018; Gregory 
42 et al., 2019; Wu et al., 2020). Due to the rapid transformation of viral taxonomy, the order 
43 Caudovirales expanded to 14 families. Among them, the family Myoviridae is the best known 
44 and most studied. It includes 8 subfamilies and 153 genera 
45 (https://talk.ictvonline.org/taxonomy/).
46 The family Myoviridae contains DNA phages that are genetically and morphologically similar to 
47 the well-studied coliphage T4 (Ackermann & Krisch, 1997). At the same time, myoviruses have 
48 a relatively wide range of hosts (Sullivan, Waterbury & Chisholm, 2003). 
49 Due to the lack of universal genes in viruses, signature genes are studied using primers targeting 
50 a specific group. The g23 gene fragment encoding major capsid protein is the most reliable 
51 marker for the analysis of the biodiversity of T4-like phages of the family Myoviridae (Tetart et 
52 al., 2001; Adriaenssens & Cowan, 2014). Based on the analysis of gp23 sequences, T4-like 
53 phages are divided into several groups: “true” T-evens represented by bacteriophage T4 and 
54 closely related phages infecting enterobacteria (e.g. T2, T6), PseudoT-evens and SchizoT-evens 
55 (phages of the genera Aeromonas, Vibrio, etc.) as well as more distant ExoT-evens (cyano- and 
56 pelagiphages, etc.) (Desplats & Krisch, 2003). Moreover, T4-like viruses are divided into three 
57 subgroups: Far T4 (including Rhodothermus phage RM378 (Hjorleifsdottir et al., 2014)), Near 
58 T4 (including T-evens, PseudoT-evens and SchizoT-evens) and Cyano T4 (including ExoT-
59 evens) (Comeau & Krisch, 2008). 
60 It is widely acknowledged that viruses play a global role in the Earth’s biosphere, influencing 
61 many ecological processes and biogeochemical cycles (Suttle, 2007). In the aquatic environment, 
62 viruses are an important factor in the regulation of the number and structure of microbial 
63 communities (Kutter & Sulakvelidze, 2005). In freshwater ecosystems such as Lake Biwa 
64 (Japan), the percentage of daily bacterial production destroyed by viruses was estimated as high 
65 and accounted for 52.7 ± 16.2% in the upper layer and 13.6 ± 5.2% in the deeper layer (Pradeep 
66 Ram et al., 2010). In Lake Pavin (France), the average seasonal contribution from bacteriophages 
67 to bacterial lysis reached 16.2% (Sime-Ngando et al., 2016).
68 Currently, the diversity of T4-like phages in the viral fraction (less than 0.4 and 0.2 μm) is 
69 mainly studied (López-Bueno et al., 2009; Butina et al., 2010; Jamindar et al., 2012; Parvathi, 
70 Zhong & Jacquet, 2012; Bellas & Anesio, 2013; Goldsmith et al., 2015; Wang et al., 2015; 
71 Millard, Pearce & Zwirglmaier, 2016; Liu, Cai & Zhang, 2017; Potapov et al., 2018). Organisms 
72 larger than 0.2 or 0.4 μm (bacterial fraction) are removed using various methods because it is 
73 methodologically more preferable to work with a viral fraction that does not contain bacterial 
74 cells. Information about the composition and role of viruses associated with microbial 
75 communities is scarce and covered mainly in metagenomic studies (De Cárcer et al., 2016; 
76 Zeigler Allen et al., 2017; Aylward et al., 2017; Palermo et al., 2019; Okazaki et al., 2019; 
77 Coutinho et al., 2020).
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78 Previously, it was shown that the filtration of samples through filters with a pore size of 0.2 μm 
79 reduces the number of phages in the filtrate by an average of two-thirds (transmission electron 
80 microscopy counting method) (Paul, Jiang & Rose, 1991). In a later study, the proportion of 
81 viruses retained on a 0.2 μm filter did not exceed 15% of the overall number of virus-like 
82 particles (epifluorescence microscopy counting method) (Auguet, Montanié & Lebaron, 2006).
83 For lytic phages including myoviruses, three states of life cycle were described: i) free during 
84 extracellular search; ii) located in a certain space with no host, which is, for example, associated 
85 with an inert particle; iii) actively infects bacteria (Kutter & Sulakvelidze, 2005). T4-like viruses 
86 having strong lytic properties likely experience rapid exchange of intracellular and free phages. 
87 For instance, phages T4 and λ have latent periods of 20 min and 50 min, respectively (De Paepe 
88 & Taddei, 2006). Owing to the rapid change in the phage state from free to associated and vice 
89 versa, determination of solely viral fraction (less than 0.2 μm) can distort the results of genetic 
90 analysis of diversity. Furthermore, the study of a bacterial fraction can reveal the relationship 
91 between bacteria and bacteriophages infecting them, this will give an understanding about the 
92 phages that are in the propagation stage.
93 This study aims to check the difference of the phage sequences i) from samples with a viral 
94 fraction, ii) without separation into fractions and iii) from phages with a bacterial fraction. 
95 Moreover, based on all obtained g23 sequences and using cluster analysis, we try to understand 
96 the influence of the geographical distance on the diversity of bacteriophages in Lake Baikal and 
97 compare them with other ecosystems.

98

99 Materials & Methods

100

101 Sampling sites.

102 Samples were collected at five sites of Lake Baikal in August 2019. The sampling sites were as 
103 follows: Mukhor Bay near the Kuchelga River (MK), a centre of Mukhor Bay (MC), a coastal 
104 zone near the Turka (Turk) settlement (328 m off the coast), and Posolsk Sor Bay (Posol_S); the 
105 sampling depth at these stations was 0 m. At the central station of the Listvyanka settlement – the 
106 Tankhoy settlement section, sampling was carried out in the layer from 0 to 5 m (LT_05) and 
107 from 10 to 15 m (LT_1015) (the sample was taken with a Niskin bathometer). Figure 1 shows 
108 the sampling map. Coordinates are shown in Supplementary Table 1.   
109

110 Figure 1. Map of the sampling area.

111

112 Water Chemistry Analysis

113 For determinations of chlorophyll a concentration, 1 L of water was filtered through a 0.4 μm 
114 polycarbonate filter (Sartorius, Germany). Algal pigments were extracted with acetone (90%) 
115 overnight in the dark at 4 °C (after ultrasonic treatment). The supernatant was centrifuged and 
116 chlorophyll a was measured with a Cintra-2020 spectrophotometer (GBC, Scientific Equipment, 
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117 Australia) at 664, 647 and 630 nm and calculated based on equations provided by Parsons et al. 
118 (Parsons, Maita & Lalli, 1984).
119 Total phosphorus content was determined using a photoelectric colorimeter KFK-2, (ZOMZ, 
120 Zagorskii optiko-mekhanicheskii zavod [Zagorskii optical mechanics factory], Russia) after 
121 persulfate oxidation. Total nitrogen content was determined by persulfate oxidation in an 
122 alkaline medium using a spectrophotometer PE-5300VI (Ekroskhim (previously ”Ekohim”), 
123 Russia) (Wetzel & Likens, 2000). 
124

125 DNA extraction and preparation of amplicons 

126 Water samples (1 liter) from each site (MK, MC, Turk, Posol_S, LT_05, LT_1015) were filtered 
127 through sterile polycarbonate filters with a pore size of 0.2 μm (Sartorius, Germany) without 
128 using prefilters, and they were frozen onboard the research vessel during the expeditions. DNA 
129 was extracted by the standard phenol-chloroform method in the laboratory. Primers MZIA1bis 
130 and MZIA6 were used (Filée et al., 2005). The PCR mixture consisted of the following 
131 components: Master mix 2x Taq M (Alkor Bio, Russia), 0.1 µM primers, nuclease-free water, 
132 and DNA template. PCRs were performed with the following PCR cycle parameters: 
133 denaturation at 95°C for 15 min, 30 cycles of denaturation at 95°C for 30 s, annealing at 50°C 
134 for 30 s, extension at 72°C for 1 min, and a final extension at 72°C for 10 min. DNA was 
135 purified from the PCR mixture using a suspension of magnetic particles CleanMag DNA 
136 (Evrogen, Russia). Library preparation and sequencing on Illumina MiSeq 2*300 were 
137 performed in the “Genomics Core Facility” (ICBFM SB RAS, Novosibirsk, Russia). 
138

139 Bioinformatic analysis 

140 Sequence quality analysis was carried out using FastQС software tool (Andrews, 2010). 
141 Trimming was performed using the Trimmomatic v. 0.36 tool (Bolger, Lohse & Usadel, 2014) 
142 using the following parameters: SLIDINGWINDOW:4:20 LEADING:3 TRAILING:3 
143 MINLEN:50. Further processing was performed using the Usearch v. 11.0.667 tool (Edgar, 
144 2010). Paired-end reads were combined using the -fastq_mergepairs command. The primers 
145 were not removed because, in contrast to bacterial sequences, viral sequences are degenerate and 
146 thus carry information about diversity. Then unique sequences (-derep_fulllength) were sorted 
147 out. The next step was clustering at the 97% identity level, UPARSE-OTU algorithm (-
148 cluster_otus), as well as the removal of chimeras, singletons and doubletons. The chosen level 
149 was previously substantiated (Potapov et al., 2018). Nucleotide sequences were converted into 
150 amino acid ones using the BioEdit v. 7.0.9.0 program (Hall, 1999). The annotation was 
151 performed using the BLASTP analysis (default expect threshold) based on the RefSeq and 
152 GenBank (NR) databases.
153 Amino acids were aligned in the Mega 7 software (Kumar, Stecher & Tamura, 2016) using the 
154 Muscle algorithm. A phylogenetic tree was constructed through Bayesian analysis using the 
155 MrBayes software (v. 3.2.6). Two independent Markov chain Monte Carlo (MCMC) analyses 
156 were launched for 15 million generations with 25% burn-in (rejection of initial generations) and 
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157 four chains (one cold and three hot ones). All calculations were performed on HPC-cluster 
158 “Akademik V.M. Matrosov” (“Irkutsk Supercomputer Center of SB RAS, http://hpc.icc.ru”).
159 Based on the amino acid sequences, the distance matrix was obtained through the unweighted 
160 UniFrac metric (multiple sequence alignment – Muscle, model - Blosum62, normalized=TRUE), 
161 followed by a hierarchical cluster analysis (hclust) (Murtagh, 1992) method “average” 
162 (=UPGMA), using phyloseq (v. 1.21.0) and phangorn (v. 2.2.0) packages, implemented in the R 
163 software (v. 3.2.4). 
164 Non-metric multidimensional scaling (NMDS) was based on abundance of g23 amino acid 
165 sequences and physicochemical parameters. We used an unweighted (qualitative) UniFrac 
166 method with the phyloseq (v. 1.21.0), phangorn (v. 2.2.0) and vegan (v. 2.4-3) packages 
167 implemented in the R software (v. 3.2.4).
168 Nucleotide diversity values were calculated using DNASP v. 6.12 (Rozas et al., 2017). The 
169 sequences were aligned by MUSCLE v. 3.8.1551 with default settings (Edgar, 2004).
170 The intersection graph was constructed using the UpSetR (v. 1.4.0) package (Lex et al., 2014) 
171 implemented in the R software, combination matrix – intersect. The OTU table generated in 
172 QIIME v. 1.9.1 (Caporaso et al., 2010) (make_otu_table.py) based on the OTU sequences 
173 obtained from Usearch served as the input file.   
174

175

176 Results

177 Environment parameters

178 Table 1 shows the results of physicochemical analysis. According to the indicators given 
179 in the table, the productivity of shallow bays corresponds to the mesotrophic status, and the 
180 productivity of the waters of the pelagic stations corresponds to the oligotrophic status according 
181 to R. A. Vollenweider (Vollenweider & Kerekes, 1982). 
182

183 Table 1:

184 Physical and chemical parameters of water.

185

186 An NMDS plot with samples from this study and physicochemical parameters are shown 
187 in Figure 2. Chlorophyll a and total nitrogen are positively associated with the sample from 
188 Posolsk Sor Bay (Posol_S); the water temperature, pH and total phosphorus – with the samples 
189 from Mukhor Bay (MC, MK). All parameters have a significance level of less than 0.011. The 
190 highest concentration of the total phosphorus, total nitrogen and chlorophyll a has been recorded 
191 in shallow bays, which is not surprising for Lake Baikal because the maximum rate of formation 
192 of organic matter occurs here due to a large number of primary producers (cyanobacteria) 
193 (Watanabe & Drucker, 1999; Belykh & Sorokovikova, 2003). Temperature, in turn, is an 
194 important factor, influencing the growth rate of bacteria and having a significant positive effect 
195 on bacterial production (Straškrábová et al., 2005). An increase in temperature stimulates the 
196 development of phytoplankton, enhances its photosynthetic activity, and the water body is 
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197 enriched with dissolved organic matter. The pH level is slightly shifted to the alkaline side, 
198 which is typical for the waters of Lake Baikal. As shown previously, a key factor in determining 
199 the infectivity of a virus is the pH value. For example, a low pH (<4) significantly reduces phage 
200 survival (Jurczak-Kurek et al., 2016). 
201

202 Figure 2. NMDS analysis based on g23 sequences and physicochemical parameters. pH - 

203 potential of hydrogen, P – total phosphorus, Chl – chlorophyll a, N – total nitrogen.

204

205 Analysis of g23 sequences  

206 Overall, we obtained 250 representative viral sequences (OTU) of the g23 gene fragment 
207 based on the 97% clustering. The lengths of the sequences at the nucleotide level, taking into 
208 account the primers, ranged from 355 to 547 nucleotides (average length 439 nuc.). The main 
209 data obtained from processing during the preparation of sequences are shown in Table 2.
210

211 Table 2:

212 Summary information about the sampling site and results of the processing stages. 

213 Sampling date: August 2019

214

215 Among the cultivated bacteriophages, the highest identity is at amino acid level (from 
216 64.4 to 77.9%), and the minimum e-value was with cyanophages: Synechococcus phage S-
217 SSM7, Synechococcus phage S-SM2, Synechococcus phage Bellamy, and Synechococcus phage 
218 S-CAM1 (Table 3). The bulk of the sequences was annotated as belonging to cyanophages. This 
219 fact likely indicates the active infection of their hosts with this group of viruses in the study 
220 period and reflects the associated interaction of phages with cyanobacteria. In summer, 
221 especially in early August, there is a seasonal peak of cyanobacterial bloom in Lake Baikal 
222 (Belykh & Sorokovikova, 2003). Pelagibacter phage HTVC008M was the second closest 
223 relative in terms of the frequency of occurrence: MK – 13.7%, MC – 29.2%, Turk – 20%, 
224 Posol_S – 10.8%, LT_05 – 16.7%, and LT_1015 – 14.3%. Moreover, Serratia phage BF 
225 (YP_009599751), Agrobacterium phage Atu_ph07 (YP_009611880), Caulobacter phage Cr30 
226 (YP_009098938), Sinorhizobium phage phiN3 (YP_009212304), Acidovorax phage ACP17 
227 (YP_009609699), and Cronobacter phage vB_CsaM_leB (YP_009831235) are among the 
228 closest relatives.
229

230 Table 3:

231 The closest relatives with the lowest e-value for each sample (database RefSeq, amino acid 

232 level).

233

234 The protein sequences had uncultivated relatives from various ecosystems (Table 4), and 
235 most relatives from the GenBank database were similar to the Baikal sequences that had been 
236 previously obtained from biofilms (from 19.6 to 28.6%) and pelagic zone (from 6.8 to 30%) of 
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237 Lake Baikal. The largest number of the closest relatives for samples LT_05, LT_1015 and Turk 
238 was from lakes Bourget and Annecy (from 10.8 to 25.7%). An interesting result is the identity of 
239 a large number of sequences from small eutrophic bays (MK, MC and Posol_S) with sequences 
240 from wetland sediment (from 18.9 to 25.5%) (Li et al., 2018), whereas pelagic representatives 
241 from samples Turk, LT_05 and LT_1015 had only from 2.8 to 3.3% of similar sequences. 
242

243 Table 4:

244 The number of sequences in this study similar to the sequences from other sources, % 

245 (database GenBank, amino acid level).

246

247 To assess alpha diversity, we conducted a comparative analysis of sequences based on 
248 nucleotides (nucleotide diversity, π) (Table 5). In addition to the sequences from this study, the 
249 sequences were taken from various sources available in the NCBI database. Based on 
250 microdiversity data, among the sequences obtained in this study, Posol_S is the least diverse g23 
251 community in Lake Baikal, and MK is the most diverse one. In contrast, the sequences from the 
252 polar Lake Limnopolar and dairy water (Ireland) were distinguished by a larger nucleotide 
253 diversity. In general, noteworthy is the high nucleotide diversity of the Baikal sequences.
254

255 Table 5:

256 Nucleotide diversity of the g23 gene fragment.

257

258 Figure 3 shows a graph of OTU intersections between samples. Samples LT_05 and 
259 LT_1015 have the largest number of intersections (31), which is natural because they were taken 
260 from different layers at the same station. The larger number of intersections with the LT_05 (23), 
261 LT_1015 (20) and Turk (14) sequences is typical of the BSOTU (Baikal Sample OTU, pelagic 
262 water) sequences (Potapov et al., 2018). Samples MK and MC have 22 intersections. It was 
263 expectable, as these samples were taken from the same bay (the Maloye More Strait). Posol_S 
264 and МК have 12 shared OTUs. Therefore, the sequences from the pelagic zone have a common 
265 pool of similar sequences, and those from bays are more similar to each other. The greater 
266 identity of LT_05 and LT_1015 with sample Turk (near the Turka settlement) is likely because, 
267 on the day of the expedition, the water of the littoral sample Turk collected 328 m from the coast 
268 was mixed with pelagic waters during a storm caused by north-westerly wind.  
269

270 Figure 3. UpSetR plot created by representative nucleotide sequences of OTUs. The dots 

271 indicate the total OTU count in a sample; the dots connected by lines – shared OTUs. 

272 Intersection size ≥ 8. Mode = "intersect".

273

274

275 Phylogenetic analysis 
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276 Phylogenetic analysis of the amino acid g23 sequences with the cultivated representative 
277 T4-like viruses of the family Myoviridae and with the sequences from various natural sources 
278 revealed that the sequences from this study are mixed in the tree and do not form separate clades 
279 consistent with fraction or ecotope (Fig. 4). We conditionally divided them into 13 clusters 
280 (marked with Roman numerals). The cluster was considered formed if there were more than 
281 three sequences. The bulk of the clusters contained g23 sequences of phages from natural 
282 sources, whose hosts are still unknown because there are no cultivated representatives and hence 
283 the confirmation of phylogenetic affiliation.
284 Cluster I included 51 OTUs from all samples in our study. This cluster had the only 
285 cultivated bacteriophage, Caulobacter phage Cr30, obtained from the culture of Gram-negative 
286 oligotrophic bacteria, Caulobacter crescentus, widespread in freshwater lakes.
287 Cluster II (37 OTUs) contained four cultivated representatives: the thermophilic bacterium phage 
288 RM378 assigned to the group Far T4; Serratia phage BF obtained from the strain of the Serratia 

289 marcescens UCC2017 opportunistic bacteria; Escherichia phage 121Q, the laboratory host of 
290 which is Escherichia coli MuLB70.1; Agrobacterium phage Atu ph07 isolated from the 
291 Agrobacterium tumefaciens bacteria opportunistic for humans (Adnan et al., 2013). This cluster 
292 probably contained phages of opportunistic bacteria. Cluster III was represented by the group 
293 Exo T-evens with isolates of picocyanobacterial and SAR11 phages. Clusters IV-IX, XI, and XII 
294 did not contain any cultivated phages and represented a mixture of sequences from various 
295 ecosystems. For example, Cluster VI contained a single sequence from the marine ecosystem. 
296 Interestingly, the previous Baikal g23 sequences were closely related to marine T4 cyanophages 
297 (Butina et al., 2010), which is probably due to the filling of the databases with the studies on 
298 freshwater ecosystems. Cluster X (38 OTUs) consisted of one cultivated representative, 
299 Acidovorax phage ACP17 (Rahimi-Midani et al., 1970), infecting the Acidovorax citrulli 
300 bacteria. Cluster XIII comprised phages of pathogenic and opportunistic bacteria belonging to 
301 the group Near T4. 
302 Two OTUs (Posol_S_OTU59 and Posol_S_OTU37) were not included in any cluster as well as 
303 Sinorhizobium phage phiN3 represented by a separate branch.
304  
305 Figure 4. Bayesian phylogenetic tree based on alignment of 388 gp23 major capsid protein 

306 sequences. Dots mark cultivated bacteriophages.

307

308 Biogeography of gp23 sequences 

309 For comparative biogeographical analysis, we selected sequences available in the 
310 GenBank database: Kongsfjorden, proglacial lake (Svalbard, Norway) (Bellas & Anesio, 2013), 
311 coral colony (Orpheus Island, Australia) (Buerger et al., 2018), hydrothermal vent (East Scotia 
312 Ridge) (Millard, Pearce & Zwirglmaier, 2016), Chesapeake Bay (USA) (Jamindar et al., 2012), 
313 Lake Baikal (Russia) (Butina et al., 2010; Potapov et al., 2018, 2020), Lake Annecy and Bourget 
314 (France) (Zhong & Jacquet, 2014), wetland (China) (Zheng et al., 2013), Lake Kotokel (Russia) 
315 (Butina et al., 2013), Lake Donghu (China) (Huang, Cheng & Xu, 2011), Lake East (China) 
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316 (Wang et al., 2015), Lake Limnopolar (Antarctica, Livingston Island) (López-Bueno et al., 
317 2009), dairy wastewater (Ireland) (Knapik & Prentice, 2012), the Selenga River (Russia) (Butina 
318 et al., 2015), wetland sediments (China) (Li et al., 2018), sediments of the Pearl River estuary 
319 (China) (He et al., 2017), paddy field (China) (Li et al., 2019), and paddy field (Japan) (Cahyani 
320 et al., 2009) (Fig. 5).
321

322 Figure 5. Map showing the samples included in the analysis for this study.  

323

324 The g23 sequences in this study and those represented in the GenBank database formed 
325 three groups on the dendrogram: marine, freshwater, soil, and sediments (Fig. 6).
326 LT_05 and LT_1015, sequences from the samples collected at the central station of the 
327 Listvyanka settlement – the Tankhoy settlement section, layer from 0 to 5 m and from 10 to 15 
328 m, are located closer to the site with the sequences from sample Turk as mentioned above, which 
329 is due to the mixing with pelagic waters. LT_05, LT_1015 and Turk form a common cluster 
330 together with the sequences previously obtained from the pelagic zone of Lake Baikal (BSOTU) 
331 (Potapov et al., 2018) and the sequences from sponge biofilms (Potapov et al., 2020). Three 
332 samples from shallow Baikal bays (MK, MC and Posol_S) group together, confirming clustering 
333 by the similar trophic conditions within the Baikal group.
334

335 Figure 6. Cluster dendrogram (UPGMA). Samples from this study are marked in bold. SB 

336 – southern basin, Lake Baikal, NB – northern basin, Lake Baikal, BSOTU – Baikal 

337 samples OTU, LAB – lakes Bourget and Annecy. Untagged samples are either unpublished 

338 or have no open access articles.

339

340 The sequences from biofilms of stones, which we named GreenStone and CyaStone 
341 (Potapov et al., 2020), form a joint cluster with planktonic g23 sequences from the pelagic zone 
342 of the southern basin of Lake Baikal. Samples from Lake Kotokel, Lake East, Lake Donghu, and 
343 the wetland of China form a cluster that we designated as eutrophic.
344 The greatest identity of the Baikal g23 is observed with the sample from subalpine lakes Bourget 
345 (oligo-mesotrophic) and Annecy (oligotrophic) (Zhong & Jacquet, 2014), which we also 
346 previously indicated in our study (Potapov et al., 2018).
347 The sequences from the Arctic proglacial lakes and Lake Limnopolar are closer to the sequences 
348 from the Selenga River and dairy water (Ireland).
349 Despite the difference in the sequencing method and fraction greater than 0.2 μm, the sequences 
350 in this study are located in the Baikal cluster with the sequences obtained from the fraction less 
351 than 0.2 μm and without separation into fractions.  

352 Discussion

353 Here, we studied the g23 communities of bacteriophages associated with bacteria in a 
354 fraction greater than 0.2 μm from shallow bays, coastal zone and pelagic zone of Lake Baikal. 
355 The sampling sites were chosen not only to carry out a comparative analysis in terms of 
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356 geographical distance but also to reveal the differences in the pools of g23 sequences selected in 
357 different zones of Lake Baikal with different trophic statuses.
358 The shallow bay of Posolsk Sor Bay (maximum depth 3.5 m) is located on the southeast coast of 
359 Lake Baikal, about 20 km south of the Selenga River delta. Mukhor Bay is one of the warmest 
360 and shallowest bays located in the Maloye More Strait that is situated between the mainland and 
361 Olkhon Island. Both bays warm well in July and August and are the most visited tourist sites of 
362 Lake Baikal. In August 2019, there was a mass development of diazotrophic cyanobacteria in the 
363 waters of the bays: Gloeotrichia echinulata bloomed in Posolsk Sor Bay, and the species of the 
364 genus Dolichospermum – in Mukhor Bay.
365 Late July and early August is a period of bloom of both pico- and nanoplanktonic cyanobacteria 
366 in Lake Baikal. Picocyanobacteria are found in huge numbers in Lake Baikal, reaching an 
367 abundance of 1.5 million cells/ml (Belykh & Sorokovikova, 2003). Intensive vegetation of 
368 Dolichospermum species has been recorded for a long time from June to September in all parts 
369 of Lake Baikal, with the maximum concentration of up to 10 million cells/l in bays (Popovskaya, 
370 2000). In this regard, it is logical to assume the presence of cyanophages, natural regulators of 
371 the number of cyanobacteria. As mentioned above, many sequences belonged to cyanophages 
372 according to RefSeq, but phylogenetic analysis revealed only one cluster with cultivated 
373 cyanophages. Eight clusters did not have cultivated representatives; therefore, their taxonomic 
374 identification is unknown. They may be similar to cultivated Baikal cyanophages that have not 
375 been obtained so far.
376 In addition to cyanophages, Pelagibacter phage HTVC008M (the family Myoviridae) infecting 
377 Candidatus Pelagibacter ubique (Alphaproteobacteria, freshwater SAR11) was the closest 
378 relative of the Baikal representatives of T4-phages. Previously, high synteny with this strain of 
379 the Baikal sequences was determined (Cabello-Yeves et al., 2018).
380 Noteworthy is a great number of similar sequences in samples from shallow areas of Lake Baikal 
381 (from 18.9 to 25.5%) and wetland sediment (Li et al., 2018), which is much greater than in the 
382 samples from the pelagic zone of Lake Baikal and wetland sediments (from 2.9 to 3.3%). This 
383 possibly indicates the similar composition and conditions for the existence of bacterial 
384 communities from the Baikal bays (shallow water, high productivity and elevated temperature) 
385 and the shallow, well-warmed productive wetland sediments.
386 A large number of g23 sequences from lakes Bourget and Annecy similar to the Baikal 
387 sequences in this study is likely owing to the identity of the lakes’ hydrophysical and 
388 hydrochemical parameters (altitude above sea level, total P, total N, nitrates and pH), as we 
389 previously indicated in the analysis of g23 sequences from the pelagic zone of Lake Baikal 
390 (Potapov et al., 2018).
391 Although the cluster analysis compared sequences obtained by the Sanger method and high 
392 throughput sequencing (HTS), as well as in two different fractions, they were separated by the 
393 trophic status of the study sites of Lake Baikal and other water bodies. Therefore, according to 
394 our previous studies (Butina et al., 2013), the g23 communities form regions in the tree 
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395 depending on the productivity of the waters. Perhaps, trophic status of water determines the 
396 composition of both bacteria and phages.
397 UPGMA analysis revealed that viral diversity does not follow the latitudinal gradient, and the 
398 geographical distance does not influence the composition of bacteriophages according to the 
399 “everything is everywhere, but the environment selects” theory. At the same time, it corresponds 
400 to one of the distribution models: the limitation of distribution and environmental conditions 
401 determine the community composition. This conclusion confirms the isolated formation of viral 
402 g23 communities and, possibly, endemism of bacteriophages of the Earth’s oldest lake.
403 Analysis g23 genes indicates that separation by fractions is not of key importance, and the 
404 quantitative loss of bacteriophages during filtration does not significantly change the biodiversity 
405 of communities. At the same time, a limited dataset was used in the analysis; thereby further 
406 research is required.
407

408

409 Conclusions

410 In this study, we obtained g23 sequences of bacteriophages from the pelagic and coastal 
411 zones and bays of Lake Baikal, in a fraction greater than 0.2 μm. Our results revealed a high 
412 diversity of g23 communities of bacteriophages of the family Myoviridae in Lake Baikal. Cluster 
413 analysis confirmed the uniqueness of the Baikal sequences, as evidenced by their grouping with 
414 each other rather than with sequences from other ecosystems. Viral communities from different 
415 aquatic ecosystems rather cluster by the productivity of the water bodies than by their 
416 geographical confinement.

417

418

419

420
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Figure 1
Map of the sampling area.
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Figure 2
NMDS analysis based on g23 sequences and physicochemical parameters.

pH - potential of hydrogen, P – total phosphorus, Chl – chlorophyll a, N – total nitrogen.

PeerJ reviewing PDF | (2021:07:63663:0:1:NEW 19 Jul 2021)

Manuscript to be reviewed



Figure 3
UpSetR plot created by representative nucleotide sequences of OTUs.

The dots indicate the total OTU count in a sample; the dots connected by lines – shared
OTUs. Intersection size ≥ 8. Mode = "intersect".
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Figure 4
Bayesian phylogenetic tree based on alignment of 388 gp23 major capsid protein
sequences.

Dots mark cultivated bacteriophages.
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Figure 5
Map showing the samples included in the analysis for this study.
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Figure 6
Cluster dendrogram (UPGMA).

Samples from this study are marked in bold. SB – southern basin, Lake Baikal, NB – northern
basin, Lake Baikal, BSOTU – Baikal samples OTU, LAB – lakes Bourget and Annecy. Untagged
samples are either unpublished or have no open access articles.
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Table 1(on next page)

Physical and chemical parameters of water.
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MK MC Turk Posol_S LT_05 LT_1015

Temperature, °C 19.6 21.5 17.3 19 12 6.2

pH 8.2 8.6 8.3 8.2 8.2 8.2

Р total, μg/l 12.8 13.5 10 12 7.8 8.2

N total, mg/l 0.23 0.26 1.3 2 0.11 0.13

Chl a, μ/l 4.8 4.8 1.1 25 1.8 2.1

2
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Table 2(on next page)

Summary information about the sampling site and results of the processing stages.
Sampling date: August 2019
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1  

Sample

GC – 

content, 

%

Total 

raw 

reads

After 

trimming 

(reads)

Singletons / 

doubletons
Chimeras

Number of OTUs 

after removal of 

chimeras, 

singletons and 

doubletons, 97% 

identity

MK 47 41802 37745 13579/989 1 51

MС 46 16462 15446 5777/443 1 24

Turk 47 12454 11394 5062/333 1 30

Posol_S 45 19940 18044 8146/470 0 74

LT_05 46 15368 13818 5090/370 0 36

LT_1015 47 13180 11902 4552/317 0 35
2
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Table 3(on next page)

The closest relatives with the lowest e-value for each sample (database RefSeq, amino
acid level).
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Sample Sequences 

belonging to 

cyanophages, % 

Sequence The closest relative Query cover, % Identity, % E-value

MK 60.8 Otu13
Synechococcus phage S-

SSM7
99.3 64.4 5.56E-60

MC 58.3 Otu10
Synechococcus phage S-

SSM7

99.3 64.4
5.56E-60

Turk 63.3 Otu6
Synechococcus phage S-

SM2

99.4 72
1.67E-73

Posol_S 73 Otu51
Synechococcus phage 

Bellamy

99.4 72.6
1.93E-75

LT_05 66.7 Otu31
Synechococcus phage S-

CAM1

99.4 77.9
5.85E-78

LT_1015 65.7 Otu29
Synechococcus phage S-

CAM1

99.4 77.9
3.06E-78

2
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Table 4(on next page)

The number of sequences in this study similar to the sequences from other sources, %
(database GenBank, amino acid level).
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Isolation source MK MC Turk Posol_S LT_05 LT_1015
Reference

Biofilms, Lake Baikal (Russia)
19.6 20.8 20 27 27.8 28.6

(Potapov et 

al., 2020)

Pelagic water, Lake Baikal (Russia)
9.8 12.5 30 6.8 25 22.9

(Potapov et 

al., 2018)

Lakes Bourget and Annecy (France)

17.6 16.7 23.3 10.8 22.2 25.7

(Zhong & 

Jacquet, 

2014)

Lake Donghu (China)

3.9 4.7 3.3 2.7 8.3 5.7

(Huang, 

Cheng & 

Xu, 2011)

Lake East (China)
9.8 8.3 6.7 8.1 5.6 5.7

(Wang et 

al., 2015)

Wetland sediment (China)
25.5 20.8 3.3 18.9 2.8 2.9

(Li et al., 

2018)

Borehole water (South Africa) 

2 4.2 3.3 4.1 2.8 2.9

(Mabizela 

& 

Litthauer, 

2016)

Dairy wastewater (Ireland)

- - 3.3 2.7 2.8 2.9

(Knapik & 

Prentice, 

2012)

Paddy water (China)
- - - 1.4 2.8 2.9

(Zheng et 

al., 2013)

Rimov reservoir (Czech Republic)
2 - 3.3 4.1 - -

(Kavagutti 

et al., 2019)

Marine environment

- - 3.3 - - -

(Sandaa & 

Kristiansen, 

2016)

Wetland water (China)
5.9 4.2 - 1.4 - -

(Zheng et 

al., 2013)

Sediments of Pearl River Estuary 

(China)
2 4.2 - 1.4 - -

(He et al., 

2017)

Lake Kotokel (Russia)
2 4.2 - 5.4 - -

(Butina et 

al., 2013)

Lake Limnopolar (Antarctica)

- - - 2.7 - -

(López-

Bueno et 

al., 2009)

Paddy field soil (Japan)
- - - 1.4 - -

(Fujihara et 

al., 2010)

Surface soil of rice field (Japan)
- - - 1.4 - -

(Jia et al., 

2007)

2
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Table 5(on next page)

Nucleotide diversity of the g23 gene fragment.
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1  

Sample Nucleotide diversity, π References

MK 0.36 This study

MC 0.35 -//-

Turk 0.35 -//-

Posol_S 0.31 -//-

LT_05 0.33 -//-

LT_1015 0.34 -//-

Kongsfjorden (Svalbard) 0.33 (Bellas & Anesio, 2013)

Coral colony (Orpheus Island) 0.23 (Buerger et al., 2018)

Hydrothermal vent (East Scotia Ridge) 0.30 (Millard, Pearce & 

Zwirglmaier, 2016)

Chesapeake Bay 0.29 (Jamindar et al., 2012)

Lake Baikal, pelagic water (South basin) 0.28 (Potapov et al., 2018)

Lake Baikal (South basin) 0.33 (Butina et al., 2010)

Lake Baikal (North basin) 0.30 -//-

Lake Baikal, Neuston 0.27 (Potapov et al., 2020)

Lake Baikal, Sponges 0.36 -//-

Lake Baikal, CyanoStone 0.32 -//-

Lake Baikal, GreenStone 0.31 -//-

Lake Limnopolar (Antarctica) 0.37 (López-Bueno et al., 

2009)

Lake Proglacial (Svalbard) 0.34 (Bellas & Anesio, 2013)

Lake Kotokel (Russia) 0.34 (Butina et al., 2013)

Lake East (China) 0.29 (Wang et al., 2015)

Lake Donghu (China) 0.31 (Huang, Cheng & Xu, 

2011)

Lake Annecy and Bourget (France) 0.28 (Zhong & Jacquet, 2014)

Dairy water (Ireland) 0.37 (Knapik & Prentice, 

2012)

Wetland, water (China) 0.32 (Zheng et al., 2013)

Sediments of Pearl River Estuary (China) 0.28 (He et al., 2017)

Wetland sediments (China) 0.29 (Li et al., 2018)

Paddy field (Japan) 0.33 (Cahyani et al., 2009)

Paddy field (China) 0.35 (Li et al., 2019)
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