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The extensive flooding caused by Hurricane María in Puerto Rico (PR) created favorable
conditions for indoor growth of filamentous fungi. These conditions represent a public
health concern as contamination by environmental fungi is associated with a higher
prevalence of inflammatory respiratory conditions. This work compares culturable fungal
spore communities present in homes that sustained water damage after Hurricane María
to those present in dry, non-flooded homes. We collected air samples from 50 houses in a
neighborhood in San Juan, PR, 12 and 22 months after Hurricane María. Self-reported data
was used to classify the homes as flooded, water-damage or dry non-flooded. Fungi
abundances, composition and diversity were analyzed using tools originally develop for the
data generated by molecular biology approaches (MicrobiomeAnalyst and METAGENassist
platforms). Our results showed no significant differences in indoor fungal concentrations
(CFU/m3) during the first sampling period in both culture media studied (MEA and G25N).
During the second sampling period fungal levels were 2.6 times higher in flooded homes
(Median = 408) when compared to dry homes (Median = 233), respectively (p-value <
0.005). Fungal profiles showed enrichment of Aspergillus species inside flooded homes
compared to outdoor samples during the first sampling period (FDR-adjusted p-value =
0.05). In contrast, during the second sampling period, the indoor fungal composition
consisted primarily of non-sporulated fungi, most likely basidiospores, which are
characteristic of the outdoor air in PR. Together, this data highlights that homes that
suffered water damage not only have higher indoor proliferation of filamentous fungi, but
their indoor fungal populations change over time following the hurricane. Ultimately, after
nearly two years, the indoor and outdoor fungal communities converged in this sample of
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The extensive flooding caused by Hurricane María in Puerto Rico (PR) created favorable 

conditions for indoor growth of filamentous fungi. These conditions represent a public health 

concern as contamination by environmental fungi is associated with a higher prevalence of 

inflammatory respiratory conditions. This work compares culturable fungal spore communities 

present in homes that sustained water damage after Hurricane María to those present in dry, non-

flooded homes. We collected air samples from 50 houses in a neighborhood in San Juan, PR, 12 

and 22 months after Hurricane María. Self-reported data was used to classify the homes as 

flooded, water-damage or dry non-flooded. Fungi abundances, composition and diversity were 

analyzed using tools originally develop for the data generated by molecular biology approaches 

(MicrobiomeAnalyst and METAGENassist platforms). Our results showed no significant 

differences in indoor fungal concentrations (CFU/m3) during the first sampling period in both 

culture media studied (MEA and G25N). During the second sampling period fungal levels were 

2.6 times higher in flooded homes (Median = 408) when compared to dry homes (Median = 233),

respectively (p-value < 0.005). Fungal profiles showed enrichment of Aspergillus species inside 

flooded homes compared to outdoor samples during the first sampling period (FDR-adjusted p-

value = 0.05). In contrast, during the second sampling period, the indoor fungal composition 

consisted primarily of non-sporulated fungi, most likely basidiospores, which are characteristic of

the outdoor air in PR. Together, this data highlights that homes that suffered water damage not 

only have higher indoor proliferation of filamentous fungi, but their indoor fungal populations 

change over time following the hurricane. Ultimately, after nearly two years, the indoor and 

outdoor fungal communities converged in this sample of naturally ventilated homes.  

Keywords: Hurricane María, mold spores, fungi, mycobiome, aeroallergens, indoor air, indoor 

environment, Aspergillus, built environment, flooded homes, water-damage

INTRODUCTION

Fungi are ubiquitous eukaryotic organisms of environmental and medical importance as 

environmental fungal exposures are associated with adverse health effects in humans (Kendrick, 

2011; Cannon et al., 2018).  Fungi reproduce by spore production, many of which are dispersed 
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in the air with fungal spore sizes ranging from approximately 0.65 µm to > 20 µm (Portnoy, 

Barnes & Kennedy, 2008; Hamilos, 2010; Li et al., 2011; Kwon-Chung & Sugui, 2013; Claub, 

2015). Fungal spores and fragments less than 2.5 m can deposit in the alveoli and trigger asthma 

in sensitized individuals (Joubert et al., 2020). In contrast, large fungal spores and clusters of 

small fungal spores can deposit in the upper airway triggering allergic rhinitis (Joubert et al., 

2020). Environmental fungal contamination, including high airborne fungal spore concentrations 

in the air, are associated with inflammatory respiratory conditions such as asthma and allergic 

rhinitis (Lewis et al., 2019). In addition, for people already suffering from asthma, exposure to 

fungal spores simultaneously with other allergens (animal dander, dust mites, cockroaches) may 

cause dangerous exacerbations of existing asthma (Gautier & Charpin, 2017).  Approximately, 

339 to 500 million people worldwide are affected by asthma and allergic rhinitis, respectively 

(Kołodziejczyk & Bozek, 2016; Global Asthma Network, 2018). In Puerto Rico (PR), asthma 

prevalence in children and adults is higher than in the United States (2017: 15.5% vs 7.5% for 

children and 12.2% vs. 9.1% for adults) (Ortiz-Rivera, 2018).

Due to its tropical location, frequent hurricanes and extreme rain events, PR has a high 

concentration of fungal spores in the air. Very high levels observed in PR exceed 110,000 spores/

m3, 2.2 times higher than those observed in the other National Allergy Bureau (NAB) of the 

American Academy of Allergy Asthma and Immunology mold levels stations (AAAAI, 2021). 

Outdoor fungal spore concentrations typically reach their maximum levels in PR during the rainy 

months of September to November (Quintero, Rivera-Mariani & Bolaños-Rosero, 2010). The 

fungi found in outdoor ambient air are typically split between Basidiomycetes (60%) and 

Ascomycetes (40%) (Rivera-Mariani et al.; AAAAI, 2021). Pleurotus ostreatus, Chlorophyllum 

molybdites and Ganoderma applanatum are some of the basidiomycetes common in the air of PR

(Rivera-Mariani et al., 2011). Ascomycetes include filamentous Aspergillus species (A. 

fumigatus, A. terreus, A. niger, A. flavus) which are the most frequent causative agents of human 

aspergillosis, lung inflammation and among the most frequent triggers of asthma and allergic 

rhinitis (Portnoy, Barnes & Kennedy, 2008; Hamilos, 2010; Kwon-Chung & Sugui, 2013). 

Indeed, a recent study in PR found that increases in outdoor fungal spore concentrations were 

associated with increases in asthma-related health claims, confirming that fungal spores are 

triggers of asthma (Lewis et al., 2019). Most Puerto Rican homes have natural air ventilation; 

therefore, spores and pollen present outdoors can easily penetrate indoors through open windows 

and doors. Even though the 2017 outdoor fungal spore season was lower than expected as a result

of Hurricane María, the fungal spore season for 2018 was the highest ever recorded in the 16-year

history of data collection at the San Juan station most likely due to the accumulation of organic 

debris in the aftermath of Hurricane María (AAAAI, 2021; Bolaños-Rosero, 2021). 

The essential conditions for indoor growth of filamentous fungi include high moisture and

humidity, warm temperature, poor ventilation or air circulation, and the presence of organic 

source materials (Institute of Medicine, 2004; WHO, 2009). Taking these factors into 

consideration, the extensive flooding caused by Hurricane María in PR had the potential to 

provide a favorable environment for fungal proliferation indoors in homes with water damage. 

Several studies have evaluated the effects of hurricanes on airborne fungi in the United States, 

with the most common fungi isolated being Aspergillus, Penicillium and Cladosporium (CDC, 
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2006; Chew et al., 2006; Rao et al., 2007; Schwab et al., 2007; Rabito et al., 2008; Saporta & 

Hurst, 2017; Gargano et al., 2018; Chow et al., 2019; Kontoyiannis et al., 2019). Although PR 

has been affected by more than 15 hurricanes and tropical storms since the 1980’s, the effect of 

these natural disasters on the concentration and composition of indoor airborne fungi have not yet

been studied. Here, we provide a critical and quantitative analysis of the airborne fungal 

concentrations in the months following Hurricane María in PR. Our hypothesis is that homes 

which sustained flooding or water damage will have higher fungal diversity and abundance of 

fungi related with damp indoor environments. In addition, since the sampled homes are 

predominately naturally ventilated, we hypothesize that fungal taxa in the indoor environment of 

dry non-flooded homes may reflect the taxa in the outdoor environment. We believe this study 

will provide the basis for understanding the effect of fungal growth and species composition as a 

result of a flooding event in PR.  The results from this study lay the foundation to design 

mitigation strategies to minimize adverse fungal exposures after flooding events to better control 

lung inflammation and asthma in PR and other tropical countries. 

 

MATERIALS AND METHODS

 

Study Population. After obtaining Institutional Review Board (IRB) approval from the University

of Puerto Rico - Río Piedras Campus (IRB protocol 1718-058), 50 residences from the area of 

Santurce (San Juan, PR) were selected to participate in this study (Fig. 1). Many homes located in

this area sustained flooding during and after Hurricane María’s passage through the island. Of the

50 homes, 10 were located in a non-flooded area and 40 were located in a flooded area according 

to a reference map generated by the Federal Emergency Management Agency (FEMA). In 

addition to considering this classification, participants were surveyed and asked to describe in 

more detail the level of water damage. This reported data allowed the classification of each 

household in greater detail: 13 houses were dry non-flooded, 24 houses had water-damage 

(received water from above, roof and/or windows), and 13 houses were flooded (received water 

from below, through doors and crevices). We acknowledge that the sample size for the different 

categories was small, but we were working with recruitment under very difficult circumstances. 

We thus have two types of classifications for each home: (1) FEMA based: whether the homes 

were located in a flooded or non-flooded area according to FEMA (dry area or flooded area) and 

(2) Self-reported damage reported by study participants (dry, water-damage or flooded). After 

obtaining written informed consent, participants were asked to complete questionnaires in order 

to gather information on the demographics, health of home occupants (respiratory and 

psychological), home characteristics (ventilation, number of windows, construction materials) 

and the physical impact of Hurricane María on the home (water-damage, remediation activities, 

and the presence of visible mold).  For the purpose of this study, we focus on evaluating the 

relationship between the self-reported degree of water damage and viable fungal communities 

present in samples collected from the indoor and outdoor environment of 50 homes in PR.  

 

Air Sampling & Fungal Culturing. We collected indoor and outdoor samples during two different

sampling periods: August - September 2018 and June-July 2019, 12 and 22 months, respectively, 
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after Hurricane María. For the air sample collection, we used the MicroBio MB2 Bioaerosol 

Sampler (Cantium Scientific, Dartford, UK). This volumetric instrument collects airborne 

bioaerosol contaminants by aspirating air through a removable stainless-steel head (cover) which 

contains 220, 1 mm holes. This design creates a laminar airflow that impels the microorganisms, 

in this case the fungal spores, onto the surface of the culture media. A pilot study using different 

sampling volumes allowed us to set the optimal total air sampling volume at 60 liters (flow rate 

of 60L/35 seconds) which allowed us to count and identify to genus level the viable fungi without

overgrowth on the Petri plate. Prior to Hurricane María, the standard sampling volume used in a 

previous study was 150 liters, but due to record-high outdoor fungal spores levels reported in 

2018, the sampling volume was decreased to 60 liters (Bolaños-Rosero et al., 2013). At each 

home, indoor samples were collected at a height of 1 meter from four indoor locations (living 

room, kitchen, bedroom and bathroom) and an outdoor sample was collected in the front yard of 

the residences. Before sample collection, interior fans were turned off and the number of open 

and closed windows were counted.  We used two types of culture media, Malt Extract Agar 

(MEA) and 25% Glycerol Nitrate Agar (G25N; K2HPO4 0.375 g, Czapek concentrate 3.75 ml, 

yeast extract 1.75 g, glycerol 125 ml, agar 6 g, distilled water 375 ml).  MEA is a nutritive 

growth media used for the isolation of general fungi since it is suitable for most fungal growth 

while the G25N is a selective growth media for xerophilic (dry tolerant) fungi, which grow at low

water activity or availability (Wu, Su & Ho, 2000; De León et al., 2018). After sampling, the 

Petri plates were incubated at 25 ± 2°C for up to 2 weeks. Visible fungal colonies were counted 

using a stereomicroscope as early as 24-48 hours after sampling with MEA, taking precautions to

avoid mixing of the fungal colonies such as keeping the inverted plates horizontally. This process

was repeated daily for 7 days in the case of MEA and for 14 days in the case of G25N. Culturable

fungi were reported in colony forming units per cubic meter (CFU/m3) using the MicroBio PC 

Reporter software and data from the fungal colony count with positive-hole correction and the 

total volume of air drawn through the MicroBio MB2 Bioaerosol sampler for each sample 

collected. The positive-hole correction accounts for the probability of more than one viable 

particle could be entering through a sampling hole, merging with other microorganisms at the 

same impaction site and producing a single colony(Macher, 1989). In addition to determining 

culturable fungi at each participating home, we also measured relative humidity levels both 

indoor and outdoor at each home. We also compiled precipitation data from the National Weather

Service Forecast Office (NWSFO) and outdoor fungal spore levels from the San Juan AAAAI 

station for both sampling periods to characterize the ambient fungal background levels during the

sampling events (NWSFO, 2014; AAAAI, 2021).  

 Fungal Identification. After fungal colonies were counted, we performed slide mounts to analyze

the colonies under the microscope and identify them to the genus level. First, we used the 

stereomicroscope to evaluate how many possible distinct fungi we had in our sample. Prior to 

preparing the slide mounts, we isolated the most predominant fungi present for further 

experiments. Then, we used fungi tape and lactophenol cotton blue staining to prepare the slide 

mounts. Following this, we observed the fungal slide mounts under the microscope and the fungi 
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were identified to the genus level by evaluation of morphological characteristics such as spore 

shape, size, color and arrangement (Samson et al., 2019).

 

Statistical Tests and Data Analyses. Data on fungal colonies concentrations and metadata 

variables were analyzed in RStudio© Version 1.2.1335 (R Foundation for Statistical Computing, 

Vienna, Austria) (RStudio-Team, 2020). When analyzing the indoor data, we used the value of 

the calculated median of the indoor measurements per home. To evaluate differences in indoor 

relative humidity by degree of water damage (Dry, Water-Damage, Flooded), we performed the 

non-parametric Kruskal Wallis test. We also used the non-parametric test Kruskal-Wallis to 

analyze differences in fungal colonies concentrations as a function of different self-reported 

degree of water damage (dry, water-damage, flooded). We considered a p-value less than 0.05 

statistically significant. To evaluate the contribution of outdoor fungal levels to indoor fungal 

levels, we performed a Spearman Correlation analysis and a Linear Regression analysis with 

RStudio for graphs and Intellectus Statistics for interpretation (Intellectus Statistics; RStudio-

Team, 2020). For the purposes of performing alpha and beta diversity analyses and visualization 

of the plots, we used MicrobiomeAnalyst and METAGENassist which are web-based platforms 

used for the analysis of microbiota data (Arndt et al., 2012; Dhariwal et al., 2017). Biodiversity 

census, either culture-based or culture-independent, require a consensus on diversity metrics. 

That is, standardized methods for the measurement of biodiversity at different scales exist, such 

as Chao1 observed species metrics or diversity indexes of Shannon or Simpson, initially used to 

monitor biodiversity (Roswell, Dushoff & Winfree, 2021). Here, we cataloged the grown molds 

(culture-based approach) and used the species table of abundances to calculate alpha and beta 

diversity estimates. For data filtering, processing and normalization, we used a low-count filter 

based on 10% prevalence and no data rarefaction was performed. Normalization was done row-

wise, log transformed on the total sum, in METAGENassist so that the data could follow a 

Gaussian distribution and samples could be more comparable to each other. Statistical analyses 

for alpha diversity, were done using compare_alpha_diversity.py in QIIME which uses a non-

parametric t-test with Monte Carlo permutations. For Beta-diversity analyses, PCoA, Jensen-

Shannon Divergence and permutational MANOVA (PERMANOVA) were used as ordination, 

distance and statistical methods, respectively. Taxonomic bar plots were created using percentage

abundance and a taxa resolution of the top n taxa, with n = 10. To identify significant taxa 

signatures at genus/species level between two different groups, a Linear Discriminant Analysis 

(LDA) Effect Size (LEfSe) algorithm for biomarker discovery was used (Segata et al., 2011). 

This method allowed us to identify statistically significant fungal features that differ between the 

indoor and outdoor environments of homes classified by self-reported degree of water damage, 

expressed as LDA values shown in boxplots and using either Original (uncorrected) or FDR 

(False Discovery Rate)-adjusted p-value < 0.05). In addition, we compared the fungal profile 

(alpha, beta, abundance and biomarker analysis) between dry and wet (water-damage + flooded) 

homes. 

 

RESULTS
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During the first sampling period, a total of 50 homes were sampled (Fig. 1). For the 

second sampling period, a total of 35 homes completed the follow-up sampling event (70% 

retention rate). During the first sampling period in 2018, 10 homes were in a non-flooded zone 

and 40 were in a previously flooded zone as per FEMA’s classification scheme following 

Hurricane María (Table 1). For the second sampling period in 2019, 8 of 35 homes were in a dry 

FEMA zone and 27 in a previously flooded area according to FEMA. The self-reported data on 

flooding conditions provided by participants yielded a more detailed assessment of actual 

flooding and water damage conditions within the study homes. It is worth noting that the FEMA 

classification does not take into account details that can influence the extent of the flooding (e.g. 

some homes were on second floors and were not flooded even though they were located in an 

area categorized by FEMA as flooded). Of the 50 homes sampled in 2018, 13 houses were 

reported by household members to be dry, 24 had water-damage, and 13 had been subjected to 

flooding. Of the 35 homes sampled in 2019, 11 houses were reported by household members to 

be dry, 15 had water-damage, and 9 had been subjected to flooding. All the homes were normally

found to be naturally ventilated via open doors and windows. Fans and/or an occasional air 

conditioner were also present in some homes but these were turned off during air sample 

collection.

 

No significant differences in median relative humidity levels inside dry, water-damage 

and flooded homes were observed during the first sampling period (Fig. 2A). In contrast, the 

indoor environment of flooded homes had significantly higher relative humidity levels during the 

second sampling period when compared to dry homes (p-value = 0.007) (Fig. 2B).  

 

Since outdoor fungal spore concentrations are important in the context of tropical homes 

with natural ventilation, we reviewed these data for the sampling periods of our study. Outdoor 

levels of fungal spores, reported at the San Juan AAAAI station, were higher during the first 

sampling period (an average of 86,478 spores/m3 and 103,762 spores/m3 in August and 

September of 2018, respectively) when compared to the second sampling period (an average of 

44,615 spores/m3 and 38,632 spores/m3 in June and July of 2019, respectively). Similar results 

were obtained for outdoor culturable fungi (CFU/m3) measured outside the study homes with 

1.88- and 1.12-times higher levels during the first sampling period when compared to the second 

sampling period in G25N and MEA, respectively (data not shown, not statistically significant). 

As outdoor San Juan fungal spore concentrations follow a seasonal pattern related to seasonal 

precipitation, the precipitation levels during the sampling periods were also compared (Quintero, 

Rivera-Mariani & Bolaños-Rosero, 2010). Precipitation levels were higher in August 2018 (first 

sampling period, total monthly precipitation of 6.29") and in July of 2019 (second sampling 

period, total monthly precipitation of 6.72") (NWSFO, 2014). 

 

We evaluated the relationship between outdoor and indoor fungal concentration (CFU/

m3). For indoor levels we used the culturable measurements median of the indoor locations at 

each home. For the first sampling period, 12 months after Hurricane María, a significant positive 

correlation was observed between outdoor and indoor fungal concentration (CFU/m3) (r = 
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0.47, p < .001, 95% CI = [0.22, 0.66]). This correlation indicates that as outdoor fungal colonies 

increase, indoor fungal colonies also tend to increase. The results of the linear regression model 

were significant, F(1,48) = 60.79, p < .001, R2= 0.56, indicating that approximately 56% of the 

variance in indoor fungal colonies is explainable by the outdoor levels (Fig. 3A). For the second 

sampling period, 22 months after Hurricane María, a significant positive correlation was still 

observed between outdoor and indoor (living room) fungal colonies (r = 0.71, p < .001, 95% CI =

[0.49, 0.84]). The correlation coefficient between outdoor and indoor was 0.71, indicating a large 

effect size. The results of the linear regression model were also significant, F(1,33) = 

11.40, p = .002, R2= 0.26, with approximately 26% of the variance in indoor fungal colonies 

explained by outdoor fungal colonies (Fig. 3B). 

We evaluated indoor culturable fungi concentrations in the study homes as a function of 

self-reported degree of water damage. During the first sampling period in 2018, no significant 

differences in culturable fungi concentration were observed in both culture media evaluated (Fig. 

4A and 4B). For the second sampling period, indoor CFU/m3 increased with degree of water 

damage for both culture media (Fig. 4A and 4B). Both flooded (Median = 758) and water-

damage homes (Median = 408) had 2.6 and 1.4 times higher CFU/m3 when compared to dry non-

flooded homes (Median = 233) in the G25N culture media (Fig. 4A), although only statistically 

significant between flooded and dry homes (p-value < 0.005). Results from the MEA culture 

media (Fig. 4B) during the same period showed 2 and 1.6 times higher CFU/m3 in flooded 

(Median = 716) and water-damage homes (Median = 583) when compared to dry, non-flooded 

homes (Median = 358), although only statistically significant between flooded and dry homes (p-

values < 0.01). 

We also analyzed the culture-based data using web-based platforms originally designed 

for visualizing molecular data. Beta-diversity analysis using PCoA showed statistical differences 

(p-values < 0.006) between fungal communities as a function of self-reported degree of water 

damage during the first sampling period (Fig. 4C). Results from alpha-diversity analysis using 

the Chao1 richness estimator showed no significant differences (p-value = 0.38415) in richness 

by self-reported degree of water damage (Fig. 4D, Supplementary Table 1).

We then compared the relative abundance of fungal taxonomic features at the genus level 

by sampling location (indoor or outdoor) and self-reported degree of water damage during both 

sampling periods (first and second) (Fig. 5A and 5B). During the first sampling period, the 

fungal taxa present in the indoor environment of dry homes had similar relative abundance levels 

to those present in the outdoor environment and were dominated by non-sporulating fungi (Fig. 

5A). The water-damage homes were still dominated by non-sporulating fungi, but there was an 

increase of Aspergillus taxa in the indoor environment. Specifically, during the first sampling 

period, the indoor environment of flooded homes was enriched by Aspergillus species when 

compared to the outdoor samples. During the second sampling period, enrichment of Aspergillus 

taxa in flooded homes was not observed (Fig. 5B). Both indoor and outdoor environments were 

dominated by non-sporulating fungi regardless of the degree of water-damage in the homes 

sampled. Linear discriminant analysis (LDA) together with effect size measurement (LEfSe) 
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method was used in order to identify statistically significant fungal features at the genus/species 

level (Fig. 5C and 5D). Higher LDA scores represent increased abundance of fungal biomarkers 

in the samples classified by sampling location (indoor versus outdoor) and self-reported degree of

water damage (dry, water-damage, flooded). During the first sampling period, enrichment of non-

sporulating fungi was identified in the outdoor samples of dry homes, whereas Aspergillus 

tamari and Rhodotorula were significantly enriched in the outdoor samples of water-damage and 

flooded homes, respectively (Fig. 5C). In contrast, Aspergillus was significantly enriched in the 

indoor environment of flooded homes during the first sampling period. During the second period 

no significant features were found. 

 

Finally, we analyzed the abundance levels of fungal taxa individually indoors versus 

outdoors (Fig. 6). During the first sampling period, Aspergillus spp. and Penicillium spp. were 

more abundant in indoor samples, whereas non-sporulating fungi and Cladosporium spp. were 

more abundant outdoors (Fig. 6A). For the second sampling period, Trichoderma was more 

abundant indoors while Aspergillus, non-sporulating fungi and Eurotium amstelodami were more

abundant outdoors (Fig. 6B). 

 

We also evaluated the indoor and outdoor fungal profile of dry and wet (water-damage + 

flooded) homes (Fig. 7). Beta-diversity analysis using PCoA showed differences in the fungal 

communities of dry homes grouped by sampling location (indoor and outdoor) and sampling 

period (first and second) (Fig. 7A). No differences in group clustering were identified in samples 

from wet homes (Fig. 7B). Results from alpha-diversity analysis using the Chao1 richness 

indicated no significant differences (p-value = 0.1288) in the number of unique taxa in the dry 

homes (Fig. 7C, Supplementary Table 2) and a significant increase in the taxa present in the 

indoor samples from the second sampling period in wet homes (p-value = 0.002) (Fig. 7D). 

Aspergillus spp., Cladosporium spp., non-sporulating fungi and Penicillium spp. were the most 

abundant fungi present in the indoor environment of both dry and wet homes during both 

sampling periods (Fig. 8). Non-sporulating fungi and Penicillium spp. abundance inside dry 

homes decreased whereas Aspergillus spp. and Cladosporium spp. abundance increased during 

the second sampling period when compared to the first sampling period (Fig. 8A and 8C). The 

same trend was observed for wet homes (Fig. 8B and 8D). Aspergillus spp. and non-sporulating 

fungi were identified as biomarkers of dry homes, both with an FDR-adjusted p-value = 0.005 

(Fig. 9). Aspergillus spp. and non-sporulating fungi were more abundant in the indoor and 

outdoor environments of the second and first sampling periods, respectively (Fig. 9A and 9B).

 

DISCUSSION

 

Fungal quantification and fungal community characterization after hurricanes are 

important to develop guidelines for post-flood recovery efforts. In this work, we analyzed 

culturable fungal levels in homes located within a neighborhood in San Juan (PR) affected by 

Hurricane María’s extensive flooding. Culturable fungi levels (CFU/m3) were higher inside 

flooded homes 22 months following Hurricane María as compared to the levels measured inside 
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dry non-flooded homes (Fig. 4B). This result is consistent with previous studies conducted in the 

aftermath of hurricanes which have typically found higher fungal growth and fungal components 

(spores, endotoxins and glucans) inside homes and areas that sustained moderate to severe water-

damage and/or flooding (Chew et al., 2006; Riggs et al., 2008; Barbeau et al., 2010). This rise in 

fungal concentrations could be explained by the fact that water damage and flooding may 

increase humidity and moisture levels inside the affected home, including wetting furniture and 

household construction materials, thus creating favorable conditions for fungal growth indoors.  

 

Since humidity is a contributing factor for fungal proliferation, we measured relative 

humidity levels in the homes during the different sampling periods (first and second). In terms of 

humidity, almost two years after Hurricane María we found higher relative humidity levels in 

inside flooded homes; however, this trend was not evident during the first year after Hurricane 

María (Fig. 2A and 2B). The ground and surrounding areas of flooded homes were inundated, 

during and after Hurricane María by rain and phreatic water (underground water). Although not 

measured through in this research, this could have also impacted relative humidity levels in the 

flooded homes that are also located in shallow water table areas. During the first sampling period,

no differences in relative humidity levels were observed possibly due to closeness of the 

sampling to the hurricane and flooding events. 

 

We analyzed our culture-based data using different tools typically applied to molecular-

based data. These analyses and visualizations provided additional insight into the fungal 

communities present in our samples as a function of different variables (degree of water damage, 

indoor versus outdoor sampling location). We found significant differences in fungal composition

and structure when analyzing beta-diversity by self-reported degree of water exposure during the 

first sampling period (p-value < 0.001), meaning that the distribution of the fungal species 

recovered varied between the categories analyzed (Fig. 4C). However, there were no significant 

differences in species richness according to alpha diversity (Fig. 4D). Meaning there were no 

differences in the number of species within the categories studied. Results from abundance 

taxonomic bar plots highlighted the shift from fungal communities present in the outdoor 

environment (typically non-sporulating fungi) to enrichment of taxa previously associated with 

damp environments and human disease (Fig. 5A and 5B). Non-sporulating fungi refer to fungi 

that fail to produce spores on culture media, therefore identification through microscopy 

techniques is not possible. Non-sporulating fungi are most likely members of the Basidiomycota 

phylum, which compose approximately 60% of the fungal spores present in the outdoor air of PR 

(Rivera-Mariani et al.; AAAAI, 2021). Thus, the indoor environment of dry non-flooded homes 

appears to reflect the outdoor environment (Fig. 5A). This result was expected, since the study 

homes, as with most homes in PR, are naturally ventilated allowing for fungal spores present in 

the outdoor air to enter the homes through doors and windows. In contrast, water-damage homes 

yielded an increase in abundance of Aspergillus taxa which eventually dominated the indoor 

environment of flooded homes (Fig. 5A and 5C). Approximately 180 species of Aspergillus 

exist, with A. fumigatus, A. terreus, A. niger, A. flavus being the most frequent causative agents 

of human fungal infection, including aspergillosis, asthma and allergic rhinitis (Sugui et al., 2014;
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Seyedmousavi et al., 2018). Moreover, Aspergillus taxa have been previously associated with 

damp environments (Miller, Haisley & Reinhardt, 2000; Chew et al., 2006; Solomon et al., 2006;

Rao et al., 2007; Schwab et al., 2007; Riggs et al., 2008; Bolaños-Rosero et al., 2013; Flores et 

al., 2013). The shift in fungal taxa from the first to the second sampling period in water-damage 

and flooded homes (from Aspergillus species to non-sporulating fungi predominance) indicates 

that 22 months after Hurricane María, there has been a recovery in the fungal communities to the 

taxa normally present in the tropical environment of Puerto Rico (Fig. 5B). Rhodotorula was 

found significantly enriched in the outdoor environment of flooded homes (Fig. 5C). This 

unicellular red-orange pigmented yeast is part of the Basidiomycota division and has been 

previously associated with water-damaged materials and moisture damage in buildings (Andersen

et al., 2011; Adams et al., 2020).

 

Finally, the most abundant fungi recovered during the first sampling period from both the 

indoor and outdoor environments of dry and wet homes were Aspergillus, Cladosporium, 

Penicillium and non-sporulating fungi. The first three fungi correspond with findings of other 

studies, while non-sporulating fungi represent the characteristic fungi from the tropical outdoor 

environment of PR (Fig. 6A, 8 and 9) (Miller, Haisley & Reinhardt, 2000; Chew et al., 2006; 

Solomon et al., 2006; Rao et al., 2007; Schwab et al., 2007; Riggs et al., 2008; Bolaños-Rosero et

al., 2013; Flores et al., 2013).

 Our study provides a unique and valuable data set. First, we evaluated fungal 

concentration and composition during two sampling periods one and two years in the aftermath 

of Hurricane María. Even one year after Hurricane María, the homes sampled had differences in 

fungal communities according to the degree of water damage. Almost 2 years after the hurricane, 

we found that fungal communities indoor began to recover and resemble the outdoor fungal 

communities. Most of the studies that evaluated fungal growth and spore levels after a Hurricane 

were carried out within 6 months after the natural disaster. Second, we collected our data through

culture-based methods which allows analysis of viable fungi present in the sampled environment.

We acknowledge the limitations of this approach for fungal identification, however useful 

information was still gained regarding indoor fungal amplification and diversity. Third, we used 

two different culture media for the recovery of fungal isolates, MEA and G25N allowing for the 

characterization of a wide range of fungi from hydrophilic to xerophilic fungi, respectively. Our 

results showed that G25N is more useful for the collection of fungal isolates that usually amplify 

(indoor concentrations greater than the outdoors) under damped or flooded conditions. Since 

G25N allows slow and discrete colony growth, all fungi can grow without a dominating genus 

overgrowth occupying the culture plate surface as it happens in MEA. However, the use of both 

culture media is recommended to recover as many fungal species as possible. We also considered

the levels of outdoor fungal spores reported by the San Juan AAAAI station, which were highest 

during the first sampling period and contributed to the indoor fungal concentration, agreeing with

an outdoor-indoor air continuum. Also, the fungal isolates obtained from these samples agreed 

environmental fungi from PR obtained through the San Juan AAAAI station.  Lastly, we applied 

tools originally develop for molecular-based data for the analysis of our culture data gaining 
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additional insights into fungal communities’ composition, richness, abundance and biomarkers 

significantly enriched in our samples. By applying tools originally develop for data generated by 

molecular biology approaches for the analysis of culture-based data, we were able to further 

understand our results and identify fungal features characteristic between dry and flooded homes.

Particularly, we were able to identify a significant shift from Aspergillus taxa to non-sporulating 

fungi inside flooded homes between the first and second sampling period. 

In summary, this data highlights dynamic changes in indoor fungal populations, 

characterized by different types of fungi between dry and flooded homes. More specifically, dry 

homes were dominated by fungi present in the outdoor environment highlighting the naturally 

ventilated types of homes common in PR. On the other hand, flooded homes presented 

amplification of Aspergillus species. Additionally, our study results indicate that in naturally 

ventilated homes, the outdoor fungal levels have a significant effect on indoor fungal levels. This 

brings attention to the outdoor environment. Thus, after-flood cleanup and remediation at a 

community scale may help address this issue. Since tropical homes are characterized by an 

outdoor-indoor air continuum (Fig. 3A and 3B), it is extremely important to maintain clean 

outdoor surroundings after the disaster. In this study, we observed high quantities of water-

damage materials, wood and trees debris outside many of the homes sampled. These organic 

materials could have also contributed to outdoor filamentous fungi proliferation that eventually 

entered the homes via open windows and/or doors. In order to apply these suggestions in the 

context of low-income communities, assistance from local government is warranted. Disaster 

relief for flooding victims, including debris removal from the surroundings, covered-expenses 

home repairs, materials and/or furniture replacement, provide cleaning materials and basic 

education on flood preparedness and recovery. Furthermore, to prevent indoor fungal 

proliferation, it’s recommended to maintain a clean indoor environment after flooding events. 

Building problems should be repaired and water-damaged materials must be cleaned, dried and/or

removed.15 Studies have shown that remediation of mold-damaged materials, through cleaning or 

replacement, decrease or eliminate mold growth (Solomon et al., 2006; Riggs et al., 2008; 

Jayaprakash et al., 2017). It is important to identify indoor moisture sources such as roof, walls 

and plumbing leaks, condensation, floods and high relative humidity. An additional 

recommendation is to keep indoor relative humidity levels below 60%, ideally between 30% and 

50%, in order to inhibit mold growth(EPA). Moreover, dehumidifiers and High-Efficiency 

Particulate Air (HEPA) filters are tools that help control fungal growth and spore levels, 

respectively (Mazur & Kim, 2006). These findings are helpful for developing guidelines for post-

flood recovery efforts as well as strategies to mitigate respiratory diseases in tropical 

environment. 
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Table 1(on next page)

Number of homes categorized by self-reported degree of water-damage.

The total number of samples for each sampling period, total number of fungal colonies
observed, and total number of unique fungal species present are summarized for each
category.
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1

Self-Reported 

Degree of Water 

Damage

Sampling Period Number of 

Homes

Number of 

Samples

Number of 

Fungal Colonies

Number of 

Fungal Species

First 13 124 4,229 40

Dry Second 11 108 1,925 33

First 24 240 10,624 42

Water- Damage Second 15 150 7,136 35

First 13 121 3,606 38

Flooded Second 9 90 4,893 31

2

3
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Figure 1
Map of the homes sampled in San Juan, Puerto Rico (n = 50).

Blue, yellow and red dots corresponds to Dry, Water-Damage and Flooded homes,
respectively.
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Figure 2
Indoor relative humidity levels (%) in homes as a function of self-reported degree of
water damage (Dry, Water-Damage, Flooded).

A) First Sampling (n = 50 homes). B) Second Sampling (n = 35).
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Figure 3
Linear Regression Indoor Fungal Spores and Outdoor Fungal Spores per cubic meter
(m3) of air in G25N Culture Media.

A) First sampling (2018) and B) Second sampling (2019).
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Figure 4
Fungal concentration and profile by self-reported degree of water damage (Dry, Water-
Damage, Flooded).

A) G25N culture media. B) MEA culture media. C) Beta-diversity analysis for first sampling
(2018). D) Alpha-diversity analysis for first sampling (2018). A, B) Red, Yellow and Blue
boxplots correspond to Dry, Water-Damage and Flooded homes, respectively; first sampling
n = 50 homes and second sampling n = 35 homes; Kruskal-Wallis test, p-value <0.05 was
considered significant. C) Principal coordinate analysis (PCoA) performed with Jensen-
Shannon Divergence. D) Chao1 richness estimate.
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Figure 5
Abundance taxa bar plots and histogram of Linear Discriminant Analysis (LDA) Effect
Size (LEfSe) by sampling location (Indoor, Outdoor), self-reported degree of water-
damage (Dry, Water-Damage, Flooded) and sampling period (First, 2018 and Second,
2019).

A) Abundance taxa bar plots during first sampling (2018). B) Abundance taxa bar plots during
second sampling (2019). C) LDA during first sampling (2018), FDR-adjusted p-value = 0.05.
Log LDA score computed for differentially abundant taxa (genus level) with cut-off LDA score
>2.0.
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Figure 6
Individual fungi normalized abundance boxplots by sampling location (Indoor, Outdoor).

A) Individual fungi abundance boxplots during first sampling (2018). B) Individual fungi
abundance boxplots during second sampling (2019). A, B) Red and Green boxplots
corresponds to indoor and outdoor samples, respectively.
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Figure 7
Fungal profile of dry and wet (Water-Damage and Flooded Homes Combined) homes
during both sampling periods (First and Second).

A) Beta-diversity analysis for dry homes. B) Beta-diversity analysis for wet homes. A, B) Red,
Dark Blue, Green and Light Blue dots corresponds to indoor samples from first sampling,
outdoor samples for first sampling, indoor samples from second sampling and outdoor
samples from second sampling; respectively. Principal coordinate analysis (PCoA) performed
with Jensen-Shannon Divergence. C) Alpha-diversity analysis for dry homes. D) Alpha-
diversity analysis for wet homes. C, D) Red, Green, Blue and Purple boxplots corresponds to
indoor samples from first sampling, indoor samples from second sampling, outdoor samples
for first sampling, and outdoor samples from second sampling; respectively. Chao1 richness
estimate.
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Figure 8
Indoor fungal isolates abundance percent by sampling period (First, Second).

A) Samples from indoor environment of dry homes during the first sampling period. B)
Samples from indoor environment of wet homes during the first sampling period. C) Samples
from indoor environment of dry homes during the second sampling period. D) Samples from
indoor environment of wet homes during the second sampling period.
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Figure 9
Fungal dry biomarkers by sampling location (Indoor, Outdoor) and sampling period
(First, Second).

A) Aspergillus spp. abundance levels. B) Non-sporulating fungi abundance levels. A, B) Red,
Dark Blue, Green and Light Blue boxplots corresponds to indoor samples from first sampling,
indoor samples from second sampling, outdoor samples for first sampling, and outdoor
samples from second sampling; respectively.
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