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N6-methyladenosine (m6A) is the most abundant and highly conserved RNA modification in
eukaryotes. m6A demethylase can remove the m6A marker and dynamically regulate the
m6A level in vivo, which plays an important role in plant growth, development and
response to abiotic stress. The confirmed m6A demethylases in Arabidopsis thaliana
include ALKBH9B and ALKBH10B, both belonging to the ALKB family. In this study, ALKB
family members were screened in sugar beet genome-wide database, and their conserved
domain, gene structures, chromosome location, phylogeny and other factors were
analyzed. The results showed that almost all BvALKB proteins contained the conserved
domain of 2OG-Fe II-Oxy. All the proteins were classified into five groups, each of which
had similar motifs and gene structures. Three Arabidopsis m6A demethylase homologous
proteins were of particular concern. Almost all genes were up-regulated or down-regulated
to varying degrees under salt stress, especially the uxaj gene homologous to ALKBH10B,
which was significantly up-regulated, suggesting that the genes were in response to salt
stress. This study provides a theoretical basis for further screening of m6A demethylase in
sugar beet, and also lays a foundation for studying the role of ALKB family proteins in
growth, development and response to salinity stress.
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15 Abstract

16 N6-methyladenosine (m6A) is the most abundant and highly conserved RNA modification in 

17 eukaryotes. m6A demethylase can remove the m6A marker and dynamically regulate the m6A 

18 level in vivo, which plays an important role in plant growth, development and response to abiotic 

19 stress. The confirmed m6A demethylases in Arabidopsis thaliana include ALKBH9B and 

20 ALKBH10B, both belonging to the ALKB family. In this study, ALKB family members were 

21 screened in sugar beet genome-wide database, and their conserved domain, gene structures, 

22 chromosome location, phylogeny and other factors were analyzed. The results showed that 

23 almost all BvALKB proteins contained the conserved domain of 2OG-Fe II-Oxy. All the proteins 

24 were classified into five groups, each of which had similar motifs and gene structures. Three 

25 Arabidopsis m6A demethylase homologous proteins were of particular concern. Almost all genes 

26 were up-regulated or down-regulated to varying degrees under salt stress, especially the uxaj 

27 gene homologous to ALKBH10B, which was significantly up-regulated, suggesting that the 

28 genes were in response to salt stress. This study provides a theoretical basis for further screening 

29 of m6A demethylase in sugar beet, and also lays a foundation for studying the role of ALKB 

30 family proteins in growth, development and response to salinity stress.

31
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33

34 Introduction

35 N6-methyladenosine(m6A) is the most abundant modification in mRNA among all higher 

36 eukaryotes , manifested as methylation at the sixth N of adenosine , which has been a hot spot of 

37 epigenomic studies in recent years(Huang & Yin., 2018). Previous studies have shown that m6A, 

38 including methytransferase complex (METTL3, METTL14, WTAP, etc.), demethylase(FTO, 

39 ALKBH5, etc.) and RNA binding proteins (YTHDF1/2/3, YTHDC1/2, etc.) (Desrosiers, 
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40 Friderici K & Rottmanl, 1974; Ortega et al., 2003; Jia et al., 2011), is a reversible and dynamic 

41 co-regulation process(Miao et al., 2020). In animals, genes encoding m6A-related proteins have 

42 been identified and characterized(Wei, Gershowitz & Moss, 1976; Levis & Penman, 1978), and 

43 their important roles in animal development and in coping with different environments have been 

44 demonstrated, but the function of these proteins in plants is only now being revealed. m6A is 

45 generally enriched near the stop codon and the 3 'UTR, as well as at the long introns and 

46 transcription start sites(Meyer et al., 2012), which are common in mammals. m6A is found to be 

47 enriched near the start codon in Arabidopsis thaliana, which may play a role in the plant-specific 

48 pathway (Luo et al., 2013; Wan et al., 2015). A recent explosion of molecular studies centered 

49 on m6A methylation has revealed its role in eukaryotic transcriptome regulation, RNA stability, 

50 and translation efficiency(Niu et al., 2013; Pan, 2013; Yue et al., 2019). Some proteins are 

51 involved in regulating the formation of plant cells and tissues(Zhong et al., 2008; Shen et al., 

52 2016; Bhat et al., 2020; Scutenaire et al., 2018), while others regulate the expression of drought 

53 and high temperature signal related genes in plants(Zhao X, 2014; Lu et al., 2020), which play a 

54 significant role in plant stress resistance.

55 The reversibility of m6A is achieved by demethylases, which was confirmed in the paper by 

56 He et al(Jia et al., 2011). Proteins identified as m6A demethylases belong to the ALKB family 

57 and contain highly conserved synthase-like domains. m6A demethylases found in mammals 

58 mainly include obesity-related genes FTO and ALKBH5 (Jia, Fu & He, 2013; Liu & Jia, 2014). 

59 The unique C-terminal long loop structure of FTO may determine its function of promoting 

60 protein-protein or protein-RNA interactions. Compared with FTO catalyzed m6A to A through 

61 intermediates, ALKBH5 could directly catalyze m6A to A(Mauer et al., 2017; Wei et al., 2018). 

62 Due to differences in tissue specificity and substrate, FTO and ALKBH5 play different roles in 

63 mRNA processing and metabolism. Studies have shown that FTO can regulate the binding of 

64 precursor RNA with splicing factor SRSF2 to affect its splicing maturation, and ALKBH5 is 

65 related to the nuclear transport mRNA (Zhao et al., 2014).

66 Bioinformatics analysis revealed that there were 13 ALKB homologous proteins in 

67 Arabidopsis, among which ALKBH9A, ALKBH9B, ALKBH9C, ALKBH10A and ALKBH10B 

68 had the most similar amino acid sequence to ALKBH5. Proteins that have been confirmed as 

69 m6A demethylases include ALKBH9B and ALKBH10B. ALKBH10B is highly abundant in all 

70 tissues, especially in flowers. ALKBH10B only has a specific catalytic function on m6A 

71 modified mRNA, and experiments have shown that it can mediate the early flowering transition 

72 by regulating the demethylation of FT, SPL3 and SPL9(Duan et al., 2017). As the only ALKBH5 

73 homologous protein in the cytoplasm, ALKBH9B was responsible for removing N6-

74 methyladenosine from ssRNA in vitro and participating in mRNA silencing or degradation. In 

75 addition, it also plays a role in plant protection against specific viral pathogens, and through 

76 interaction with viral cap protein, modulates the m6A demethylation modification of the AMV 

77 genome to affect its life cycle and infection capacity (Martínez-Pérez et al., 2017), but has no 

78 effect on the activity of cucumber mosaic virus. m6A demethylase has not been found in other 

79 plants.
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80 Previous studies have demonstrated the role of some ALKBH members in plant growth and 

81 development. The stress response of plant demethylase was mainly studied in model plant 

82 Arabidopsis. ALKBH9A was highly expressed in roots under salt stress, and ALKBH10A was 

83 significantly down-regulated under heat stress( Růžička et al., 2015). Under drought, cold or 

84 ABA treatment, ALKBH1 levels were signicantly up-regulated, while ALKBH6, ALKBH8B 

85 and ALKBH10A expressions were decreased(Hu, Manduzio & Kang, 2019), indicating that 

86 ALKBH members may play an important role in abiotic stress. In recent studies, it was found 

87 that ALKBH6 could bind to m6A marked mRNA and remove the mark n Arabidopsis, which 

88 may be a potential m6A demethylase. Under drought or heat stress, the survival rate of the 

89 ALKBH6 mutant was lower than that of the wild type, but not under salt stress. In addition, 

90 ALKBH6 affected ABA response by regulating the expression of genes related to ABA 

91 signaling(Huong, Ngoc & Kang, 2020). These results suggest that RNA demethylation plays a 

92 crucial role in plant responses to abiotic stress.

93 Sugar beet is one of the most abundant sugar-producing crops, and its yield and quality are of 

94 great significance to agricultural production. However, the soil salinization in China is serious, 

95 and the saline-alkali land highly coincides with the sugar beet production area. In addition, 

96 although the sugar beet has a certain salt tolerance, the degree of salt tolerance is limited, and the 

97 seed germination and seedling growth are greatly affected, which is bound to severely damage 

98 the sugar industry. Therefore, the analysis of sugar beet m6A will be helpful to understand its 

99 transcriptional modification and expression regulation, and will be of great benefit to reveal its 

100 salt-tolerant mechanism and to cultivate new stress resistant strains. m6A demethylase is 

101 involved in the response of abiotic stress(Hu et al., 2021), so far there has been no specific 

102 analysis of sugar beet salt stress. In this study, bioinformatics analysis of m6A demethylase was 

103 carried out based on the beet genome database, and the expression level of m6A demethylase in 

104 different parts of beet under salt stress was analyzed to determine the genes related to salt 

105 treatment, so as to provide theoretical basis for breeding beet varieties.

106

107 Materials & Methods

108 Materials

109 The salt-tolerant strain ‘O68’ of beet was used as the experimental material in this 

110 experiment(Shi et al., 2008). The seeds were soaked under running water for 12 h, then 

111 disinfected with 75% ethanol and washed aseptic for 3 times. The seeds were sown into the wet 

112 sponge and cultured in the dark at 24 h for 2 days. After germination, it was transferred to a 

113 culture pot containing nutrient solution (light for 16 h, dark for 8 h). After the growth of three 

114 pairs of true leaves, 300 mM NaCl solution was used to replace the nutrient solution for 24 h, 

115 and the other conditions remained unchanged. The control group was set without salt treatment. 

116 After the salt stress, leaves and roots were sampled, and immediately precooled in liquid nitrogen 

117 and stored in a refrigerator at -80 oC until analysis.

118

119 Screening and identification of sugar beet m6A demethylase 
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120 The whole genome database of sugar beet was published  

121 (http://bvseq.molgen.mpg.de/index.shtml). The seed sequence of the demethylase conserved 

122 domain 2OG-Fe II-oxy(PF13532) was downloaded from Pfam. The e-value < 1e−5 was set on 

123 HMMER(http://www.hmmer.org/), and the beet genome-wide database was searched. Pfam 

124 online tool was used to analyze the domain of candidate proteins, and the proteins with the 

125 conserved domain were screened out. DNAMAN7.0 was used to multiple sequence alignment of 

126 candidate proteins, and Weblogo was used for conservative domain identification 

127 (http://weblogo.berkeley.edu/logo.cgi).

128

129 Bioinformatics analysis of ALKB family

130 ExPASY (https://web.expasy.org/protparam/) was used to analyze physical and chemical 

131 properties of proteins, including the average molecular weight, isoelectric point, the average 

132 number of amino acids, etc(Gasteiger et al., 2003). Protein subcellular localization was predicted 

133 by CELLO (http://cello.life.nctu.edu.tw/). Mapchart was used to map the position of genes on 

134 chromosomes. MEME (http://meme-suite.org/tools/meme) was used to predict protein 

135 motifs(Bailey et al., 2006), and the number of searching motifs was set to 20, with other 

136 parameters for tacit recognition.   Gene intron and exon structures were analysis in 

137 Splign(https://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi?textpage=online&level=form). A 

138 phylogenetic tree (1000 replicates) was constructed by neighbor-joining method using MEGA7 

139 for protein sequence progression and multi-sequence alignment between Arabidopsis and sugar 

140 beet(Kumar, Stecher & Tamura, 2016).

141

142 Expression analysis of BvALKB under salt stress

143 Sugar beet samples collected after salt stress treatment were quickly frozen in liquid nitrogen 

144 with a mortar and pestle, and ground into a fine powder. Total RNA was extracted using Trizol 

145 reagent and the concentration of RNA was determined using the MicroDrop spectrophotometer. 

146 Total RNA was reverse transcribed into cDNA by using PrimeScript ™ II 1st Strand cDNA 

147 Synthesis Kit(TaKaRa, Japan). In order to detect the gene expression level, qRT-PCR was 

148 performed using the CFX96 real-time system and the iTaqTM Universal SYBR Green Supermix 

149 Kit(BIO-RAD, USA). The primers were designed using Primer 5 and the sequences were listed 

150 in Table 1. UBQ5, PP2A and 25S RNA were used as internal controls. All experiments were 

151 repeated at least three times. Data analysis was calculated by 2−△△Ct method, and the relative 

152 expression of each gene was expressed by mean±standard deviation.

153

154 Results

155 Screening and identification of sugar beet m6A demethylase 

156 The seed sequence of the conserved domain (PF13532) was downloaded from Pfam and 

157 searched in the beet genome database by HMMER. A total of 12 homologous proteins were 

158 screened. The e-value of all the other proteins was less than 1e-5 except uxaj, which was 0.016. 

159 Among them, kacr.t1/t2 and swwm.t1/t2 are two transcriptional variants of kacr and swwm, 
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160 respectively, their corresponding proteins are consistent, so they are not discussed separately. 

161 The domain markers of candidate proteins analyzed online by Pfam are shown in Fig. 1. Except 

162 uxaj, all the 9 candidate proteins have complete or partial 2OG-Fe II-Oxy domain, indicating that 

163 these proteins are highly conserved. In terms of domain distribution, the domains of eskg and 

164 njrf were located in the middle, the domains of sqec were located in the front, and the domains of 

165 other proteins were all located in the end. The RRM domain of pgse was related to mRNA and 

166 rRNA processing, RNA output and RNA stability by query. However, due to low sequence 

167 similarity, the e-value of uxaj in Pfam database comparison is 0.023, and it has a high possibility 

168 of possessing the 2OG-Fe II-Oxy domain, so it will be regarded as a member of this family for 

169 subsequent analysis.

170 As shown in Fig. 2, the alignment results of DNAMAN7.0 showed certain homology but low 

171 conservatism in the domain sequences. The homology was very high at sites 162, 212, 215, 222, 

172 255, 259, etc, which might be related to the function of the domain and amino acids at these 

173 specific locations. Among the 10 candidate proteins, 6 proteins were confirmed to belong to 

174 ALKB family by BLAST comparison with NCBI, while ryeg, pkhc, njrf and uxaj were not 

175 described before and belonged to new ALKB family members. This is shown in Table 2.

176

177 Analysis of physicochemical properties of BvALKB proteins

178 The results of physical and chemical properties analysis ExPASY showed that the average length 

179 of the coding region of 10 genes was 1260 bp (783-1755 bp), the average number of amino acids 

180 encoding proteins was 416 (260-584), the average molecular weight was 46.41 kDa (28.91-64.97 

181 kDa), and the average isoelectric point was 7.12 (5.11-9.02). This is shown in Table 3.

182

183 Chromosomal localization of genes

184 The suagr beet has nine pairs of chromosomes. As shown in Fig. 3, chromosome localization 

185 analysis showed that each gene tended to be dispersed, and members of this family were found 

186 on chromosomes 3 to 8, while ryeg, swwm and pkhc were concentrated on chromosome 7. uxaj 

187 has no specific location information and is only shown on chromosome 7, probably located in the 

188 gap region of fragments splicing from whole gene sequencing.

189

190 Phylogenetic relationships and gene structures analysis of BvALKB

191 Multiple sequence alignment was performed on 14 ALKB family proteins of Arabidopsis and 10 

192 proteins of sugar beet using MEGA7, and the alignment diagram of protein local domain was 

193 shown in Fig. 4. For the convenience of observation, proteins with high sequence similarity were 

194 compared together, and it could be seen that the reason for the low homology of each domain 

195 might be that the domain similarity of different subclasses was not high, and they were the same 

196 only at some special sites.

197 Then a phylogenetic tree (1000 replicates) was constructed using neighbor-joining method to 

198 observe the evolutionary relationship between Arabidopsis and sugar beet, as shown in Fig. 5. It 

199 could be seen that most of the bootstrap values are greater than 70, indicating high reliability. All 
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200 the proteins were divided into five categories: Class I(AtALKBH9-like) includes njrf and eskg, 

201 which are similar to AtALKBH9; Class II(AtALKBH10-like) only contains uxaj, which is 

202 similar to AtALKBH10; Only one BvALKB protein belongs to Class III(AtALKBH2-like); 

203 Class IV(AtALKBH6/8-like) consists of sqec, swwm and pgse; Three members are assigned to 

204 Class V(AtALKBH1-like), including huzh, ryeg and pkhc. Arabidopsis ALKBH9B and 

205 ALKBH10B in the first two classes have been confirmed to be m6A demethylases, so njrf, eskg 

206 and uxaj are likely to also have demethylation functions, which should be focused on.

207 The structure of each type of gene was labeled and plotted, as shown in Fig. 6. All genes 

208 contain introns and are broken genes. Generally speaking, genes belonging to the same protein 

209 also show similar intron and exon distribution in gene structure. The njrf and eskg of Class I 

210 have 6 exons, and the ryeg and pkhc of Class V have 4 exons, which are due to their sequence 

211 similarity. sqec and pgse in Class IV are similar in structure, although the number of exons is 

212 different. Other genes, such as swwm and huzh, are more or less different in structure from 

213 similar genes.

214

215 Motifs analysis and subcellular localization prediction of BvALKB proteins

216 Set the expected number of searching motifs as 20 on MEME, and the search results are sorted 

217 from small to large by e-value, as shown in Figs. 7 and 8. In general, almost all of the 10 proteins 

218 except uxaj have motifs 1, 2, 4, and 8, which are probably important components of the 2OG-Fe 

219 II-Oxy domain. Proteins belonging to the same Class had similar motif composition. The 

220 homologous proteins njrf, eskg and uxaj of ALKBH9B/10B in Arabidopsis were different from 

221 other protein motifs in that they were closely linked to motif 3 and 6, which was speculated to be 

222 related to demethylation function.

223 The scores of different locations of CELLO predicted proteins showed that most of the 

224 proteins were located in the nucleus and mainly exercised the function of demethylation in the 

225 nucleus. Individual proteins such as uxaj was located in the cytoplasm, and sqec was located in 

226 the cytoplasm and extracellular, indicating that they may perform other extracellular functions.

227

228 Quantitative analysis of BvALKB genes in sugar beet under salt stress

229 m6A plays an important role in response to abiotic stresses. In order to understand the changes of 

230 potential m6A demethylation genes in sugar beet under salt stress, we compared the expression 

231 level of the genes under normal condition and salt stress. The phenotypic changes of sugar beet 

232 cultured to three pairs of true leaves were observed by 300 mM salt stress, and the expression of 

233 each gene was analyzed by qRT-PCR.

234 The results are shown in Figs. 9 and 10. In leaves, all the other genes were up-regulated or 

235 down-regulated to varying degrees except huzh. pkhc, kacr and uxaj were up-regulated, 

236 especially uxaj was highly up-regulated. ryeg, pgse, eskg, sqec, njrf and swwm were down-

237 regulated, and swwm was significantly down-regulated. In root, huzh, ryeg, eskg, njrf and swwm 

238 were up-regulated, while the other five genes were down-regulated. pkhc, kacr and pgse were 
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239 down-regulated significantly. Different expression levels in leaves and roots suggest that the 

240 expression of these genes is tissue-specific.

241

242 Discussion

243 Soil salinization has become a global problem. In China, saline-alkali land is mainly distributed 

244 in northwest, northeast and north China, and highly coincides with sugar beet production area, 

245 which puts forward higher requirements for sugar beet salt tolerance. Previous studies have 

246 shown that ALKB family proteins are involved in plant growth and development and abiotic 

247 stress processes, especially the proteins confirmed as m6A demethylase. However, the ALKB 

248 family members in sugar beet have not been studied. Therefore, bioinformatics and quantitative 

249 methods were used to study the response of ALKB proteins in sugar beet under salt stress and 

250 the theoretical basis for screening m6A demethylase in sugar beet was put forward.

251 Through the beet genome-wide analysis, we found 12 BvALKB family proteins that were 

252 transcribed by 10 genes. The number was similar to Arabidopsis (14) and rice (12), but far less 

253 than which of wheat (29) and quinoa (27) (Yue et al., 2019), which might be caused by different 

254 copy number during plant evolution.

255 Phylogenetic analysis can quickly identify protein homology. The phylogenetic tree of 

256 BvALKB proteins and AtALKB proteins was constructed by MEGA using neighbor-joining 

257 method. Proteins with high homology to AtALKBH9B/10B could be considered as potential 

258 m6A demethylase. All the proteins were divided into five categories. The Class I included 

259 AtALKBH9A/9B/9C proteins, and two BvALKB proteins (njrf and eskg) belonged to this group. 

260 The Class II included AtALKBH10A/10B proteins, with only one beet protein (uxaj) belonging 

261 to it. Therefore, the transcriptional proteins of njrf, eskg and uxaj are likely to be potential m6A 

262 demethylases, which play an important role in the response of sugar beet to salt stress. Only one 

263 BvALKB protein belongs to Class III and may be involved in protecting plants from DNA 

264 methylation damage(Meza et al., 2012). Three BvALKB proteins belong to Class IV, which may 

265 participate in tRNA modification and DNA repair(Leihne et al., 2011; Zdżalik et al., 2014). 

266 Three BvALKB proteins belong to Class V, associated with redox and tRNA modifications in 

267 cytoplasm and mitochondria ( Kawarada  et al., 2017). The exon and intron analysis of the genes 

268 showed that the number of exons in the same class of genes is basically the same and the 

269 distribution is similar, which suggesting their homology.

270 The subcellular localization of the protein was predicted, indicating that most proteins were 

271 located in the nucleus, while some proteins were located in the cytoplasm and extracellular, 

272 which might play different roles in transcriptional regulation. All the proteins have the 2OG-Fe 

273 II-Oxy domain, suggesting that m6A is evolutionarily conservative.

274 The structure of a protein determines its function, and a specific structure has a specific 

275 biological function. Motif analysis of BvALKB proteins showed that motif 1, 2, 4 and 8 

276 constituted the conserved domain, and the location of these motifs was consistent with that of the 

277 previously identified domain. Due to the conservatism of evolution, the composition of the 

278 motifs of ALKB proteins in a group is basically similar. Notably, the three homologous proteins 
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279 to AtALKBH9B /10B contained unique motif 3 and motif 6, suggesting that they may be 

280 involved in demethylation function.

281 The expression profiles of sugar beet leaves and roots under normal and salt stress conditions 

282 were analyzed. In leaves, all other genes except huzh were induced or inhibited by salt stress. In 

283 roots, five genes were up-regulated while five genes were down-regulated, and three genes were 

284 highly down-regulated. Except for pgse and sqec, the other eight genes showed opposite 

285 expression trends in leaves and roots, suggesting tissue specificity of gene regulation. We paid 

286 the most attention to the gene expression levels of three homologous proteins. njrf and eskg were 

287 down-regulated in leaves, while uxaj was significantly up-regulated, and the opposite trend was 

288 observed in roots. uxaj is homologous to AtALKBH10B, although the e-value was minimal in 

289 the initial HMMER search. The significant changes in uxaj expression level indicate our strong 

290 concern in subsequent experiments and provide a basis for the study of salt tolerance of sugar 

291 beet.

292

293 Conclusions

294 This study identified 12 sugar beet ALKB family proteins. We used bioinformatics method to 

295 analyze its gene structures, chromosome location, physical and chemical properties of protein, 

296 motifs, subcellular localization and the phylogenetic tree construction etc, and quantitatively 

297 comparing the expression of BvALKB under normal conditions and salt stress. In addition, 

298 homologous Arabidopsis m6A demethylase proteins were screened and identified as potential 

299 sugar beet m6A demethylase, which laid a foundation for further research on its function and 

300 provided ideas for the cultivation of new salt-tolerant strains.

301

302
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Figure 1
Conservative domain analysis of BvALKB proteins.
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Figure 2
Conserved domain of BvALKB proteins.
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Figure 3
Chromosomal localization of BvALKB genes.

The unit of gene position is Mb.
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Figure 4
Multiple sequemce alignment between BvALKB and AtALKB proteins.

Different colors represent residues with different characteristics.
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Figure 5
Phylogenetic relationships of BvALKB and AtALKB proteins.

The number on the node represents the confidence value of the branch.The gene class is
represented in a different color on the right side of the rootless tree.
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Figure 6
Gene structures of BvALKB genes.

Exon/intron structures of the BvALKB genes are represented in diffenrent ways. Exons and
introns are represented by yellow box and black lines, respectively.
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Figure 7
Motifs in BvALKB proteins.

The motifs were arranged according to the e-value from small to large, the letters in each
motif were amino abbreviation. The size of the letter represented the saliency of the amino
acid in the motif. The larger the letter, the higher the saliency, which is, the higher the
frequency at which the amino acid appears in the same position in the same motif in
different sequences.
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Figure 8
Analysis of BvALK proteins motif.

The different color blocks correspond to different motifs. The width of the color block is the
length of the motif. The height of the color block represents the saliency of the motifs in the
sequence. The higher the saliency, the more able to match the predicted motifs.
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Figure 9
Expression analysis of BvALKB genes in leaf in response to salinity stress.
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Figure 10
Expression analysis of BvALKB genes in root in response to salinity stress.
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Table 1(on next page)

Primer sequences of BvALKB genes
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1 Table 1 Primer sequences of BvALKB genes

Gene Forward primer(5’-3’) Reverse primer(5’-3’)

UBQ5 TCTGCTGGAAGAGCCTTTGG TTGTCGCCGCTCTTTACACT

25S RNA AGACAAGAAGGGGCAACGAG CACATTGGACGGGGCTTTTC

BvPP2A TCGTGTCCAAGAAGTGCCTC CACAACGGTCATCAGGGTCA

huzh AGGGAATGCTTTCATGGGGT CTCGAACCAAGCTATCCGGG

ryeg GTACTTCCAATAAAACGTCACCGT GTTTTCAGATGAATCACATGTGCCA

pkhc TAGCTCGGAACAGGCGAAAA TGTGGAATTGCCGGTGGTAT

kacr CATATTCTCCAGGCGGTCCA GGCGTTCACAACCAAAGGAA

pgse AGTCCGGAGGAGTCCAGAAA AGGTCCTGTTCTGACCTTGC

eskg AAACGGCAGCTTATGGAACG ATGGGAGGCAAGGGATCAAC

sqec GGCTTTACAGTCGGCTCTGT GTCAGCCAAGGAGGCAAGTC

njrf TTCCCTTGCCTGTTGGATCG GCAAAATACACAGGCCGCTT

swwm TACCAGCCAGGTGAGGGTAT CGAGCATCGCCTGACATGAT

uxaj GGTGGGAAACAAGGGAGGAG CCTCATGTGAGCCTGTGTCA

2
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Table 2(on next page)

Basic information of BvALKB.
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1 Table 2 Basic information of BvALKB.

BvALKB name NCBI Reference 

Sequence

Gene ID Description

Bv6_150770_huzh.t1 XM_010684461.2 104897561 PREDICTED: Beta vulgaris subsp. 

vulgaris alpha-ketoglutarate-

dependent dioxygenase alkB 

(LOC104897561)

Bv7_157650_ryeg.t1 XM_010686965.2 104899719  PREDICTED: Beta vulgaris subsp. 

vulgaris hypothetical protein

Bv7_169620_pkhc.t1 XM_010685256.2 104898211 PREDICTED: Beta vulgaris subsp. 

vulgaris uncharacterized 

LOC104898211

Bv8_184320_kacr.t1/t2 XM_010688312.2 104900793 PREDICTED: Beta vulgaris subsp. 

vulgaris DNA oxidative demethylase 

ALKBH2

Bv5_102160_pgse.t1 XM_010678383.2 104892444 PREDICTED: Beta vulgaris subsp. 

vulgaris alkylated DNA repair protein 

alkB homolog 8

Bv3_051230_eskg.t1 XM_010673069.2 104888178 PREDICTED: Beta vulgaris subsp. 

vulgaris RNA dementhylase 

ALKBH5

Bv4_083160_sqec.t1 XM_010676670.2 104891030 PREDICTED: Beta vulgaris subsp. 

vulgaris alpha-ketoglutarate-

dependent dioxygenase alkB homolog 

6

Bv6_130050_njrf.t1 XM_010681565.2 104895138 PREDICTED: Beta vulgaris subsp. 

vulgaris uncharacterized 

LOC104895138

Bv7_164580_swwm.t1/t2 XM_010686203.2 104899068 PREDICTED: Beta vulgaris subsp. 

vulgaris alkylated DNA repair protein 

alkB homolog 8

Bv7_179400_uxaj.t1 XM_010698038.2 104908870 PREDICTED: Beta vulgaris subsp. 

vulgaris hypothetical protein

2
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Physical and chemical properties analysis of BvALKB proteins
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1 Table 3 Physical and chemical properties analysis of BvALKB proteins

BvALKB name ORF(bp) Amino acid Molecular weight(Da) PI

huzh 1053 350 39477.03 7.13

ryeg 1755 584 64923.52 7.15

pkhc 1656 551 60969.22 8.74

kacr 1018 305 34594.96 9.02

pgse 1062 353 39620.72 6.53

eskg 1335 444 49776.81 8.86

sqec 783 260 28912.06 5.70

njrf 1464 487 54949.39 6.62

swwm 834 277 30792.26 5.11

uxaj 1641 546 60084.61 6.30

2
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