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ABSTRACT
The arrangement of nucleotides within a bacterial chromosome is influenced by
numerous factors. The degeneracy of the third codon within each reading frame
allows some flexibility of nucleotide selection; however, the third nucleotide in the
triplet of each codon is at least partly determined by the preceding two. This is most
evident in organisms with a strong G+C bias, as the degenerate codon must con-
tribute disproportionately to maintaining that bias. Therefore, a correlation exists
between the first two nucleotides and the third in all open reading frames. If the
arrangement of nucleotides in a bacterial chromosome is represented as a Markov
process, we would expect that the correlation would be completely captured by a
second-order Markov model and an increase in the order of the model (e.g., third-,
fourth-. . . order) would not capture any additional uncertainty in the process. In
this manuscript, we present the results of a comprehensive study of the Markov
property that exists in the DNA sequences of 906 bacterial chromosomes. All of the
906 bacterial chromosomes studied exhibit a statistically significant Markov prop-
erty that extends beyond second-order, and therefore cannot be fully explained by
codon usage. An unrooted tree containing all 906 bacterial chromosomes based on
their transition probability matrices of third-order shares∼25% similarity to a tree
based on sequence homologies of 16S rRNA sequences. This congruence to the 16S
rRNA tree is greater than for trees based on lower-order models (e.g., second-order),
and higher-order models result in diminishing improvements in congruence. A
nucleotide correlation most likely exists within every bacterial chromosome that
extends past three nucleotides. This correlation places significant limits on the num-
ber of nucleotide sequences that can represent probable bacterial chromosomes.
Transition matrix usage is largely conserved by taxa, indicating that this property
is likely inherited, however some important exceptions exist that may indicate the
convergent evolution of some bacteria.

Subjects Bioinformatics, Computational Biology, Genomics, Mathematical Biology,
Molecular Biology
Keywords Sequencing, Markov model, rRNA, Bacteria, Topology

INTRODUCTION
For more than twenty years, the nucleotide composition of bacterial genomes has been

the focus of many studies attempting to identify patterns in nucleic acid sequences. One

of the first analyses of nucleotide sequences by Muto and Osawa noted that nucleotide
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biases exist and are likely influenced by selection (Muto & Osawa, 1987). Later work by

Kariin and Burge proposed that a bacterial signature could be defined by certain statistical

properties of complete sequences (Kariin & Burge, 1995). They discovered that correlations

exist between neighboring nucleotides (dinucleotides) in bacteria, and that dinucleotide

frequencies can be used as a genomic signature which may result from: (1) the chemistry of

dinucleotide stacking; (2) DNA conformational tendencies; (3) species-specific properties

of DNA replication and repair mechanisms; (4) the selection of restriction endonucleases

(Karlin, Campbell & Mrázek, 1998); and (5) codon usage, as it effects translational

efficiency (Gouy & Gautier, 1982; Grantham et al., 1981; Sharp et al., 1993). These and other

pioneering studies were narrow in scope because, at that time, available data was limited to

single gene sequences, partial chromosomes, and the complete genomes of a small number

of model organisms, such as Escherichia coli K-12 (Blattner et al., 1997), Haemophilus

influenzae (Fleischmann et al., 1995) and Bacillus subtilis (Kunst et al., 1997). Nevertheless,

these analyses were instrumental in laying the foundation for statistical genomics. In this

early period, researchers were forced to focus on very specific phenomena or draw broad

conclusions from data sets that were insignificant when compared to the size of the global

metagenome. The situation is beginning to change. Genome sequences are now available

for more than 2,000 bacterial species, which may represent as much as ∼0.002% of all

bacteria (Curtis, Sloan & Scannell, 2002; Schloss & Handelsman, 2004). With this expanded

data set we can begin to address new types of questions. For example, we can begin to

identify sequence features that may constrain nearly all bacterial genomes, and thereby

describe a set of heuristics that may eventually help define the statistical boundaries of what

constitutes a bacterium.

One established method used to model genome sequences is the finite state Markov

chain model (see Methods) (Almagor, 1983; Avery, 1987; Blaisdell, 1985; Brendel, Beckmann

& Trifonov, 1986; Gelfand, Kozhukhin & Pevzner, 1992). Markov models are defined by

a transition matrix, which stores the conditional probabilities, in the case of a finite

sequence, of the kth symbol following the previous k− 1 symbols in a word of length k;

they are akin to word frequency counts. A Markov chain model considers the transitions

to be a stochastic process, defined by the conditional probabilities of each transition.

The conditional probabilities can either be estimated or calculated precisely based on

the sequence, as is our case. This differs from a frequency analysis in an important way;

the transition probabilities are conditional, representing the probability of the transition

given the previous states (previous k− 1 nucleotides) and so it is not a measure of the

frequency for a particular sequence. Applying this type of analysis to a complete genome

sequence provides information about dynamic and stationary statistics that cannot be

captured from a single gene or set of genes. One of the first applications of Markov models

to the analysis of genetic sequences was their use as a method to identify sequence bias.

Pioneering work by researchers including Phillips (Phillips, Arnold & Ivarie, 1987), Rocha

(Rocha, Viari & Danchin, 1998), and Burge and Karlin (Burge, Campbell & Karlin, 1992)

established that Markov analysis of DNA sequences can be useful in identifying over- and

under-represented sequences. Work by Elhai (2001) compared several different statistical
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methods of finding bias in the relative abundance of oligonucleotides in DNA sequences.

All these methods were based on comparing observed oligonucleotide frequencies to their

expectation under several models, and all concluded that Markov model based methods

underperformed some more complex methods, when the purpose of the method was to

determine abundance.

Determining relative abundance is not the only reason for examining DNA sequences,

however, and when looking for other patterns an empirically derived Markov model does

contain valuable information. For example, lateral gene transfer events produce a localized

nucleotide bias that can be detected with variations of Markov models, although they

must be recent events, as the bias tends to disappear in a short period of evolutionary

time (Lawrence & Ochman, 1997; Reva & Tummler, 2004). Many studies have examined

this phenomenon and have concluded that the lateral transfer of genetic material is a very

important factor in bacterial evolution (Campbell, 2000; Doolittle, 1999; Jain, Rivera &

Lake, 1999; Koonin, Makarova & Aravind, 2001; Woese, 1998). This conclusion may seem

obvious now but, at the time, it challenged many assumptions about vertical descent,

the meaning of phylogenetics, and how phylogenies are constructed (Ludwig & Klenk,

2005). This and similar Markov model based methods have also revealed niche and habitat

influences in the genomic composition of bacteria at the G+ C content level (Foerstner

et al., 2005), the amino-acid level (Suen, Goldman & Welch, 2007), and the whole genome

level (Perry & Beiko, 2010). One of the earliest gene prediction methods (Borodovsky &

McIninch, 1993) used non-homogenous Markov models to estimate the probability that a

particular location along the genome of an organism contains genetic information. Clearly,

Markov models have a purpose in evaluating patterns in DNA sequences, although they

may not always be the best choice.

Many studies have explored the use of Markov models to infer phylogenies, as an

alternative to methods based on multiple sequence alignment. Höhl & Ragan (2007)

compared several alignment-free methods for inference of phylogeny based on bacterial

amino acid sequences. They made two important conclusions: (1) methods based on

k-mer frequencies are generally inferior to approaches based on maximum-likelihood

distance estimates of multiply aligned sequences and; (2) there is an optimal word

length (k) which produces a stable inferred tree, beyond which there is only a negligible

improvement in stability. A similar conclusion was reached by Jun et al. (2010) and Dai &

Wang (2008) using proteome sequences of prokaryotes. Again, it must be noted that these

studies were looking for optimal ways to identify a particular set of data; their conclusions

do not mean that Markov methods are inherently inferior. There is a significant amount

of information contained in the transition matrix of a bacterial genome beyond what

these studies were looking for, and the existence of an optimal word length indicates that

a lower-order Markov model can capture the majority of the information contained in

higher-order models. The application of finite state Markov chain models to identify

patterns that exist in bacterial genomes can help in understanding molecular change, in

developing molecular criteria for classification, and in exploring the boundaries of what

may (or may not) constitute a viable genome sequence.
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Sequenced bacterial genomes span a size range of approximately two orders of

magnitude, from Carsonella ruddii (∼0.15 MB) (Nakabachi et al., 2006) to Sorangium

cellulosum (∼13 MB) (Schneiker et al., 2007), and a range of %G+C content from a low

of∼17% in Carsonella ruddii to∼75% in Anaeromyxobacter dehalogenans (Sanford, Cole

& Tiedje, 2002). If we consider the set of all possible bacterial chromosomes to include

every closed circular DNA sequence that fits within these ranges, the number of distinct

chromosomal sequences would be overwhelming. Determining the subset of probable

bacterial chromosomes from the set of possible bacterial chromosomes is a problem whose

complexity is analogous to protein structure prediction. To begin addressing this problem,

we can apply heuristics based on biological phenomena considered to be ubiquitous. For

example, we might propose that a sequence must contain codons, open reading frames,

regulatory sequences, and a certain set of “essential” genes in order for it to be included

in the probable subset. Applying these kinds of heuristics renders the subset of probable

chromosomes much smaller that the set of possible chromosomes, but it would still be

an overwhelmingly large number. Also, the boundaries of the subset would not be hard,

since consensus on parameters such as the number of open reading frames and the list of

essential genes would be impossible.

An independent and complementary approach to developing heuristics to limit the

subset of probable bacterial chromosomes would be to base them on sequence patterns

identified either as ubiquitous or extremely rare. This type of heuristic would not rely on

a biological interpretation of sequence data, but rather on definable sequence patterns

that are highly likely or unlikely to occur in the population based on their appearance

within a representative sub-population. A few heuristics have already been proposed.

For example, Lawrence and Ochman summarized four salient features of prokaryotic

genomes (Lawrence & Ochman, 1997): (1) base composition varies widely among bacterial

species; (2) base composition is related to phylogeny; (3) base composition is relatively

homogeneous over the entire bacterial chromosome; and (4) within each species, the

first, second, and third positions of codons, as well as the genes for structural RNAs,

have characteristic base compositions. Once defined, these features can be explored and

parameterized into models capturing certain properties.

Despite limited available data, early studies made some very important observations.

Kariin et al. identified correlations between neighboring nucleotides (Kariin & Burge,

1995) (i.e., the probability of appearance of the nth nucleotide depends on the n− 1

nucleotides), and concluded that dinucleotide frequencies carry a phylogenic signal.

Goldman and others discovered that tri- and tetranucleotide correlations exist in bacterial

sequences (Goldman, 1993; Karlin, Campbell & Mrázek, 1998; Karlin, Mrázek & Campbell,

1997). Tetranucleotide frequencies have also been found to carry a phylogenetic signal,

and to reflect high-order information beyond third codon biases that are not present in

the analysis of single genes (Pride et al., 2003). The study by Pride et al. (2003) looked

at tetranucleotide usage conservation in 27 microbial genomes, and compared a tree

based on tetranucleotide usage departures to that of 16S rRNA trees. They concluded that

tetraucleotide usage patterns are conserved by taxa, and that usage departure is a measure
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of how far tetranucleodide frequencies diverge from the expectations under a null-model,

which in their case was designed to remove any sequence bias. This approach has been

useful in identifying under- and over-represented oligonucleotides (Almagor, 1983; Karlin,

Mrázek & Campbell, 1997; Schbath, Prum & De Turckheim, 1995).

MATERIALS AND METHODS
The complete DNA sequences and 16S ribosomal DNA sequences were collected for

906 closed bacteria from GenBank (Benson et al., 2004) (for a complete list see Text S1).

For organisms having multiple chromosomes, the major chromosome was selected as

representative of the genomic sequences of the respective organism. Our analysis indicates

that the DNA sequence of the major chromosome in bacteria has similar statistical

properties in regards to nucleotide probabilities as a sequence constructed by appending

all the chromosomes for that organism, excluding plasmids (data not shown). All software

developed for this work was written in C++, except where otherwise noted.

Constructing the 16S rRNA tree
The ribosomal DNA sequences for each of the 906 bacteria were obtained from GenBank,

and the DNA sequence corresponding to the 16S ribosome was written to a single FASTA

file. In organisms having multiple copies of 16S rRNA, the first copy relative to the 5′

direction was chosen as representative of the organism (Acinas et al., 2004). The 16S rRNA

sequences were aligned using MUSCLE (Edgar, 2004). Aligned 16S rRNA sequences

were bootstrapped with 100 replicates and transformed into distances using the F84

(Kishino & Hasegawa, 1989) model available in the Phylip package (Felsenstein, 2005).

We chose to use the F84 distance method because, unlike other methods (e.g., Jukes and

Cantor’s (Jukes & Cantor, 1969) and K80 (Kimura, 1980)), it allows for both unequal base

frequencies and unequal transition/transversion probabilities. The base frequencies and

transition/transversion probabilities are estimated from the data, and the distances can

be interpreted as a maximum likelihood estimate of the divergence time; this provides an

accurate representation of bacterial sequence dynamics. Each replicated distance matrix

was clustered using the Neighbor-joining method (Saitou & Nei, 1987). Neighbor-joining

was used because of its speed and accuracy when given a correct distance matrix. A

majority-rule consensus tree was calculated using Phylip (Phylip formatted tree available

as Text S2). Tree visualizations shown in this paper were produced using Dendroscope

(Huson et al., 2007) and ladderized right.

Constructing the transition tree
The frequency of each genomic subsequence and its reverse complement (3′ → 5′)

of length n appearing in each bacterial genome was explicitly counted. The transition

probabilities were estimated for the kth-order transition matrix (k= n− 1), for 0 ≤ k ≤ 5,

from the subsequence frequencies. The Euclidean distance was computed between each

transition matrix describing each of the 906 bacterial sequences for a given order of

Markov chain model. The Euclidean distances were clustered using the Neighbor-joining
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Figure 1 Percent symmetric difference of each order transition tree relative to the 16S rRNA tree (A)
and the zero-order transition tree (B). The greatest change in symmetric difference between the 16S
rRNA tree and the tree based on transition matrices occurs between 0th order and 3rd order, with only a
very small change thereafter. Similarly, the greatest symmetric difference between the 0th order transition
tree and higher-order trees becomes relatively asymptotic after the 3rd order.

Figure 2 Percent symmetric difference between subsequent orders of transition trees. The symmetric
difference between the subsequent order transition trees becomes relatively asymptotic after the 3rd|4th
order.

method available in the Phylip package (Phylip formatted tree available as Text S3). Tree

visualizations were produced using Dendroscope (Huson et al., 2007) and ladderized right.

Determination of tree similarity
A direct method of assessing tree similarity comes from set theory and is referred to as

the symmetric difference (Robinson & Foulds, 1981). The symmetric difference of a tree

structure is the total number of partitions that differ between the two trees. We used

the percent symmetric difference, which is the symmetric difference (Ds) divided by the

maximum symmetric difference (Dmax), with Dmax ≈ 2n− 6 for n-number of taxa. The

significance of Ds for a given number of taxa can be estimated empirically, and is shown to

be asymptotic, with a convergence rate dependent on n (Steel & Penny, 1993). For n = 30,

any Ds < (Dmax − 2) is significant, with p < 0.01. The symmetric difference method as

implemented in the Phylip package was used for the data presented in Figs. 1 and 2.
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Markov models of bacterial chromosomes
A chromosome sequence can be modeled as a finite state space Markov chain, with each of

the four nucleotides (A, T, G, C) represented by a single state with transition probabilities

PA, PT, PG and PC respectively. This representation is memoryless, in that the appearance

of any nucleotide at any position is completely independent of any other. This is also

referred to as a 0th order Markov model, and in this context can only capture biases in the

relative frequency of appearance of the nucleotides (e.g., G+C bias and A/T fraction bias).

The transition matrix, θ , for the 0th order Markov model describing the finite state space

Markov chain is:

θ = [PA,PT,PG,PC].

In higher-order Markov models, transition probabilities are conditional on the previous k

bases (for k > 0). For example, we can consider a 1st order Markov model with transition

probabilities PA|A, PT|A, PG|A, PC|A ···PG|C, PC|C, where Pi|j is the probability of the ith

nucleotide following the jth nucleotide. We can easily generalize this to describe the

transition matrix for a k-order Markov model representing a genomic sequence, with

θ = [i,j]4k
× 41.

TESTING FOR MARKOVITY
We adapted an existing framework that is rooted in information theory to estimate

the significance of a Markov property of order k. The framework tests for contingency

tables and calculates the value of the X2 statistic (Anderson & Goodman, 1957; Kullback,

Kupperman & Ku, 1962), which tests the null hypothesis that the sequence is a realization

of a stationary Markov chain of order k− 1, against the alternative hypothesis that it is a

realization of a k-order stationary Markov chain. The application of this method to DNA

sequences is discussed by Avery & Henderson (1999). For very long sequences, such as

chromosomal DNA, the resulting X2 statistic for lower-order Markov models is almost

guaranteed to be significant (p-value near zero). However, what can be assessed is the

change in value of the statistic as the order and degrees of freedom increases. In other

words, for increasing order k, we can observe the change in uncertainty between k and k− 1

order models in terms of the X2 statistic, and look for asymptotic behavior in its value. A

constant X2 value becomes less significant as the degrees of freedom increase. When the

statistic’s value is asymptotic in the presence of increasing degrees of freedom, the static

value will inevitably become insignificant. For these data in this paper, the value of the X2

statistic is significant for all sequences with k ≤ 3 (see S4 for a table of the statistics for each

chromosome considered in this work) and nearly asymptotic at k= 3 for the majority. Any

violations to the second observation are because of sequences with relatively short lengths,

high G+C bias, or some combination of the two.

RESULTS AND DISCUSSION
The goal of this work is not to devise a new or improved method of phylogenetic inference,

or to imply that Markov models are superior to other methods. Rather, our goal is to
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address the following three questions (1) is there a universal Markov property present in

whole bacterial DNA sequences; (2) to what extent (order) does this property hold true;

and (3) is the existence of the Markov property biologically relevant.

Using the complete nucleotide sequences of 906 bacteria, including its complement,

and excluding plasmids and minor chromosomes (Benson et al., 2004) (see Text S1 for a

complete list or organisms), we estimated the 0th–5th order transition matrices, describing

the respective order Markov chain model for each. The 5th order model intersects at

least two codons and, given the length of bacterial genomes, it is still short enough to

allow sufficient oligonucleotide frequencies to avoid sparse transition matrices. We then

calculated the Euclidean distance between each pair of transition matrices for each order

model (one distance matrix for each order Markov chain model for all chromosomes) and

produced a cladogram from the distances based on the Neighbor Joining method (Saitou &

Nei, 1987). We refer to this kind of tree as a “transition tree”.

Branching patterns of trees based on alignments of 16S ribosomal RNAs are an accepted

method to represent phylogeny (Fox et al., 1980; Woese & Fox, 1977). To see if this is also a

characteristic of the transition tree, we performed a comparison between each transition

tree and a 16S rRNA tree constructed in similar fashion (see Methods for a detailed

description). Briefly, 16S rRNA sequences for each of 906 bacteria were collected from

GenBank and aligned against one another using MUSCLE (Edgar, 2004). Alignments were

bootstrapped with replacement (Felsenstein, 1985), transformed into a distance matrix,

clustered using the Neighbor Joining method, and a cladogram was produced for visual

comparison.

Comparisons between the 16S rRNA and transition tree
topologies
Using the symmetric difference method (Robinson & Foulds, 1981) of comparing tree

topologies, we calculated the percent symmetric difference of each transition tree (1st–5th

order) relative to the 16S rRNA tree (Fig. 1B) and to the 0th order transition tree (Fig. 1A).

Previous research on the distribution of Ds from simulation data has shown it to be

asymptotic in nature, with convergence dependent on the number of taxa. These findings

are summarized in Steel & Penny (1993), and suggests that for trees with more than a

moderate number of taxa, any Ds < Dmax is significant, (e.g., for n = 30, any similarity

of more than a few partitions is very unlikely). Therefore, no similarity in topology is

predicted between randomly placed nodes in trees with a large number of taxa. As shown

in Fig. 1A, the congruence, (1− (Ds/Dmax))× 100, between the 0th order tree, which is a

function of G+C content alone, and the 16S rRNA tree is low (Ds/Dmax× 100= 96.7%).

However, as summarized by Steel and Penny, even this small difference from Dmax is

significant, and this suggests that there is some influence of G+C content reflected in the

16S rRNA tree. A similar conclusion can be reached by examining Fig. 1B. The percent

symmetric difference between the 0th order transition tree and the higher-order transition

trees is large (90.7%–93.5%), but even this small degree of congruence is considered

significant, and it reflects the influence of the 0th order model on the higher-order models.
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Interestingly, the effects of G+C content are rather stable beyond the 2nd order model,

in that the percent symmetric difference between the 0th order model and higher order

models (beyond 2nd order) does not change by a large amount (93.0%–93.5%). These

observations lead us to conclude that G+ C content bias has a real but relatively small

influence on both the 16S rRNA tree and the transition tree.

The symmetric difference between the 16S rRNA tree and each of the transition trees

decreases most between the 0th and 3rd orders (96.7%–75.5%), with little additional

decrease between the 3rd and 5th order (75.2%–74.8%). These data lead us to conclude

the following: (1) the 3rd order transition tree shares ∼25% similarity to the 16S rRNA

tree; (2) this congruence is greater than for trees based on lower-order models; (3) this

congruence is similar to trees based on higher-order models. These conclusions are further

supported by data presented in Fig. 2. We calculated the percent symmetric difference

between subsequent orders of transition trees and observed that from 3rd until 5th order,

each order transition tree shares approximately 65% of its partitions with its previous

and subsequent order trees. This leads us to conclude that large decreases in symmetric

difference between subsequent orders of transition trees stop after the 3rd order. Of course,

if we continued to increase the order of the Markov models indefinitely, the subsequent

tree topologies produced by k− 1 and k order models would eventually converge. This

is due to the increasingly sparse transition matrices. For a given sequence, the transition

matrix would approach the null set, with only two elements populated (that corresponding

to (1...n− 1) and to (2...n) for a sequence of length n) with a frequency count of 1.The

resulting distance matrix, based on the sparse transition matrices, will reach steady-state.

For any particular sequence, the complexity of the model necessary to achieve this

convergence depends on many factors, including sequence length and G+C content bias.

Convergence is inevitable, however, because it is inherent in the model. In other words, in

the most extreme case, we can always find a model of order equal to the sequence length

n− 1.

Data bias
Bias must be considered because it exists in the collection of sequenced bacteria. Some

genera (e.g., Escherichia, Streptococcus, and Bacillus) are overrepresented, while others are

underrepresented. We must therefore consider the possibility that the 16S rRNA tree and

the transition tree show a greater degree of congruence in more closely related species,

so that the overrepresented genera would inflate the overall congruence in topology

between the transition trees and the 16S rRNA tree. To determine if this effect exists,

four overrepresented genera, Escherichia (Höhl & Ragan, 2007 species), Streptococcus

(Kullback, Kupperman & Ku, 1962 species), Bacillus (Gelfand, Kozhukhin & Pevzner, 1992

species) and Burkholderia (Fox et al., 1980 species), totaling 119 species (∼13% of the data

collection) were chosen, and 16S rRNA and 3rd order transition trees were constructed.

This subset of species was selected to represent an exaggerated sequencing bias so that, if

the observed congruence between 16S rRNA trees and transition trees is partly due to this

bias, it should be amplified in this subset. Instead, the symmetric difference between these
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Figure 3 The symmetric difference between the 16S rRNA tree and the third-order transition
tree. Branches marked in red represent disagreement in topology between the trees.

trees was calculated as 76.7%, which is very close to the 75.5% measured using the entire

906 bacteria. We therefore conclude that sequence bias has no significant impact on these

results.

Topology of 16S rRNA tree versus 3rd order transition tree
The symmetric difference between the 16S rRNA tree and the 3rd order transition tree is

presented in Fig. 3 as the 16S rRNA tree, with branches in red representing disagreement

between it and the 3rd order transition tree. The 16S rRNA tree and 3rd order transition

tree from which Fig. 3 is derived are provided in supplementary materials (Text S2 and

Text S3, respectively). In Figs. 4–6, the taxa of interest are shown in red, with the 16S rRNA

tree on the left and the transition tree on the right. Comparisons are made relative to the

transition tree, with all organisms of a particular genera of interest accounted for in both

trees (as either a group member or outlier in the transition tree).
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Figure 4 A collection of Enterobacteriaceae consisting of Salmonella, Escherichia and Shigella as example of taxa which cluster similarly in the
16SrRNA and third-order transition trees. The genus of interest appear in red in the radial cladogram. A list of the organisms is given, with species
that are not included in the transition tree, but are included in the 16S rRNA tree in boldface type. A.macleodii Deep ecotype, H.baltica ATCC 49814,
I.loihiensis L2TR, K.koreensis DSM 16069, L.acidophilus NCFM, L.brevis ATCC 367, L.casei ATCC 334, L.delbrueckii bulgaricus, L.delbrueckii
bulgaricus ATCC BAA-365, L.fermentum IFO 3956, L.gasseri ATCC 33323, L.helveticus DPC 4571, L.johnsonii FI9785, L.johnsonii NCC 533,
L.plantarum, L.plantarum JDM1, L.reuteri DSM 20016, L.reuteri F275 Kitasato, L.rhamnosus GG, L.rhamnosus Lc 705, L.sakei 23K, L.saliv-
arius UCC118, Marinomonas MWYL1, M. mobilis JLW8, P.profundum SS9, P.necessarius asymbioticus QLW P1DMWA 1, P.necessarius STIR1,
P.atlantica T6c, P.haloplanktis TAC125, P.arcticum 273-4, P.cryohalolentis K5, Psychrobacter PRwf-1, S.degradans 2-40, S.amazonensis SB2B,
Shewanella ANA-3, S.baltica OS155, S.baltica OS185, S.baltica OS195, S.baltica OS223, S.denitrificans OS217, S.frigidimarina NCIMB 400,
S.halifaxensis HAW EB4, S.loihica PV-4, Shewanella MR-4, Shewanella MR-7, S.oneidensis, S.pealeana ATCC 700345, S.piezotolerans WP3,
S.putrefaciens CN-32, S.sediminis HAW-EB3, Shewanella W3-18-1, S.woodyi ATCC 51908, T.crunogena XCL-2, T.denitrificans ATCC 33889,
V.cholerae, V.cholerae M66 2, V.cholerae MJ 1236, V.cholerae O395, Vibrio Ex25, V.fischeri ES114, V.harveyi ATCC BAA-1116, V.parahaemolyticus,
V.splendidus LGP32, V.vulnificus CMCP6, V.vulnificus YJ016, Y.enterocolitica 8081, Y.pestis Angola, Y.pestis Antiqua, Y.pestis biovar Microtus 91001,
Y.pestis CO92, Y.pestis Nepal516, Y.pestis Pestoides F, Y.pseudotuberculosis IP 31758, Y.pseudotuberculosis IP32953, Y.pseudotuberculosis PB1,
Y.pseudotuberculosis YPIII.

There is good agreement between the 16S rRNA tree and the 3rd order transition tree

in several places; Fig. 4 presents a large collection of Enterobacteriaceae as an example.

This grouping includes Salmonella, Escherichia and Shigella, and the transition tree shows

consistent grouping of each genus as compared to the 16S rRNA tree. The 16S rRNA

sequences of Shigella and Escherichia are very homologous, and this results in some species

from each genus being shuffled within the 16S rRNA tree as opposed to the transition tree,

which is more sensitive to sequence bias. This shuffling is not observed in the transition

tree.

Figure 5 illustrates differences in how the genus Streptococcus clusters in the 16S rRNA

tree versus the transition tree. In the 16S rRNA tree, all of the Streptococci form one cluster,
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Figure 5 Genus Streptococcus appear in two distinct clusters in the third-order transition tree, but are assigned one cluster in the 16SrRNA
tree. The genus of interest appears in red in the radial cladogram. A list of the organisms is given. Group 1: S.equi 4047, S.equi zooepidemicus,
S.equi zooepidemicus MGCS10565, S.gordonii Challis substr CH1, S.sanguinis SK36, S.pneumoniae 70585, S.pneumoniae JJA, S.pneumoniae D39,
S.pneumoniae R6, S.pneumoniae P1031, S.pneumoniae G54, S.pneumoniae Taiwan19F 14, S.pneumoniae ATCC 700669, S.pneumoniae CGSP14,
S.pneumoniae Hungary19A 6, S.pneumoniae TIGR4, S.suis 05ZYH33, S.suis 98HAH33, S.suis SC84, S.suis P1 7, S.suis BM407 Group 2: S. agalac-
tiae 2603, S.agalactiae NEM316, S.agalactiae A909, S.dysgalactiae equisimilis GGS 124, S.pyogenes M1 GAS, S.pyogenes MGAS9429, S.pyogenes
MGAS10270, S.pyogenes NZ131, S.pyogenes MGAS10750, S.pyogenes MGAS10394, S.pyogenes MGAS8232, S.pyogenes MGAS315, S.pyogenes
MGAS5005, S.pyogenes MGAS6180, S.pyogenes MGAS2096, S.pyogenes Manfredo, S.pyogenes SSI-1, S.thermophilus CNRZ1066, S.thermophilus
LMG 18311, S.thermophilus LMD-9, S.uberis 0140J, S.mutans.

whereas in the transition tree there are two separate clusters. The two clusters do not divide

based on hemolytic properties, serogroup or habitat, however, each group has a distinct

G+C content (p < 0.05 with Students t-test) with group one µ = 40.43%, σ 2
= 1.05%,

n = 21 and group two µ = 37.92%, σ 2
= 1.43%, n = 22, where µ is the mean G+ C

content, σ 2 is the variance about the mean, and n is the number of samples. There is a

distinct difference in nucleic acid content between the two groups of Streptococci that does

not appear to follow the typical physiological traits used to define these organisms. In this

case, the transition tree is detecting clear molecular differences between otherwise similar

organisms.

Figure 6 highlights a group of bacteria that cluster tightly in the transition tree (with

outliers in boldface type), but are separated into distinct groups in the 16S rRNA tree. This

group includes members of the Polynucleobacter, Psychrobacter, Marinomonas, Shewanella

and Vibrio genera, with a G+C content range of approximately 40%–49%. Most of these

organisms are associated with cold-water aquatic habitats. It is known that thermophiles
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Figure 6 A group of mostly aquatic bacteria that cluster together in the third-order transition tree, but are dispersed in the 16S rRNA
tree. The genus of interest appear in red in the radial cladogram. A list of the organisms is given with those that appear outside the
cluster in the transition tree in boldface type. Shewanella sediminis HAW-EB3, Shewanella woodyi ATCC 51908, Alteromonas macleodii
Deep ecotype , Saccharophagus degradans 2-40, Pseudoalteromonas haloplanktis TAC125, Methylotenera mobilis JLW8, Psychrobacter arcticum
273-4, Psychrobacter cryohalolentis K5, Psychrobacter PRwf-1, Pseudoalteromonas atlantica T6c, Shewanella ANA-3, Shewanella MR-4, Shewanella
MR-7, Shewanella baltica OS155, Shewanella baltica OS185, Shewanella baltica OS195, Shewanella baltica OS223, Shewanella oneidensis, She-
wanella putrefaciens CN-32, Shewanella W3-18-1, Shewanella denitrificans OS217, Shewanella halifaxensis HAW EB4, Shewanella pealeana
ATCC 700345, Shewanella piezotolerans WP3, Shewanella frigidimarina NCIMB 400, Photobacterium profundum SS9, Vibrio cholerae, Vibrio
cholerae M66 2, Vibrio cholerae O395, Vibrio cholerae MJ 1236, Vibrio vulnificus CMCP6, Vibrio vulnificus YJ016, Vibrio Ex25, Vibrio harveyi
ATCC BAA-1116, Vibrio parahaemolyticus, Vibrio splendidus LGP32, Marinomonas MWYL1, Hirschia baltica ATCC 49814, Polynucleobacter
necessarius asymbioticus QLW P1DMWA 1, Polynucleobacter necessarius STIR1, Idiomarina loihiensis L2TR, Yersinia enterocolitica 8081, Yersinia
pestis Angola, Yersinia pestis Nepal516, Yersinia pestis Antiqua, Yersinia pestis biovar Microtus 91001, Yersinia pestis CO92, Yersinia pseudotuber-
culosis IP32953, Yersinia pseudotuberculosis PB1 , Yersinia pseudotuberculosis IP 31758, Yersinia pseudotuberculosis YPIII, Yersinia pestis Pestoides
F, Lactobacillus brevis ATCC 367, Lactobacillus plantarum, Lactobacillus plantarum JDM1, Lactobacillus casei ATCC 334, Lactobacillus rhamnosus
GG, Lactobacillus rhamnosus Lc 705, Kangiella koreensis DSM 16069, Thiomicrospira crunogena XCL-2, Vibrio fischeri ES114, Lactobacillus
sakei 23K, Lactobacillus reuteri DSM 20016, Shewanella amazonensis SB2B, Shewanella loihica PV-4, Lactobacillus delbrueckii bulgaricus,
Thiomicrospira denitrificans ATCC 33889, Lactobacillus acidophilus NCFM.

exhibit preferences in the first codon for G+C, due to the higher melting temperatures

(Kreil & Ouzounis, 2001; Tekaia, Yeramian & Dujon, 2002); the converse of this is a

similarly reasonable explanation. Thermophobic bacteria may prefer A+ T at the first

codon due to lower separation energies required during replication. Although members of

Yersinia and six species of Lactobacillus may initially appear to contradict this observation,

this may not be the case. Yersinia pseudotuberculosis is a soil- and waterborne human

pathogen, and the closest known ancestor of Yersinia pestis (Achtman et al., 1999), and

many species of Lactobacillus can be found in marine sediment. There is further evidence
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in support of our aquatic hypothesis within the other genera. Two species of Shewanella

are located outside the cluster, S. amazonensis and S. loihica. Both of these organisms

are psychrophobic, whereas the Shewanella species within the cluster grow well at low to

moderate temperatures. Also, Vibrio is a genus of proteobacteria that are a common cause

of food-borne illness resulting from infected seafood. V. fischeri, which is the only Vibrio

outlier, is unique among Vibrio species because it is apathogenic and found predominantly

in symbiosis with various marine animals. We hypothesize that these species represent

outliers on the transition tree because they occupy different habitats from their 16S nearest

neighbors.

Habitat has been shown to influence genomic composition (Foerstner et al., 2005).

Perhaps the difference between the 16S rRNA tree and 3rd order transition tree illustrated

in Fig. 4 is an example of that influence.

CONCLUSIONS
These data and analyses lead us to the following three observations: (1) in nearly all

bacterial chromosomes there is a significant long-range nucleotide correlation that extends

beyond the 2nd order; (2) similarity trees constructed on matrices derived from these

correlations have a statistically significant overlap with 16S RNA trees and, when divergent,

may reveal functional differences between species; (3) the apparent ubiquity of these

correlations may place practical limitations on what will or will not evolve to become a

bacterium.

These observations cannot easily be explained by our understanding of biology. Overall

G+ C bias is a 0th order property, so that its influence is completely defined by the

independent probabilities of each of the four nucleotides. A codon is three nucleotides

long, so codon bias within open reading frames is a 1st order (binucleotide) or 2nd

order (trinucleotide) correlation. Any correlations that extend beyond 2nd order reflect

a mechanism or mechanisms that drive the nucleic acid order beyond the length of a

codon.

We have also shown that the transition matrices for a large number of chromosomes

exhibit a phylogenetic correlation. From the matrices we can build transition trees that are

statistically similar to 16S rRNA trees, and we propose that some of the differences between

transition and 16S trees may be due to influences from ecological niche and/or habitat.

Proximity would present organisms that occupy similar habitats, such as cold water, with

the opportunity to share genetic material that increases their likelihood for survival, such

as anti-freeze genes (Gilbert et al., 2004). Although transfer of small bits of genetic material

would not account for similarity of transition matrices between whole chromosomes

of distantly related organisms, DNA sharing has been previously observed on a much

larger scale. Specialized bacteria that occupy the same habitat or ecological niche also

may experience convergent evolution (Audic et al., 2007; Suen, Goldman & Welch, 2007).

Horizontal gene transfer (HGT) is known to play a major role in how bacteria acquire new

genetic material. It seems logical that organisms within the same habitat might acquire

similar genomic characteristics via HGT.
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The Markov property we have described appears to be ubiquitous. We were able to

identify the property in all of the 906 chromosomes we studied, and it has been estimated

that there are∼108 bacterial species on the Earth (Curtis, Sloan & Scannell, 2002; Schloss

& Handelsman, 2004). Using the statistical “rule of three”, we can be 95% confident that

the rate of this phenomenon is no less frequent than 301 in 302 bacterial chromosomes.

We therefore conclude that the majority of all of the bacterial species will have this Markov

property in their chromosomes, and this likely represents a statistical heuristic that limits

the sequence space of probable bacterial chromosomes.

What, if any effect this conclusion has on our ability to select the probable from the

much larger number of possible bacterial chromosomes is impossible to quantify, but

we may be able to illustrate some of its impact and provide context through example.

If any one of the set of possible bacterial chromosomes can be represented as a random

closed circle of nucleotides, and if we assume one biology-based heuristic –that it can be

any integral length between the smallest (0.15 Mb) and the longest (15 Mb) sequenced

chromosome, then there are
∑β

n=α4n
=

4
3(4

β
− 4α−1) ≈ 109,000,000 possible bacterial

chromosomes (α = 0.15 M and β = 15 M) each with an equal probability of occurrence. If

we now consider that most bacterial chromosomes have a compositional bias (e.g., G+C

content), some of the possible combinations become more or less probable. If we then

consider higher-order compositional biases, say an A/T fractional bias in addition to a

G+ C content bias, then we can be even more specific about probable and improbable

chromosomes.

With the existence of a high-order Markov process, the number of variables (states)

increases exponentially with each increase in model order. This allows a more precise

determination of the probability of a particular sequence (i.e., greater resolution of

transition probabilities), and thereby the identification of more sequences that are unlikely

to be bacterial chromosomes. Let XK
L define a sequence of K letters over an alphabet of L

characters, then the probability of sequence XK
L is: P(xK

L ) =
∏K

j=1P(Xj = xj|X
j−L
L = x

j−L
L ),

where Xj represents the nucleotide at position j with xj as its realization. For a DNA

sequence (and assuming a 3rd-order Markov Model), L= K = 4. In the trivial case, where

each character (nucleotide) is equally likely to occur, it can be easily shown that P(xK
L )=

1
LK

and the expected frequency f (xK
L ) =

N−K−1
LK ≈

N
LK for K � N. For any sequence that is

the result of a 3rd-order Markov process and modeled as such, we get LK
= 44 times more

states than with a 0-order model. In other words, we get 256 times greater resolution of

transition probabilities than if we just consider limitations of G+C bias and chromosome

length.

We know that many of the biological constraints placed on an organism limit the

number of possible combinations that can result in a viable genomic sequence, but

these constraints seem difficult to quantify. Now that we have a significant sample size

of sequenced bacterial chromosomes, we can identify some of the constraints through

statistical methods, and perhaps also uncover new biological phenomena.
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Mauël C, Médigue C, Medina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M,
Noone D, O’Reilly M, Ogawa K, Ogiwara A, Oudega B, Park S-H, Parro V, Pohl TM,
Portetelle D, Porwollik S, Prescott AM, Presecan E, Pujic P, Purnelle B, Rapoport G,
Rey M, Reynolds S, Rieger M, Rivolta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T,
Scanlan E, Schleich S, Schroeter R, Scoffone F, Sekiguchi J, Sekowska A, Seror SJ,
Serror P, Shin B-S, Soldo B, Sorokin A, Tacconi E, Takagi T, Takahashi H, Takemaru K,
Takeuchi M, Tamakoshi A, Tanaka T, Terpstra P, Tognoni A, Tosato V, Uchiyama S,
Vandenbol M, Vannier F, Vassarotti A, Viari A, Wambutt R, Wedler E, Wedler H,
Weitzenegger T, Winters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K, Yata K,
Yoshida K, Yoshikawa H-F, Zumstein E, Yoshikawa H, Danchin A. 1997. The complete
genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256
DOI 10.1038/36786.

Lawrence JG, Ochman H. 1997. Amelioration of bacterial genomes: rates of change and exchange.
Journal of Molecular Evolution 44:383–397 DOI 10.1007/PL00006158.

Ludwig W, Klenk H-P. 2005. Overview: a phylogenetic backbone and taxonomic framework for
prokaryotic systematics. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, eds. Bergey’s manual
of systematic bacteriology. New York: Springer, 49–66.

Muto A, Osawa S. 1987. The guanine and cytosine content of genomic DNA and bacterial
evolution. Proceedings of the National Academy of Sciences of the United States of America
84:166–169 DOI 10.1073/pnas.84.1.166.

Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M.
2006. The 160-kilobase genome of the bacterial endosymbiont carsonella. Science
314(5797):267 DOI 10.1126/science.1134196.

Perry SC, Beiko RG. 2010. Distinguishing microbial genome fragments based on their
composition: evolutionary and comparative genomic perspectives. Genome Biology and
Evolution 2:117–131 DOI 10.1093/gbe/evq004.

Phillips GJ, Arnold J, Ivarie R. 1987. Mono-through hexanucleotide composition of the
Escherichia coli genome: a Markov chain analysis. Nucleic Acids Research 15:2611–2626
DOI 10.1093/nar/15.6.2611.

Skewes and Welch (2013), PeerJ, DOI 10.7717/peerj.127 19/20

https://peerj.com
http://dx.doi.org/10.1146/annurev.micro.55.1.709
http://dx.doi.org/10.1146/annurev.micro.55.1.709
http://dx.doi.org/10.1093/nar/29.7.1608
http://dx.doi.org/10.2307/1266291
http://dx.doi.org/10.1038/36786
http://dx.doi.org/10.1007/PL00006158
http://dx.doi.org/10.1073/pnas.84.1.166
http://dx.doi.org/10.1126/science.1134196
http://dx.doi.org/10.1093/gbe/evq004
http://dx.doi.org/10.1093/nar/15.6.2611
http://dx.doi.org/10.7717/peerj.127


Pride DT, Meinersmann RJ, Wassenaar TM, Blaser MJ. 2003. Evolutionary implications
of microbial genome tetranucleotide frequency biases. Genome Research 13:145–158
DOI 10.1101/gr.335003.

Reva O, Tummler B. 2004. Global features of sequences of bacterial chromosomes, plasmids
and phages revealed by analysis of oligonucleotide usage patterns. BMC Bioinformatics
5:90 DOI 10.1186/1471-2105-5-90.

Robinson DF, Foulds LR. 1981. Comparison of phylogenetic trees. Mathematical Biosciences
53:131–147 DOI 10.1016/0025-5564(81)90043-2.

Rocha EPC, Viari A, Danchin A. 1998. Oligonucleotide bias in Bacillus subtilis: general trends and
taxonomic comparisons. Nucleic Acids Research 26:2971–2980 DOI 10.1093/nar/26.12.2971.

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution 4:406–425.

Sanford RA, Cole JR, Tiedje JM. 2002. Characterization and description of Anaeromyxobacter
dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium.
Applied and Environmental Microbiology 68:893–900 DOI 10.1128/AEM.68.2.893-900.2002.

Schbath S, Prum B, De Turckheim E. 1995. Exceptional motifs in different Markov chain models
for a statistical analysis of DNA sequences. Journal of Computational Biology 2:417–437
DOI 10.1089/cmb.1995.2.417.

Schloss PD, Handelsman J. 2004. Status of the microbial census. Microbiology Molecular Biology
Review 68:686–691 DOI 10.1128/MMBR.68.4.686-691.2004.

Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T,
Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B,
Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C,
Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R,
McHardy AC, Merai M, Meyer F, Mormann S, Munoz-Dorado J, Perez J, Pradella S,
Rachid S, Raddatz G, Rosenau F, Ruckert C, Sasse F, Scharfe M, Schuster SC, Suen G,
Treuner-Lange A, Velicer GJ, Vorholter F-J, Weissman KJ, Welch RD, Wenzel SC,
Whitworth DE, Wilhelm S, Wittmann C, Blocker H, Puhler A, Muller R. 2007. Complete
genome sequence of the myxobacterium Sorangium cellulosum. Nature Biotechnology
25:1281–1289 DOI 10.1038/nbt1354.

Sharp PM, Stenico M, Peden JF, Lloyd AT. 1993. Codon usage - mutational bias, translational
selection, or both. Biochemical Society Transactions 21:835–841.

Steel MA, Penny D. 1993. Distributions of tree comparison metrics–some new results. Systematic
Biology 42:126–141 DOI 10.1093/sysbio/42.2.126.

Suen G, Goldman BS, Welch RD. 2007. Predicting prokaryotic ecological niches using genome
sequence analysis. PLoS ONE 2(8):e743 DOI 10.1371/journal.pone.0000743.

Tekaia F, Yeramian E, Dujon B. 2002. Amino acid composition of genomes, lifestyles of
organisms, and evolutionary trends: a global picture with correspondence analysis. Gene
297:51–60 DOI 10.1016/S0378-1119(02)00871-5.

Woese C. 1998. The universal ancestor. Proceedings of the National Academy of Sciences of the
United States of America 95:6854–6859 DOI 10.1073/pnas.95.12.6854.

Woese CR, Fox GE. 1977. Phylogenetic structure of the prokaryotic domain: the primary
kingdoms. Proceedings of the National Academy of Sciences of the United States of America
74:5088–5090 DOI 10.1073/pnas.74.11.5088.

Skewes and Welch (2013), PeerJ, DOI 10.7717/peerj.127 20/20

https://peerj.com
http://dx.doi.org/10.1101/gr.335003
http://dx.doi.org/10.1186/1471-2105-5-90
http://dx.doi.org/10.1016/0025-5564(81)90043-2
http://dx.doi.org/10.1093/nar/26.12.2971
http://dx.doi.org/10.1128/AEM.68.2.893-900.2002
http://dx.doi.org/10.1089/cmb.1995.2.417
http://dx.doi.org/10.1128/MMBR.68.4.686-691.2004
http://dx.doi.org/10.1038/nbt1354
http://dx.doi.org/10.1093/sysbio/42.2.126
http://dx.doi.org/10.1371/journal.pone.0000743
http://dx.doi.org/10.1016/S0378-1119(02)00871-5
http://dx.doi.org/10.1073/pnas.95.12.6854
http://dx.doi.org/10.1073/pnas.74.11.5088
http://dx.doi.org/10.7717/peerj.127

	A Markovian analysis of bacterial genome sequence constraints
	Introduction
	Materials and Methods
	Constructing the 16S rRNA tree
	Constructing the transition tree
	Determination of tree similarity
	Markov models of bacterial chromosomes

	Testing for Markovity
	Results and Discussion
	Comparisons between the 16S rRNA and transition tree topologies
	Data bias
	Topology of 16S rRNA tree versus 3rd order transition tree

	Conclusions
	Acknowledgements
	References


