Bacterial diversity and potential risk factors associated with Salmonella contamination of seafood products sold in retail markets in Bangkok, Thailand

Jeamsripong¹, Edward R. Atwill²

5 6 7

8 9

12

16

17 18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

1

2

3 4

- ¹ Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Population Health and Reproduction, School of Veterinary Medicine, University
 of California, Davis, CA, USA
- 13 Corresponding Author:
- 14 Edward R. Atwill
- 15 1477 Drew Ave, Suite 101, Davis, CA 95618
 - Email address: ratwill@ucdavis.edu

Abstract

The objectives of this study are to determine the levels of indicator bacteria, Salmonella and Vibrio in these seafood commodities and to identify risk factors associated with Salmonella contamination of these samples. A total of 335 samples were collected comprised of Pacific white shrimp (n = 85), oysters (n = 82), blood cockles (n = 84), and Asian seabass (n = 84)during October 2018 to July 2019 in Bangkok Thailand. The prevalence and concentrations (sd) of fecal coliforms were 100% and $8.709 \times 10^4 (4.09 \times 10^4)$ MPN/g; regarding E. coli, the prevalence was 85% and concentration (sd) was \(\frac{1.852}{.852}\times 10^4\) (\(\frac{3.684}{.852}\times 10^4\) MPN/g. The overall prevalence of V. parahaemolyticus (59%), V. cholerae (49%), V. alginolyticus (19%), V. vulnificus (18%), and Salmonella (36%) were reported. The Highest concentrations of fecal coliforms and E. coli were found in oysters, and Salmonella was reported in shrimp. Matopeni (31%) was a predominant serotype. The association between the presence of Salmonella and type of sample, sampling location, selling condition, and the presence of E. coli, V. alginolyticus and V. vulnificus in the samples was observed under logistic regression (P < 0.05). The optimal cutoff value of concentration of E. coli to predict the contamination of Salmonella was 1.33×10^4 MPN/g with sensitivity 84.43 % and specificity 61.03 %. Display products on ice, presence of E. coli and Vibrio, seafood derived from Eastern Thailand were associated with an increased risk of Salmonella contamination. Continuous monitoring of pathogenic bacteria through food chain under the "One Health" concept is needed to enhance seafood safety.

Commented [LMG1]: If you can delete "the" do.

Introduction

38

39

40

41

42

43

44

45

46

47

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64 65

66

67

68

69 70

71

72

73

74

75

76

The total fisheries and aquaculture both inland and marine are increasing with an average reached 1710.9 million tonnes in 2016, and the major exporters are China, Norway, Viet Nam, and Thailand (Food and Agriculture Organization of the United Nations, 2018). The eConsumption rate of fish, and fishery products, per capita per year continuingly increases. Over the past decades, the consumption of seafood products per capita per year has increasingly than double from nearly 10 kg in 1960 to greater than 20 kg in 2016 (Food and Agriculture Organization of the United Nations, 2018). The consumption of fish and fishery products has been demanded in many countries due to essential nutritional component of protein source. In Southeast Asia, the consumption of fish and fishery products varies from 6.1-to 643.5 kg per 48 capita per year depending on accessibility to the products, geographical location, and the 49 environment (Food and Agriculture Organization of the United Nations, 2015). In Thailand, the consumption of fish and fishery products was approximately is 31.4 kg per capita per year, which was accounted for 121.7% of total protein consumption in the country (Food and Agriculture Organization of the United Nations, 2015).

Due to the rapid growth of global consumption of fish and fishery products, seafood safety and seafood associated diseases are increasingly concerning. Foodborne diseases each year afflict One a third of the world population is affected by foodborne diseases each year (World Health Organization, 2004). Most of seafood outbreaks have been examined in In-the United States, where approximately 9.4 million illnesses, almost 56,000 hospitalizations, and 1,351 deaths, were affected by are associated with foodborne contamination per year (Scallan et al., 2011). Almost half (45%) of foodborne outbreaks reported in the U.S. were are from pathogenic bacteria, and fish are is considered as one of the seafood commodities frequently implicated with the bacterial contamination (Gould et al., 2013). Most of seafood outbreaks have mainly examined in the U.S. than Europe, Australia, and Asia. Therefore, limited data of the number of illnesses from seafood-borne outbreaks has observed in many parts of the world.

Seafood is considered as an important vector in human pathogens. The increase of environmental Pollution, animal densities density, and world global trading are considered as important contributing factors leading a concern of contribute to pathogen contamination of seafood products (Papadopoulou et al., 2007). According to the epidemiology of seafood infection in the U.S., tThe most common bacterial pathogens associated with seafood-borne diseases are Vibrio, Salmonella, Shigella, and Clostridium botulinum (Iwamoto et al., 2010). Seafood-borne outbreaks caused by V. parahaemolyticus, V. cholera serogroup O139, V. vulnificus, Salmonella serotype Weltevreden, and Escherichia coli have been reported (Bonnin-Jusserand et al., 2019; Heinitz et al., 2020; Martinez-Urtaza et al., 2016; Raymond & Ramachandran, 2019).

In Thailand, V. parahaemolyticus and Salmonella sp. are the leading causes pathogenic bacteria causing human of foodborne diarrhea. Taken together, most of studies relevant to seafood borne outbreaks and bacterial contamination in fish and fishery products varies by

Commented [LMG2]: Avoid the passive voice.

Commented [LMG3]: Write directly

specific pathogens and geographical location. Hence, sample at selling points that close to human consumption is required to reduce the seafood borne contamination.

Even though Thailand is one of the major exporters, monitoring and surveillance of distribution of bacterial pathogens in seafood products that potentially risk to human health is still limited. Therefore, the objectives of this study are to 1) evaluate the levels of fecal coliforms and *E. coli* contaminated in Pacific white shrimp, oyster, blood cockle, and Asian seabass samples sold in fresh markets in Bangkok, Thailand; 2) examine the prevalence of *V. parahaemolyticus*, *V. cholerae*, *V. vulnificus*, *V. alginolyticus*, and *Salmonella*; 3) identify serotypes of *Salmonella* among various seafood samples; and 4) determine risk factors for *Salmonella* contamination and a potential cutoff value of the levels of *E. coli* affecting the presence of *Salmonella* in the samples.

Materials & Methods

Sample collection

A total of fresh fish and fishery samples (n = 335) was collected from Pacific white shrimp (*Litopenaeus vannamei*) (n = 85), oyster (*Saccostrea cuccullata*) (n = 82), blood cockle (*Tegillarca granosa*) (n = 84), and Asian seabass (*Lates calcarifer*) (n = 84) between October 2018 and July 2019. The sS amples were sold collected in open-air fresh markets in Bangkok, Thailand. The sampling location select from four districts was selected based on a high human population density in Bangkok, These districts vary in population, which were Din Daeng, Huay Kwang, Samphanthawong, and Dusitdensity (Table 1).

Individual seafood samples was were purchased in the early morning (5 to 7 a.m.) and comprised at least 200 g where were placed into a double sterile plastic bag. The samples were kept on ice during transportation and submitted to the laboratory within 3 h. Microbiological determination was performed within 6 h after receiving samples in the Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University.

The samples were analyzed for coliforms, *E. coli*, *Salmonella*, *V. parahaemolyticus*, *V. vulnificus*, *V. alginolyticus* and *V. cholerae*. Average and standard deviation (sd) of minimum and maximum ambient air temperature (°C), wind speed (km/h), precipitation (mm), and relative humidity (%) in Bangkok, Thailand, were retrieved from the Thai Meteorological Department (www.tmd.go.th)

Predictor variables

Putative rRisk factors for Salmonella contamination tested included type of seafood (Pacific white shrimp, oyster, blood cockle, or Asian seabass), sampling district (Din Daeng, Huay Kwang, Samphanthawong, or Dusit), regional source of seafood (central, eastern, southern Thailand, or unidentified source), retail storage of fish and shellfish samples (pooling and combining different seafood products for retail display versus keeping each seafood type separate when on display), and retail display condition (on ice or without ice). The concentrations of fecal coliform (MPN/g) and E. coli (MPN/g), and the prevalence of V.

- 116 parahaemolyticus, V. vulnificus, V. alginolyticus and V. cholerae were evaluated as putative risk
- 117 factors for Salmonella contamination.

125

127

128

129

131

132

133

134 135

136

137

146

148 149

152

118 Determination of fecal coliform and E. coli concentrations

- 119 The concentrations of fecal coliform and E. coli were enumerated according to the U.S. Food and
- 120 Drug Administration (U.S. FDA) Bacteriological Analytical Manual (BAM) with slight
- 121 modification (Feng et al., 2002). Briefly, a 25 g of individual sample (shrimp and Asian seabass)
- 122 was weighed, aseptically cut into small pieces, and placed into 225 mL of Buffered Peptone
- 123 Water (BPW) (Difco, MD, USA). Then, the samples were homogenized for 1 to 2 min. A 10-
- 124 fold serial dilution was performed using three-tube most probable number (MPN) at different
 - dilutions from 10⁻¹ to 10⁻⁴. One mL of each solution was diluted in Lactose Broth (LB) (Difco),
- and then incubated at 35 °C for 24 h. A loopful of the mixture solution was transferred to
 - Brilliant Green Lactose Bile (BGLB) (Difco) and EC broth (Difco), respectively. After overnight
 - incubation, positive tubes were recorded and calculated as concentration of fecal coliforms
 - (MPN/g). One loopful of EC broth was streaked on Eosin Methylene Blue (EMB; Difco) agar
- plates and reported as *E. coli* concentration (MPN/g).
 - For enumeration of indicator bacteria in oysters and blood cockle, a 100 g of oyster meat sample was weighed and added into 100 mL of Phosphate Buffered Saline (PBS) (Difco), which was then blended aseptically for 1 to 2 min. The oyster suspension was diluted in LB to different concentrations of 10^{-1} , 10^{-2} , 10^{-3} , and 10^{-4} . The diluted suspensions were transferred to BGLB and EC broth. Biochemical tests including indole test and Triple Sugar Iron (TSI; Difco) were performed on suspect colonies for all samples. The lower and upper limits of the detection of fecal coliforms and *E. coli* were 1.0 and 1.11×10^5 MPN/g, respectively.

138 Isolation and confirmation of Salmonella

- 139 The detection of Salmonella followed ISO 6579-1:2017 (International Organization for
- 140 Standardization, 2017). Briefly, a total of 25 g of each seafood sample was weighed, cut, and
- 141 placed into 225 mL of BPW. The sample was then homogenized for 2 min and incubated at 37
- 142 °C for 18 h. After incubation, 0.1 mL of the suspension was inoculated into Modified Semi-solid
- 143 Rappaport-Vassiliadis (MSRV) (Difco) agar plate and incubated at 42 °C overnight. A loopful of
- 144 incubated sample was streaked onto Xylose Lysine Deoxycholate (XLD) (Difco) agar.
- 145 Presumptive colonies of Salmonella were pink to red colonies with black center. Biochemical
 - tests (citrate utilization, TSI reaction, indole test) were used to confirm presumptive Salmonella
- 147 colonies according to a standard protocol from the U.S. FDA BAM (Andrews et al., 2007).
 - Three typical colonies of *Salmonella* were selected for serotyping. Slide agglutination test was performed to determine serotype of *Salmonella* followed by Kauffmann-White Scheme,
- 150 Pasture Institute (Grimont and Weill, 2007) using commercially available antiserum (S&A
- 151 Reagents Lab Ltd., Lat Phrao, Bangkok, Thailand).

Isolation and confirmation of Vibrio spp.

- 153 The isolation of Vibrio was followed the U.S. FDA BAM (Kaysner et al., 2004). Briefly, 50 g of
- each sample was added to 450 mL of PBS, and homogenized for 1 to 2 min. One mL of resulting
- 155 solution was added to 10 mL of Alkaline Peptone Water (APW) (Difco) and incubated at 37 °C

overnight. After incubation, one loopful of solution was streaked on Thiosulfate-Citrate-Bile Salts-sucrose (TCBS) (Difco) agar plate containing 2% of NaCl.

The presumptive colonies of *Vibrio* were confirmed using CHROMagarTM *Vibrio* (HiMedia Laboratories, Mumbai, India) agar. The TCBS and CHROMagarTM *Vibrio* plates were incubated at 37 °C for 24 h. Morphology of *V. parahaemolyticus* and *V. vulnificus* was colorless colonies with green center in TCBS agar. In CHROMagarTM *Vibrio* agar plate, colonies of *V. parahaemolyticus* was mauve, and of *V. vulnificus* was green blue to turquoise blue, whereas *V. alginolyticus* showed colorless.

For isolation of *V. cholerae*, 25 g of seafood sample was added to 225 mL of APW, homogenized for 1 to 2 min, and incubated at 35±2 °C for 8 h. A loopful of solution was streaked to TCBS agar plates. After incubation at 37 °C for 24 h, presumptive colonies of *V. cholerae* were confirmed on CHROMagarTM *Vibrio*. Typical colonies of *V. cholerae* on TCBS agar plate are 2 to 3 mm diameter, yellow, and flat colonies with opaque center, whereas the presumptive colonies of *V. cholerae* in CHROMagarTM *Vibrio* agar were green blue to turquoise blue. Biochemical tests including TSI, oxidase test, and growth in sodium chloride were conducted to confirmation.

Statistical analyses

The concentrations and sd of fecal coliforms (MPN/g) and $E.\ coli$ (MPN/g) and prevalence of Salmonella and Vibrio in the samples were calculated. Logistic regression was used to determine the association between Salmonella contamination and $\frac{1}{1}$ various risk factors, including type of seafood (Pacific white shrimp, oyster, blood cockle, or Asian seabass), sampling district (Din Daeng, Huay Kwang, Samphanthawong, or Dusit), regional source of seafood (central, eastern, southern Thailand, or unidentified source), retail storage of seafood (pooling and combining different seafood products for retail display versus keeping each seafood type separate when on display), and retail display condition (on ice or without ice), presence of Vibrio spp., and the concentrations of fecal coliforms and $E.\ coli$. Univariate associations were first evaluated for all risk factors for Salmonella and an initial multivariable model constructed from only significant univariate risk factors ($P \le 0.2$); a backward stepping algorithm was then used to eliminate nonsignificant (P > 0.05) risk factors based on a likelihood ratio test resulting in a final multivariable logistic regression model with only significant ($P \le 0.05$) risk factors.

The +Receiver operating characteristic (ROC) analysis was performed to predict contamination of *Salmonella* using estimation of the concentration of *E. coli*. Based on ROC analysis, the optimal cutoff value was determined. All statistical analyses were performed using Stata version 14.0 (StataCorp, College Station, TX, USA). A *P*-value < 0.05 was considered as statistically difference under the two-sided hypothesis test.

Results

Distribution of fish and fishery products

Pacific white shrimp (n = 85), oyster (n = 82), blood cockle (n = 84), and Asian seabass (n = 84)

were collected from four districts, which were composed of Din Daeng, Huay Kwang,

Commented [LMG4]: repeats

Samphanthawong, and Dusit. Distribution of type of seafood, sampling district, regional source of seafood, retail storage and retail display condition are presented in Table 1. The regional sources of seafood samples were from various geographical regions, mainly Central (n=257), Eastern (n=28), and Southern (n=25) Thailand, with the Central region further subdivided as Samut Sakhon (47.9%) and Samut Prakan (32.7%) provinces. The common regional sources of Pacific white shrimp, blood cockle, and Asian seabass were from Samut Sakhon, Samut Prakan, and Bangkok, whereas the main sources of oysters were from Samut Sakhon and Chon Buri provinces.

In fresh markets, most of the samples was stored in a separate container (75.5%, n = 253), while almost a quarter of the samples (24.5%, n = 82) were kept in the same container with other seafood products. All oyster and blood cockle samples were stored separately from other seafood products, whereas Asian seabass were kept as pooled samples 92.86% (n = 78/84). The majority of the samples (62.7%, n = 210) were displayed on ice.

The meteorological data was recorded from October 2018 to July 2019 according to the Thai Meteorological Department. The average (± sd) daily minimum and maximum ambient air temperature was 26.80 (± 1.75) °C and 34.08 (± 2.64) °C; average (± sd) wind speed was 12.95 (± 2.04) km/h, average 24 hour precipitation 1.39 (± 3.96) mm, and average relative humidity was 75.08 % (± 7.40).

Occurrence of indicator bacteria in seafood samples

The prevalence and concentrations of feeal coliforms and *E. coli* are shown in Table 2. In general, seafood products were 100% positive for fecal coliforms with an average concentration (\pm sd) at 8.70×10^4 (\pm 4.09×10^4) MPN/g. The prevalence of *E. coli* was 85.1%, with an average concentration (\pm sd) of 1.85×10^4 (\pm 3.68×10^4) MPN/g. Oyster samples had the highest concentrations (\pm sd) of fecal coliforms at 1.10×10^5 (\pm 7.13×10^3) and *E. coli* at 5.13×10^4 (\pm 4.49×10^3), while blood cockle and seabass had the lowest concentrations of these indicator bacteria (Table 2).

Occurrence of Vibrio and Salmonella in seafood samples

The prevalence of *Vibrio* and *Salmonella* are shown in Figure 1. Overall, the highest prevalence of *V. parahaemolyticus*, *V. vulnificus*, *V. alginolyticus*, *V. cholerae*, and *Salmonella* were observed in blood cockle (932.9%), Pacific white shrimp (398.8%), oyster (35.4%), Asian seabass (910.5%), and Pacific white shrimp (47.4%), respectively. The lowest prevalence (< 10%) of *V. vulnificus* was observed in blood cockle and for *V. alginolyticus* in Asian seabass.

Regarding highest bacterial species in each seafood product, the Pacific white shrimp exhibited a high prevalence of *V. parahaemolyticus* (5<u>9</u>8.8%), *V. cholerae* (5<u>3</u>2.9%) and *Salmonella* (47.4%), whereas oysters were mainly contaminated with *V. parahaemolyticus* (45.4%) and *Salmonella* (3<u>8</u>7.8%). In blood cockles, a high prevalence of *V. parahaemolyticus* (9<u>3</u>2.9%) were observed, although they had low prevalence of *V. cholerae*, *V. vulnificus*, and *V. alginolyticus*. Asian seabass was frequently contaminated with *V. cholerae* (90.5%) and *Salmonella* (46.4%).

Commented [LMG5]: This is Methods not Results

Commented [LMG6]: Also belongs in Methods not Results

Commented [LMG7]: Start each paragraph in Results with an observation (a result observed) then cite figures or Tables. Do not start by sending readers of to look at the data themselves.

Commented [LMG8]: Use reasonable significant figures.

Commented [LMG9]: As above. Start with a result.

Commented [LMG10]: Please follow these examples for number of significant figures.

Matopeni (30.6%), Corvallis (4.7%), Give (4.7%), and Rissen (4.7%) were the most common serotypes of *Salmonella* isolated from seafood products (Table 3). Matopeni was the predominant serotype (52/56) observed from Asian seabass samples (n = 56 isolates), whereas Itami and Leith were common serovars isolated from the shrimp samples (n = 47 isolates). For oysters (n = 43 isolates) and blood cockles (n = 24 isolates), the major serotypes were Give (18.6%) and Rissen (33.3%), respectively.

The distribution of Salmonella, V. parahaemolyticus, V. vulnificus, V. cholerae, and V. alginolyticus among seafood products

The unilateral associations between *Salmonella* or *Vibrio* for the different seafood commodities are shown in Table 4. Odds of *V. vulnificus* contamination in shrimp was 7.0 (1/0.143) times higher than that for blood cockle (P = 0.002). Odds of *V. cholerae* contamination in shrimp were 7.5 (1/0.134) and 23.6 (1/0.043) times higher than for oyster (P < 0.0001) and blood cockle (P = 0.002), respectively. The presence of *V. parahaemolyticus* in the blood cockle was higher than in shrimp (OR = 9.10, P < 0.0001). The odds of *V. alginolyticus* contamination in shrimp was 13.33 (1/0.075) and 20.0 (1/0.050) times higher than in blood cockles and seabass, respectively.

Risk factors associated with Salmonella contamination

Salmonella contamination of seafood sold in Bangkok was associated with type of seafood, sampling district, retail display condition, regional source of seafood products, and the presence of *E. coli*, *V. alginolyticus*, and *V. vulnificus* (Table 5). The odds of *Salmonella* contamination was not different for Asian seabass compared to Pacific white shrimp; in contrast, both oysters and blood cockles had significantly lower odds of *Salmonella* compared to shrimp. Seafood from markets in Huay Kwang (OR = 1.7) and Dusit (OR = 1.4) had a higher odds of *Salmonella* contamination compared to seafood from Din Daeng and Samphanthawong. Seafood displayed on ice (OR = 1.71, P < 0.0001) had a higher odds of *Salmonella* contamination compared to retail seafood products not displayed on ice. Seafood products sourced from Eastern Thailand had significantly higher odds of *Salmonella* contamination compared to seafood sourced from other regions (OR = 3.46, P < 0.0001). Lastly, the odds of *Salmonella* contamination were positively associated with the presence of *E. coli* and *V. alginolyticus*, but negatively associated with *V. vulnificus*.

ROC and area under the ROC curve

The area under the ROC curve (AUC) at 63.77% with standard error = 0.30 (C.I. = 57.8% - 69.7%) (Figure 2). The ROC AUC was statistically significance (P < 0.0001) compared to the null value of AUC = 0.5. The presence of *Salmonella* in seafood products was optimally predicted at a concentration of 1.33×10^4 *E. coli* MPN/g, with a sensitivity of 84.43% and specificity of 61.03% for this value.

Discussion

According to the Bureau of Quality and Safety of Food (BQSF), Department of Medical Science, Ministry of Public Health, Thailand, the concentration of *E. coli* should not excess 10 MPN/g of fresh or frozen seafood and less than 3 MPN/g of seafood consumed raw; in addition, all

products must not contain *Salmonella*, *V. cholerae*, *V. parahaemolyticus* in 25 g of sample (*Bureau of Quality and Safety of Food, 2020*). In this study, the average concentration of *E. coli* was 1.85×10^4 MPN/g for all the seafood samples, which is considerably higher than the standard BQSF guidelines in Thailand. In fact, only 17.9% (n = 60/335) of all seafood samples had concentrations of *E. coli* < 10 MPN/g and only 7.3% (n = 6/82) of oyster samples (often eaten raw) had < 3 MPN/g. Furthermore, the prevalence of *Salmonella* (36.4%), *V. cholerae* (49.0%), *V. parahaemolyticus* (58.8%) indicated widespread bacterial contamination of these seafood products, which also violates the Thailand standard requirements. Therefore, implementation of basic sanitation and evaluation of microbiological contamination of seafood products sold in Bangkok is needed to strengthen seafood safety in this area.

Salmonella is an important pathogen that is responsible for seafood-borne illness worldwide (Barrett et al., 2017; European Food Safety Authority, 2014). However, Salmonella is not a normal flora in finfish and shellfish products. The major sources of Salmonella contamination in seafood may originate from multitude of sources, including the natural aquatic environment, during aquaculture or seafood processing, insufficient hygiene practices during transport and storage, and improper food handling (Amagliani et al., 2012; Fernandes et al., 2018). In this study, the prevalence of Salmonella ranged from 14.3% to 47.1%. This finding was similar to a study of cultured shrimp in the Mekong Delta, Vietnam, which documented a prevalence of 24.5% Salmonella contamination (Phan et al., 2005), but substantially less to the 90 to 100% prevalence of Salmonella contamination in fish (93.1%) and shrimp (100.0%) collected from the Surabaya local market in Indonesia (Pramono et al., 2019).

Type of seafood, sampling retail location, use of ice during retail display, regional source of seafood, and presence of E. coli and Vibrio were all significantly associated with the presence of Salmonella (Table 5). The presence of E. coli in a seafood sample was associated with a 4fold increase in the odds of Salmonella contamination (OR = 4.0, P < 0.0001); similarly, the presence of V. alginolyticus in a seafood sample was associated with a 1.4-fold increase in the odds of Salmonella contamination (OR = 1.4, P < 0.04). Seafood displayed on ice during retail had almost twice the odds Salmonella contamination (OR = 1.71, P < 0.0001) than seafood not displayed on ice. This curious finding may seem counterintuitive, but prior work has shown that the ice used to chill seafood can be contaminated with pathogenic microorganisms and become a risk of human infection (Falcão et al., 2009). Ice can be a vehicle for various pathogenic organisms, including diarrheagenic E. coli, Aeromonas, S. enteritidis and fecal coliforms (Falcão et al., 2002; Falcão et al., 2004; Kirov, 1993). In this study, most of the ice used to store seafood was at risk of rapidly melting due to high ambient temperatures in open air conditions. The melting ice can be a mode of pathogenic bacteria dissemination that functions to spread bacteria from one seafood item to nearby retail items, readily contaminating other seafood left standing in contaminated melt water. In addition, the physical placement of seafood for display in retail markets can function to spread bacterial contamination between seafood items if seafood handlers do not practice proper sanitation during handling (i.e., bare hands touching multiple seafood items; not replacing latex or plastic gloves at high enough frequency during retail

display placement of seafood items). Therefore, maintaining sanitary conditions during the production, storage, and use of ice to prevent microbial contaminates should be closely observed. Lastly, seafood that was sourced from Eastern Thailand had a 3.5-higher odds of *Salmonella* contamination compared to seafood from other regions (OR = 3.46, P < 0.0001). The coastal area of Eastern Thailand has concentrated areas of industrialization, agricultural development, and tourism-related urbanization, with major concerns of increased water pollution and resource depletion (*Nitivattananon and Srinonil, 2019*). Wastewater quality is a major concern for this area, especially in Chonburi and Rayong Provinces due to several industrial estates. Moreover, Chonburi, Chachoengsao, and Rayong Provinces have been designated for developing the Eastern Economic Corridor (EEC), so reduction of waste and wastewater is of increasing concern.

In this study, the diversity of *Salmonella* serovars varied between the different seafood products. Pacific white shrimp had the greatest diversity, 21 different serovars with prevalence per serovar ranging from 1-3%. Eleven serovars from isolated from oysters, with prevalence per serovar ranging from 1-5% similar to Pacific white shrimp. In contrast, only 5 serovars were isolated from blood cockles, with a similar range of prevalence per serovar of 2-5%. Least diverse were isolates from Asian seabass, where only two serovars were recovered with 92.9% (52/56) of these *Salmonella* isolates being Matopeni and the remainder being Paratyphi B. Serotype Matopeni has been reported in aquatic pet shops (*Gaulin et al., 2005*) and in food supplements from Germany (*European Commission, 2018*). Outbreak strains of *Salmonella* Paratyphi B have been associated with raw tuna sushi imported from Indonesia in 2015, and this outbreak caused 65 foodborne cases from 11 states in the U.S. (*Centers for Disease Control and Prevention, 2018*). S. Typhimurium, S. Enteritidis, S. Typhi, and S. Paratyphi B were also detected in fresh fish in Iran (*Rahimi et al., 2013*).

The common serovars in Pacific white shrimp were Itami (10.6%, n = 5/47) and Leith (8.5%, n = 4/47). Itami was first documented as a new serovar from a traveler to Thailand suffering from gastroenteritis (Sakazaki et al., 1981). Itami has also been reported from infected humans in Taiwan (*Kuo et al.*, 2014). In contrast to the seroyars isolated during this study, serovars S. Weltevreden, S. Tennessee, and S. Dessau were isolated from shrimp from the Mekong Delta, Vietnam (Phan et al., 2005). The most common S. enterica serovar isolated from oysters was Give (18.6%, n = 8/43 isolates), which is different from oysters in the U.S. where Newport was the most common serotype (Brands et al., 2005). A previous study in Western Thailand found that the most common serovar in cultured oysters (C. lugubris and C. belcheri) from Phang Nga Province was Paratyphi B (Jeamsripong et al., 2018). This suggests that the distribution of Salmonella serovars within Thailand depends on geographical location and type of seafood. Serovar Give is an enteric serotype usually isolated from swine and ruminant, but rarely found in humans (Higgins et al., 1997). It is possible that the contamination of Give may be result of livestock or agricultural production near the oyster growing site. S. enterica ser. Give has been frequently reported in European national laboratories (Jansen et al., 2005). The higher virulence of the Give serovar compared to other non-typhoidal Salmonella may explain the

higher hospital rate associated with human Give infections (*Girardin et al.*, 2006). Therefore, surveillance and monitoring of oysters due to this ~20% prevalence of *Salmonella* contamination, and fully cooking oysters prior to consumption are needed to reduce the risk of food-borne *Salmonella* infection from Thai cultured oysters.

In this study, the most common Salmonella serovar found in blood cockles was Rissen (33.3%, n = 8/24 isolates), similar to a study in India (Kumar et al., 2009), but it should be noted that none of the five different serovars isolated from cockles had a prevalence above 5%. Seafood such as cockles can acquire Salmonella from contaminated water or other environmental matrices during aquaculture, processing, shipping and retail display. Good hygiene and basic sanitation together with proper seafood handling and storage should be performed throughout the food chain (farm to fork) to reduce the risk of seafood-related Salmonella.

Prevalence of *V. parahaemolyticus* (58.8%), *V. cholerae* (49.0%), *V. alginolyticus* (18.5%), and *V. vulnificus* (17.9%) were observed in this study. According to BQSF, Thailand, seafood for human consumption should have no detectable *V. parahaemolyticus* and *V. cholerae* in 25 g of sample; however, 50-60% of samples contained these bacterial adulterants. This high prevalence is consistent with previous work demonstrating that between 2003 and 2015 the prevalence of *V. parahaemolyticus* was 63.4% in oysters, followed by clams (52.9%), fish (51.0%), and shrimp (48.3%) (*Odeyemi, 2016*). *V. parahaemolyticus*, *V. cholerae*, and *V. vulnificus* are considered important seafood-borne pathogens that cause gastroenteritis in humans due to consumption of raw and partly cooked seafood, while *V. alginolyticus* cause ear infection and intestinal disease in humans. In this study, the main source of *V. parahaemolyticus* was blood cockles (OR = 9.1, P < 0.05), while *V. cholerae* was commonly found in Asian seabass (OR = 4.0, P > 0.05). *V. parahaemolyticus* and *V. vulnificus* have been reported in bivalves in many countries such as Thailand, China, and Korea (*Changchai & Saunjit, 2014*; *Jiang et al., 2019*; *Ryu et al., 2019*). In this study, shrimp and oysters were predominantly contaminated with *V. vulnificus* and *V. alginolyticus*, respectively.

Regarding the use of *E. coli* concentrations to predict the presence of *Salmonella* contamination in seafood sold in Bangkok, the area under the curve (AUC) from an ROC analysis was 63.8%. Selection of the optimal cutoff value for *E. coli* levels was based on the Youden index that uses the maximal difference between sensitivity and 1- specificity (*Ruopp et al., 2008*). Based on this index, the optimal cutoff value for *E. coli* was 1.33×10^4 MPN/g, which can be implemented for both monitoring seafood for *Salmonella* contamination and to establish threshold control measures at processing or during retail storage. However, this cutoff for *E. coli* concentration in seafood is much higher than the microbiological criteria according to Commission Regulation (EC) No 2073/2005 (*European Commission, 2005*), and the BQSF, Thailand (*Bureau of Quality and Safety of Food, 2020*). This may be because high concentrations of *E. coli* in this sample collection generated a high cutoff value to discriminate the presence or absence of *Salmonella* in the samples. Lastly, given that the detection of *Salmonella* and *Vibrio* spp. is of similar expense and similar technical difficulty as quantifying *E. coli* concentrations in seafood matrices, it may be more expeditious and more accurate to focus seafood safety

monitoring protocols on *Salmonella* and *Vibrio* spp. detection rather than rely on indicator bacteria like *E. coli* that invariably suffer from false positive and false negative signals for the presence of common seafood-borne pathogens.

Conclusions

Finfish and shellfish products sold in Bangkok were found to be contaminated with a diversity of Salmonella serovars and species of Vibrio, with substantial differences between seafood commodities (Asian sea bass, oysters, blood cockle, Pacific white shrimp) regarding bacterial pathogen prevalence, pathogen species, and bacterial diversity. Although the concentration of *E. coli* was predictedive of Salmonella contamination for these seafood samples, the high cutoff value (1.33×10,4 MPN/g) for maximal test accuracy will likely prevent this method from being adopted as a food hygiene surveillance tool. because eCurrent Thai BQSF regulations require no more than 10 E. coli MPN/g for fresh or frozen seafood. Given that this project focused on sampling seafood at retail markets, we could not discern where the point of contamination occurred, but it is not surprising that bBacterial contamination varied by seafood commodity, which may reflect given the significantly different culturing, harvesting, processing, and retail display practices for each of these commodities in Bangkok. Consumers should be made aware that proper handling and cooking of these seafood commodities is needed to minimize the risk of seafood borne illness, and future work should ascertain where along the farm to retail continuum these bacterial contaminants are entering the food chain.

Acknowledgements

The authors thank Chailai Chareamchainukul, Mullika Kuldee, Varangkana Thaotumpitak, and Saweeyah Toodbat for their technical assistance.

References

- **Amagliani G, Brandi G, Schiavano GF. 2012.** Incidence and role of *Salmonella* in seafood safety. *Food Research International* **45**:780-788 DOI 10.1016/j.foodres.2011.06.022.
- Andrews WH, Wang H, Jacobson A, Ge B, Zhang G, Hammack T. 2007. Bacteriological Analytical Manual (BAM). Chapter 5: Salmonella. Retrieved February 14, 2021. Available at https://www.fda.gov/food/laboratory-methods-food/bam-chapter-5-salmonella.
- Barrett KA, Nakao, JH, Taylor, EV, Eggers C, Gould LH. 2017. Fish-Associated Foodborne Disease Outbreaks: United States, 1998-2015. *Foodborne Pathogens and Disease* 14:537-543 DOI 10.1089/fpd.2017.2286.
- Bonnin-Jusserand M, Copin S, Le Bris C, Brauge T, Gay M, Brisabois A, Grard T, Midelet-Bourdin G. 2019. *Vibrio* species involved in seafood-borne outbreaks (*Vibrio cholerae*, *V. parahaemolyticus* and *V. vulnificus*): Review of microbiological versus recent molecular detection methods in seafood products. *Critical Reviews in Food Science and Nutrition* 59:597-610 DOI 10.1080/10408398.2017.1384715.

Formatted: Font: Italic

Formatted: Superscript

434	Brands DA, Inman AE, Gerba CP, Maré CJ, Billington SJ, Saif LA, Levine JF, Joens LA.
435	2005. Prevalence of Salmonella spp. in oysters in the United States. Applied and
436	Environmental Microbiology 71:893-897 DOI 10.1128/AEM.71.2.893-897.2005.

Bureau of Quality and Safety of Food. 2020. Assessment of Microbiological Quality. Retrieved February 14, 2021. *Available at http://bqsf.dmsc.moph.go.th.*

- Centers for Disease Control and Prevention. 2018. Multistate Outbreak outbreak of
 Salmonella Paratyphi B variant L(+) tartrate(+) and Salmonella Weltevreden Infections
 infections Linked linked to Frozen frozen Raw raw Tunatuna: USA, March-July 2015
 Epidemiology and Infection 146:1461-1467. DOI 10.1017/S0950268818001462.
 - Changchai N, Saunjit S. 2014. Occurrence of *Vibrio parahaemolyticus* and *Vibrio vulnificus* in retail raw oysters from the eastern coast of Thailand. *The Southeast Asian Journal of Tropical Medicine and Public Health* 45:662-669.
 - **European Commission. 2005.** Commission regulation (EC) No 2073/2005 microbiological criteria for foodstuffs. Official Journal of the European Union, 1-26.
 - **European Commission. 2018.** *Salmonella* enterica ser. Matopeni (presence /25g) in food supplement from Germany.
 - **European Food Safety Authority. 2014.** The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. *EFSA Journal* 12:3547 DOI 10.2903/j.efsa.2014.3547.
 - Falcão JP, Dias AMG, Correa EF, Falcão DP. 2002. Microbiological quality of ice used to refrigerate foods. *Food Microbiology* 19:269-276 DOI 10.1006/fmic.2002.0490.
 - Falcão JP, Falcão DP, Gomes TAT. 2004. Ice as a vehicle for diarrheagenic *Escherichia coli*. *International Journal of Food Microbiology* 91:99-103 DOI 10.1016/S0168-1605(03)00327-1.
 - Feng P, Weagant SD, Grant MA, Burkhardt W, Shellfish M, Water B. 2002. Bacteriological Analytical Manual (BAM): Chapter 4: Enumeration of *Escherichia coli* and the Coliform Bacteria. Retrieved February 14, 2021. *Available at https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4-enumeration-escherichia-coli-and-coliform-bacteria.*
 - Fernandes DVGS, Castro VS, Cunha Neto Ad, Figueiredo EEdS. 2018. Salmonella spp. in the fish production chain: a review. Ciência Rural 48:e20180141 DOI 10.1590/0103-8478cr20180141.
 - Food and Agriculture Organization of the United Nations. 2015. The consumption of fish and fish products in the Asia-Pacific region based on household surveys. Retrieved February 14, 2021. Available at http://www.fao.org/publications/card/en/c/ba100e66-4b37-4a1b-ba2b-364e6a3205bc/.
- 469 Food and Agriculture Organization of the United Nations. 2018. The State of World
 470 Fisheries and Aquaculture 2018 Meeting the sustainable development goals. Retrieved
 471 February 14, 2021. Available at https://www.un-ilibrary.org/content/books/9789210472340.

Commented [LMG11]: format

- Gaulin C, Vincent C, Ismail J. 2005. Sporadic infections of Salmonella Paratyphi B, var. Java
 associated with fish tanks. Canadian Journal of Public Health 96:471-474 DOI
 10.1007/BF03405194.
- 476 Girardin F, Mezger N, Hächler H, Bovier PA. 2006. Salmonella serovar Give: an unusual
 477 pathogen causing splenic abscess. European Journal of Clinical Microbiology and
 478 Infectious Diseases 25:272-274.
- Gould LH, Walsh KA, Vieira AR, Herman K, Williams IT, Hall AJ, Cole D. 2013.
 Surveillance for foodborne disease outbreaks United States, 1998-2008. Morbidity and
 Mortality Weekly Report: Surveillance Summaries 62:1-34.
- 482 Grimont PAD, Weill FX. 2007 Antigenic Formulae of the Salmonella Serovars. 9th Edition,
 483 World Health Organization Collaborating Center for Reference and Research on
 484 Salmonella, Institute Pasteur, Paris.
- Heinitz ML, Ruble R, Wagner DE, Tatini S. 2000. Incidence of *Salmonella* in fish and
 seafood. *Journal of Food Protection* 63:579-592 DOI 10.4315/0362-028X-63.5.579.

- Higgins R, Désilets A, Cantin M, Messier S, Khakhria R, Ismaïl J, Mulvey MR, Daignault D, Caron H. 1997. Outbreak of *Salmonella* give in the province of Quebec. *The Canadian Veterinary Journal* 38:780-781.
- International Organization for Standardization. 2017. Microbiology of the food chain Horizontal method for the detection, enumeration and serotyping of *Salmonella* Part 1: Detection of *Salmonella* spp. (ISO Standard No. 6579-1: 2017).
 - **Iwamoto M, Ayers T, Mahon BE, Swerdlow DL. 2010.** Epidemiology of seafood-associated infections in the United States. *Clinical Microbiology Reviews* **23**:399-411 DOI 10.1128/CMR.00059-09.
- Jansen A, Frank C, Prager R, Oppermann H, Stark K. 2005. Nation-wide outbreak of *Salmonella* Give in Germany, 2004. *Z Gastroenterol* 43:707-713 DOI 10.1055/s-2005-858256.
- **Jeamsripong S, Chuanchuen R, Atwill ER. 2018.** Assessment of Bacterial Accumulation and Environmental Factors in Sentinel Oysters and Estuarine Water Quality from the Phang Nga Estuary Area in Thailand. *International Journal of Environmental Research and Public Health* **15**:1970 DOI 10.3390/ijerph15091970.
- Jiang Y, Chu Y, Xie G, Li F, Wang L, Huang J, Zhai Y, Yao L. 2019. Antimicrobial resistance, virulence and genetic relationship of *Vibrio parahaemolyticus* in seafood from coasts of Bohai Sea and Yellow Sea, China. *International Journal of Food Microbiology* 290:116-124 DOI 10.1016/j.ijfoodmicro.2018.10.005.
- Kaysner CA, DePaola A, Jones J. 2004. Bacteriological Analytical Manual (BAM): chapter 9:
 Vibrio. Retrieved February 14, 2021. Available at https://www.fda.gov/food/laboratory-methods-food/bam-chapter-9-vibrio.
- Kirov SM.1993. The public health significance of *Aeromonas* spp. in foods. *International Journal of Food Microbiology* 20:179-198 DOI 10.1016/0168-1605(93)90164-c.

- Kumar R, Surendran PK, Thampuran N. 2009. Distribution and genotypic characterization of
 Salmonella serovars isolated from tropical seafood of Cochin, India. Journal of Applied
 Microbiology 106:515-524 DOI 10.1111/j.1365-2672.2008.04020.x.
- Kuo HC, Lauderdale TL, Lo DY, Chen CL, Chen PC, Liang SY, Kuo JC, Liao YS, Liao
 CH, Tsao CS, Chiou CS. 2014. An association of genotypes and antimicrobial resistance
 patterns among *Salmonella* isolates from pigs and humans in Taiwan. *PLoS One* 9:e95772
 DOI 10.1371/journal.pone.0095772.
- Martinez-Urtaza J, Powell A, Jansa J, Rey JL, Montero OP, Campello MG, López MJ,
 Pousa A, Valles MJ, Trinanes J, Hervio-Heath D, Keay W, Bayley A, Hartnell R,
 Baker-Austin C. 2016. Epidemiological investigation of a foodborne outbreak in Spain
 associated with U.S. West Coast genotypes of Vibrio parahaemolyticus. SpringerPlus 5:1 DOI 10.1186/s40064-016-1728-1.
 - Phan TT, Khai LT, Ogasawara N, Tam NT, Okatani AT, Akiba M, Hayashidani H. 2005. Contamination of *Salmonella* in retail meats and shrimps in the Mekong Delta, Vietnam. *Journal of Food Protection* **68**:1077-1080 DOI 10.4315/0362-028x-68.5.1077.

- **Nitivattananon V, Srinonil S. 2019.** Enhancing coastal areas governance for sustainable tourism in the context of urbanization and climate change in eastern Thailand. *Advances in Climate Change Research* **10**:47-58 DOI 10.1016/j.accre.2019.03.003.
- Odeyemi OA. 2016. Incidence and prevalence of *Vibrio parahaemolyticus* in seafood: a systematic review and meta-analysis. *SpringerPlus* 5:464 DOI 10.1186/s40064-016-2115-7.
- Papadopoulou C, Economou E, Zakas G, Salamoura C, Dontorou C, Apostolou J. 2007. Microbiological and pathogenic contaminants of seafood in Greece. *Journal of Food Quality* 30:28-42 DOI DOI 10.1111/j.1745-4557.2007.00104.x.
- Pramono H, Kurniawan A, Andika N, Putra TF, Hazwin MAR, Utari S, Kurniawan AP, Masithah ED, Sahidu AM. 2019. Detection of antibiotic-resistant *Salmonella* sp. in the seafood products of Surabaya local market. IOP Conference Series: Earth and Environmental Science 236:012115.
- **Rahimi E, Shakerian A, Falavarjani AG. 2013.** Prevalence and antimicrobial resistance of *Salmonella* isolated from fish, shrimp, lobster, and crab in Iran. *Comparative Clinical Pathology* **22**:59-62 DOI 10.1007/s00580-011-1368-3.
- Raymond A, Ramachandran A. 2019. Bacterial Pathogens in Seafood-Indian Scenario. *Fishery Technology* 56:1-22.
- Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF. 2008. Youden Index and optimal
 cut-point estimated from observations affected by a lower limit of detection. *Biometrical Journal* 50:419-430 DOI 10.1002/bimj.200710415.
- Ryu AR, Mok JS, Lee DE, Kwon JY, Park K. 2019. Occurrence, virulence, and antimicrobial
 resistance of *Vibrio parahaemolyticus* isolated from bivalve shellfish farms along the
 southern coast of Korea. *Environmental Science and Pollution Research* 26:21034-21043
 DOI 10.1007/s11356-019-05426-1.

552	Sakazaki R, Tamura K, Abe H, Ogawa Y, Miyata Y. 1981. A new Salmonella serovar:
553	Salmonella itami (9,12:1,z13:1,2). Japanese Journal of Medical Science and Biology
554	34:179-180 DOI 10.7883/yoken1952.34.179.
555	Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL,
556	Griffin PM. 2011. Foodborne illness acquired in the United States-major pathogens.
557	Emerging Infectious Diseases Journal 17:7-15 DOI 10.3201/eid1701.P11101.
558	World Health Organization. 2004. Food safety at risk in Asia and the Pacific. Retrieved
559	February 14, 2021. Available at
560	https://apps.who.int/mediacentre/news/releases/2004/pr34/en/index.html.