

Human-wildlife conflicts with crocodilians, cetaceans and otters in the tropics and subtropics

Patrick Cook Corresp., 1, Joseph E Hawes 2, 3, 4, João Vitor Campos-Silva 2, 4, 5, 6, Carlos A Peres 1, 2

Corresponding Author: Patrick Cook Email address: flcook@tiscali.co.uk

Conservation of freshwater biodiversity and management of human-wildlife conflicts are major conservation challenges globally. Human-wildlife conflict occurs due to attacks on people, depredation of fisheries, damage to fishing equipment and entanglement in nets. Here we review the current literature on human conflicts with tropical and subtropical crocodilians, cetaceans and otters in freshwater and brackish habitats. We also present a new multispecies case study of conflicts with black caiman, giant otter, boto and tucuxi from the Western Amazon. Documented conflicts occur with 30 crocodilian, cetacean and otter species. 28.6% of the species reviewed in this study had conflicts frequently documented in the literature, with the saltwater crocodile the most studied species. We found a relationship between IUCN Red List status and conflict severity with severity increasing as red list threat status decreased. The results did not find a relationship between body mass and conflict severity. In the Amazonian case study we found that the black caiman was ranked as the greatest 'problem' followed by the boto, giant otter and tucuxi. A significant difference was found between the responses of fishers when each of the four species were found entangled in nets. We make a number of recommendations for future research based on the findings of the review and Amazon case study including the need to standardise data collection.

¹ School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

² Instituto Juruá, Manaus, Amazonas, Brazil

³ Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom

⁴ Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences, Ås, Norway

⁵ Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil

⁶ Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil

1 Human-Wildlife Conflicts with Crocodilians, Cetaceans and

2 Otters in the Tropics and Subtropics

3	
4	Patrick Cook ¹ , Joseph E. Hawes ^{2,3} , João Vitor Campos-Silva ^{3,4,5,6} , Carlos A. Peres ^{1,6}
5	
6	¹ School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
7	² Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, East Road,
8	Cambridge, UK
9	³ Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life
10	Sciences, Ås, Norway
11	⁴ Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas, Brazil
12	⁵ Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
13	⁶ Instituto Juruá, Rua Belo Horizonte 19, Manaus, Brazil
14	
15	Corresponding Author:
16	Patrick Cook ¹
17	School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ,
18	UK
19	Email address: pcooknature@gmail.com
20	

Abstract

22	Conservation of freshwater biodiversity and management of human-wildlife conflicts are major
23	conservation challenges globally. Human-wildlife conflict occurs due to attacks on people,
24	depredation of fisheries, damage to fishing equipment and entanglement in nets. Here we review
25	the current literature on human conflicts with tropical and subtropical crocodilians, cetaceans and
26	otters in freshwater and brackish habitats. We also present a new multispecies case study of
27	conflicts with black caiman, giant otter, boto and tucuxi from the Western Amazon. Documented
28	conflicts occur with 30 crocodilian, cetacean and otter species. 28.6% of the species reviewed in
29	this study had conflicts frequently documented in the literature, with the saltwater crocodile the
30	most studied species. We found a relationship between IUCN Red List status and conflict
31	severity with severity increasing as red list threat status decreased. The results did not find a
32	relationship between body mass and conflict severity. In the Amazonian case stud
33	that the black caiman was ranked as the greatest 'problem' followed by the boto, giant otter and
34	tucuxi. A significant difference was found between the responses of fishers when each of the
35	four species were found entangled in nets. We make a number of recommendations for future
36	research based on the findings of the review and Amazon case study including the need to
37	standardise data collection.

Introduction

39	Conflict between humans and wildlife poses a major challenge for biological conservation
40	(Dickman, 2010). Human-wildlife conflicts arise as a result of recurring negative interactions
41	between humans and wildlife and are frequently deep rooted in social beliefs (Pimm & Raven,
42	2000). Understanding the underlying factors driving conflicts is integral to successful
43	management, due to the often-increasing proximity between humans and wildlife, driven by
44	growing human populations and the recovery of rare nflict-generating species (Inskip &
45	Zimmermann, 2009; Groenendijk et al., 2014). Increasing our knowledge of conflicts in
46	freshwater and brackish ecosystems, between humans and piscivores, is especially important in
47	the tropics and subtropics given the heavy exploitation pressure and continued decline of wildlife
48	populations in such habitats (He et al., 2019).
49	Freshwater habitats cover approximately 3% of the Earth's land surface area (Pekel,
50	2016), exposing vertebrates to potential conflicts with humans, as a result of overlapping
51	distributions and utilisation of similar resources (Woodroffe & Ginsberg, 1998; Treves &
52	Karanth, 2003; Dudgeon et al., 2006). Piscivores can impose significant impacts on human
53	livelihoods in freshwater and brackish environments, including attacks on people and damage to
54	fishing gear, in addition to co-depletion of fish stocks (Rosas-Ribeiro, Rosas & Zuanon, 2012;
55	Sideleau & Britton, 2013). The species involved in conflicts are usually large-bodied, slow to
56	reproduce, and their persistence can be directly or indirectly affected by the conflict (Alves,
57	Zappes & Andriolo., 2012; Huang et al., 2012; Groenendijk et al., 2014). As species body mass
58	increases it could be expected that conflict severity would also increase due to the greater threat
59	posed to human life, increased potential damage to fishing equipment and risk of the species
60	being exploited itself. Conflicts are expected to increase in the future due to the closing

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

proximity between humans and wildlife driven by a rise in the human population and the recovery of rare conflict generating species (Inskip and Zimmermann, 2009; Groenendijk et al., 2014). It could be expected that as IUCN Red List threatened status decreases, as a species become more common, that conflict severity due to increased interactions with humans, would increase. Similarly, distance to the nearest urban area or access to seasonally flooded water could predict conflict severity due to the increased chance of interactions between humans and wildlife (Rosas-Ribeiro, Rosas & Zuanon, 2012). Managing this conflict to ensure long-term persistence of populations is vital to maintaining ecosystem integrity (Rio et al., 2001) but is particularly challenging in tropical and subtropical regions where freshwater fisheries more often represent a critical component of the subsistence diets and commercial revenues of local people (Michalski et al., 2012). Potential conflicts within marine fisheries have been well documented and show negative impacts on both the conservation of large marine predators and the socio-economic viability of fishing activities (Tixier et al., 2021). However, despite the importance of inland fisheries, a review has not yet been undertaken of the conflicts reported in freshwater and inland brackish systems such as estuaries and lagoons. Here, we address this research gap by reviewing conflicts between humans and three groups of piscivores found in the tropics and subtropics; crocodilians, cetaceans and otters. Our research focused on these groups which are large bodied and known to have the potential to generate conflict with humans. Specific research questions of the literature review include (1) what types of human-wildlife conflicts occur with crocodilians, cetaceans and otter) how many and which species of crocodilians, cetaceans and otters are involved in human-wildlife conflict.) what is the frequency of conflict documentation in the primary literature for each specie does increasing species body mass predict human-wildlife conflict

severity (5) does decreasing threat status of the species on the IUCN Red List predict higher
levels of human-wildlife conflict severity.
In addition, we also conduct an assessment of conflicts between local communities and
four aquatic vertebrates in western Brazilian Amazonia to elucidate the nature of conflicts that
occur. This case study was conducted to provide additional evidence to the review with a
crocodilian, two cetaceans and an otter. We specifically tested (1) whether the black caiman,
giant otter, boto and tucuxi are involved in human wildlife conflicts (2) what types of conflicts
occur (2) does proximity to the nearest town, Carauari, predict human-wildlife conflict severity
(4) does percentage of seasonally flooded forest around communities predict human-wildlife
conflict severity.
y -

95 Materials & Methods

Literature review

We conducted a literature review of human-wildlife conflicts, restricted to tropical and subtropical freshwater crocodilians, cetaceans and otters. The geographic region, between the Tropic of Cancer and Tropic of Capricorn, was selected to ensure that data gathered from the literature review and case study were within the same latitudinal range. Piscivores other than crocodilians, cetaceans and otters were not included in the study to allow comparison between the local case study and the wider literature review. This was to ensure the review could accurately reflect and compliment the four study species from the local case study which were a crocodilian, two cetaceans and an otter. Studies conducted outside the tropics and subtropics were excluded for species with a range that includes the temperate zone. Similarly, studies from freshwater and brackish habitats were included but information from the marine zone were

107	excluded. Studies that focused on interactions with fisheries were restricted to any form of wild
108	fishery and excluded human-made fisheries such as aquaculture. Attacks on humans were
109	restricted to wild animals and attacks on livestock and pets were excluded.
110	Primary literature sources were collated from Google Scholar and Scopus. A general
111	search using the following keywords, conflicts, crocodilians, cetaceans and otters was conducted
112	before using a Boolean search string search that included the common or scientific name of a
113	species, together with the following keywords: attack, conflict, depredation, entanglement,
114	perceptions and population. The string search was conducted in the following format ((
115	"common name" OR "synonym" OR "scientific name") AND (attack* OR conflict OR depred*
116	OR entangle* OR perce* OR damage)). Additional articles were located through searching
117	reference lists and subsequent citations. We recognise that ISI Web of Science was not used in
118	this search and that this may have precluded some studies. All keyword searches were conducted
119	in English, which may have excluded some studies. For each species, Red List Status was
120	assigned using the IUCN Red List (IUCN, 2020). Body mass in kilograms was also attributed
121	using the following categories \leq 10 kg, 11-49 kg, \geq 50 kg adopted from Inskip & Zimmermann
122	(2009) (Macdonald, 2009; Hunter, 2011; Lakin et al., 2020). A category was designated for each
123	species describing the severity of conflict based on criteria adapted from Inskip and
124	Zimmermann (2009) (Table 1). We also assigned the frequency of documented conflict based on
125	the frequency of primary literature sources referring to conflict with the species, 5 or more being
126	frequently documented, 2-4 being infrequently documented and 1 or less being rarely
127	documented. We recognise this is a limitation of this method as it does not account for quality or
128	impact of the study.
129	

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

Focal study area

Our focal landscape study was conducted in the state of Amazonas, Brazil along the midsection of the Juruá River in two contiguous sustainable-use forest reserves: the Médio Juruá Extractive reserve (ResEx Médio Juruá), and the Uacari Sustainable Development Reserve (RDS Uacari) (Fig. 1). These two reserves are home to a combined total of approximately 4,000 rural Amazonians, living in 58 communities and employed in a diverse range of extractive livelihoods (Newton, Endo & Peres., 2012). Communities typically have access to extensive floodplains and are located along the main river channel or on oxbow lakes, which are embedded within forests that are seasonally flooded by nutrient-rich white-water, known as *várzea* (Hawes *et al.*, 2012). Communities are therefore deeply entwined with their aquatic environment, and fishing represents both the principal source of protein in the subsistence diet of reserve residents (Endo, Peres & Haugaason, 2016), and one of the main sources of disposable income (Batista et al., 1998). Our focal study reserves represent an important site for globally significant communitybased conservation arrangements (Campos-Silva & Peres, 2016; Campos-Silva et al., 2018) that benefit a wide range of freshwater piscivores, including the black caiman (*Melanosuchus niger*), giant otter (*Pteronura brasiliensis*), and two cetaceans: the Amazon river dolphin or boto (*Inia* geoffrensis) and the tucuxi (Sotalia fluviatilis)(Fig. 2).

147

148

149

150

151

152

Amazonian fisher interviews

We employed a semi-structured questionnaire design to investigate perceptions of human-wildlife conflict involving four species in the western Brazilian Amazon: black caiman, giant otter, boto and the tucuxi. We conducted a total of 49 interviews at 37 local communities located within two sustainable-use reserves in the Médio Juruá region (Fig. 1), during

September-November 2014. We selected interviewees non-randomly, targeting the most experienced fishers in each community (either one individual or a small group of individuals). Interviews typically lasted 30 minutes and included eight objective yes/no questions regarding whether any potential 'problem species' cause problems, damages equipment, becomes entangled in nest, frightens away fish, or causes the interviewee to leave an area where the species has been sighted to fish elsewhere, and if co-existence with the pecies in the future depends on whether the population continues to increase in size. Interviewees were asked what their most likely response to finding one of the four species entangled in their fishing nets would be, such as killing or releasing the individual, if the species could escape of its own accord or if they were likely to die before being found. Interviewees were also asked if the species had been hunted in the community, hunted in 2013 or 2014, or hunted within the informant's lifetime. In addition, interviewees rank-ordered the potential problem of the conflict caused, with 1 being the greatest problem and 4 the least (Michalski *et al.*, 2012).

Data analysis

For the literature review, we used Spearman's rank prelation to investigate the change in the number of reviewed studies over time. A Fisher's exact test was implemented to determine if the severity of conflict differs between animal body mass categories ($< 10 \text{ kg}, 10\text{-}49 \text{ kg}, \ge 50 \text{ kg}$) or the species IUCN Red List category. In the Medio Juruá case study, we used a chi-squared test to determine if a difference occurred between the four species in terms of their ranking as a 'problem species'. A Mann-Whitney U test was used to determine the order of which species generate the highest level of conflict. A chi-squared test was also used to determine if the response of fishers to aquatic animals entangled in fishing nets differed between species. We also

calculated the nonlinear fluvial distance from the nearest urban centre of Carauari to each community, and the percentage of *várzea* floodplain forest within a 5-km ouffer around each community, using ArcGIS v 10.2.2 (ESRI, 2014). We then examined the influence of distance to Carauari and percentage *várzea* forest cover on the eight binary interview questions using binary logistic regression. We used SPSS v 22 and R v 1.4.1106 for all statistical analyses (IBM SPSS, 2014; R, 2020).

Results

Literature review

We reviewed a total of 143 primary literature sources reporting conflicts with 30 crocodilians, cetaceans and otters. These studies covered 33 countries in the tropics and subtropics across Africa, Asia, Australia, North America and South America. Brazil was the country with the most studies undertaken (n = 24), followed by India (n = 20) and Australia (n = 19). All other countries had seven or fewer studies. Studies were published between 1962 and 2020, and the number of sources published per year increased over time, including years with no studies reported (Spearman's: r_s=0.882, p<0.001, n=143; Fig. 3). Attacks accounted for 30.8% of studies, economic and livelihood reasons such as net damage or competition for fish accounted for 28.7% of studies, entanglement for 10.6%, management for 10.5%, perceptions for 9.8% and positive interactions for 0.7%. A total of 19.6% of studies focused on entanglement covering five species of crocodiles and six species of cetaceans, the latter accounting for 87.1% of all studies on entanglement. Management or resolution of conflict was the subject of only 10.5% of all studies covering five nations, notably Australia which accounted for 60.0% of management studies. Regarding conflict documentation, 28.6% of species were frequently documented,

PeerJ

199 42.9% infrequently documented and 28.6% rarely documented (Table 2). The saltwater crocodile (Crocodylus porosus) was the subject of the highest number of publications at 33. 200 The severity of conflict did not differ significantly between body mass categories 201 (Fisher's, p = 0.3047). The severity of conflict did differ significantly between IUCN Red List 202 categories, with species classified in less threatened categories displaying higher levels of 203 conflict (Fisher's: p < 0.01). The literature highlighted 44 studies concerning sub-lethal or lethal 204 attacks by crocodilians as a reason for conflict. 205 206 207 Amazonian case study Interview responses in the Médio Juruá region showed a significant difference between 208 209 the perception of black caiman, giant otters, botos and tucuxis as problem species (Chi-squared: $\chi^2 = 204.692$, p < 0.001, n=49). Black caiman was consistently regarded as the greatest source of 210 conflicts (mean rank = 1.37), followed by the boto (2.06), giant otter (2.519) and tucuxi (n=49). 211 The black caiman was ranked significantly higher as a 'problem species' than the boto (Mann-212 213 Whitney: U = 573.5, Z = -4.841, p < 0.001, n=49), and the boto was ranked significantly higher than the giant otter (U = 714.0, Z = -3.195, p < 0.001, n=49). Of the 49 interviews conducted, 214 100% of interviewees reported black caiman and boto as problem species, followed by 89.8% for 215 the giant otter (Fig. 4). In the study areas, at least nine cases of lethal attacks by black caiman 216 involving both adults and children have been reported between 2007 and 2020, a rate of about 217 0.3 persons killed each decade per 1000 people (C Peres pers. comm, 2021). 218 Fishers' responses showed a significant difference between all species regarding the 219 outcomes whenever found entangled in fishing nets ($\chi^2 = 152.123$, p < 0.001, n=49). Black 220 221 caimans were reported to be killed by 93.0% of fishers (Fig. 5). In contrast, 79.0% of botos and

85.7% of tucuxi were released alive, and 40.0% of interviewees stated that giant otters could escape from gillnets without assistance (Fig. 5). In response to the black caiman 16.7% of interviewees reported they changed fishing locations due to conflict compared to 33.3% for the giant otter, 12.5% for the boto and no interviewees for the tucuxi. Most interviewees reported that they could continue coexisting with these four species if populations were to increase in the future, ranging from 60.4% of interviewees considering coexistence with the black caiman is possible to 75.0% for the tucuxi (Fig. S1). With the exception of one variable, no interviewee responses showed a significant relationship with fluvial distance from the nearest urban centre of Carauari or the percentage of *várzea* floodplain forest found within a 5-km buffer area around each community (Table S1). The exception is the damage caused to gillnets by giant otters, which increased with fluvial distance from Carauari (B=0.007, p =0.009, n=49).

Discussion

Amazonian Case Study

We found that interviewee responses displayed significant differences between the perceptions of black caiman, giant otter, boto and tucuxi as problem species. Black caiman was ranked as the highest problem followed by the boto, giant otter and tucuxi. This reflects the conflict severity findings in our literature review, although the latter failed to detect the difference in conflict severity between the boto and the giant otter. This highlights the value of case studies for identifying differences in conflict severity at a small scale, that global analysis will fail to detect, and to prioritise species for conflict resolution.

Fishers' responses showed a significant difference between all species regarding the normal outcome when individuals were encountered entangled in fishing nets, with black caiman

killed, botos and tucuxis released, and the giant offer dying before being discovered. Certain
species are better able to escape entanglement in nets. For instance, in our Juruá study 40.0% of
interviewees stating that giant otters could escape (Fig. 5). This is higher than for the black
caiman, boto or tucuxi, reflecting their ability to tear through nets with their teeth and dexterous
paws. For the boto our findings differ from other areas, such as the Central Amazon where the
species is intentionally killed as bait for piracatinga catfish (Calophysus macropterus) fisheries
(Loch, Marmontel & Simoes-Lopes, 2009; Alves, Zappes & Andriolo., 2012). To improve the standardisation of data collection for future case studies we would recommend asking
interviewees to state the percentage of times each possible response to entanglement was
undertaken alongside gathering data on entanglement rate per km of river, although the latter
would require long term funding to be effective. This concept can also be expanded to include
other areas of importance to conflicts such as the number of nets or financial cost of nets
damaged per year for both subsistence and commercial fisheries, and rates of attack on humans
(Peres and Carkeek, 1993; Aust et al., 2009; Sideleau & Britton, 2013). Such estimations would
facilitate comparison between different areas to better prioritise conflict resolution efforts.
Most interviewees reported that they could continue coexisting with these four species if
populations were to increase in the future. The percentage of interviewees agreeing with this
statement reflected the problem ranking status, being lowest for the black caiman. In areas where
conflict is higher we recommend interviewers include questions identifying reasons which may
prevent co-existence and consulting local communities on suggested conflict management
solutions, which can be a successful conservation approach (Campos-Silva & Peres, 2016;
Campos-Silva et al., 2018).

We found no relationship between interviewee responses and percentage of *várzea* floodplain forest found within a 5-km buffer area around each community. We expected this to be a factor that influences the potential for conflict severity as access to flooded forest surrounding the community could increase the proximity and potential for interactions between the species and humans. It could be that rather than percentage of flooded forest being the driving influence, that conflicts are higher in either the dry or wet season, when water levels rise allowing species to access flooded forest (Junk *et al.*, 2011). There is some evidence that conflict with giant otters is highest during the wet season when fish disperse into the flooded forest and they become more generalist, targeting vulnerable species. This happens to coincide with when fishermen's income decreases (Junk, 1984; Cabral *et al.*, 2010; Rosas-Ribeiro, Rosas & Zuanon, 2012).

Coverage of Conflicts

We found conflicts occur with 30 crocodilians, cetaceans and otters and has been documented in the primary literature across 33 countries in the tropics and subtropics. Studies were undertaken over a relatively broad timespan between 1962 and 2020, with most studies focused on the topic of attacks. This is not particularly surprising as threat to human life is a considerable indicator of human-wildlife conflict. Regarding conflict documentation, 28.6% of species were frequently documented, 42.9% infrequently documented and 28.6% rarely documented (Table 2). For three of the four species in our Amazonian case study, we found conflict was frequently documented in the literature. This highlights that conflicts occurring with the majority of crocodilians, cetaceans and otters have been infrequently documented in the literature and there is a need for wider systematic reporting, particularly for species experiencing high levels of conflict. Frequency is an approximate indicator, and we acknowledge that this

does not take into account quality or impact of study. For instance, a species may have only one primary literature source but this source can cover conflict and mitigation in detail. We did not include the secondary literature but this can contain useful information as demonstrated with felids (Inskip and Zimmermann, 2009). Better documentation and a method to objectively compare studies, based on quality or impacts of the research would be useful for future review processes to identify 'real' gaps in species studied. Our result does however highlight that for many species further documentation of conflicts would be useful both to identify causes of potential conflict and management solutions. The latter is of particular interest given that we found on 10.5% of studies examined management solutions for species, largely restricted to the saltwater crocodile in Australia (Fukuda *et al.*, 2019; Fukuda *et al.*, 2020).

Body Mass and Conflict Severity

Our review found no relationship between body mass and conflict severity. This agrees with findings in our Amazonian case study where the order of ranked 'problem species' displayed no clear pattern with body mass. This finding differs from that of Inskip and Zimmermann (2009) who examined conflict severity with felids and found a relationship with body mass, highlighting the need for greater conservation attention of larger species.

For crocodilians we used average female body mass from Lakin *et al.* (2020), rather than maximum reported body mass, information which is not available in one literature source. Our results are contrary to the literature that larger bodied species, such as male crocodilians, are engaged in more severe conflict, probably because they represent a greater threat to human life (Caldicott *et al.*, 2015; Campbell *et al.*, 2013; Fukuda *et al.*, 2015). For instance of the 26 recognised crocodilian species, 15 have been documented to attack humans, 7 of which were

responsible for lethal attacks (Sideleau & Britton, 2013). In comparison, otters rarely attack humans, with 95.2% of documented cases linked to the North American river otter (*Lontra canadensis*) and we could find no cases of cetacean attacks (Belanger *et al.*, 2011). This last point is important as cetaceans have relatively large body mass but a lower level of conflict severity than crocodilians. This indicates that an important resource for future analysis would be maximum male and female body mass or length of each species as a predictor of conflict severity (Pooley *et al.*, 2020).

Calculating attack rates in relation to body mass would be a useful predictor of conflict severity, particularly for crocodilians with the availability of datasets such as CrocBITE (2021). Challenges to be addressed in such a study would include the likely bias in reporting of attacks, between fatal and non-fatal attacks, and countries or regions where the attacks occurred (Scott & Scott, 1994; McGregor, 2005; Sideleau & Britton, 2013; Brackhane *et al.*, 2019).

IUCN Red List Status and Conflict Severity

We found species in lower threat categories on the IUCN Red List displayed higher levels of conflict with humans. This suggests that as a species increases in frequency, using the Red List as an indicator for population status, greater levels of conflict are likely to occur. The approach adopted in this study is suitable for investigating broad scale patterns between species at a large-scale but will not identify regional or local differences in conflict severity at the level that may influence species populations, for example the retaliatory killing of 'problem individuals'. This was evident from our Amazon case study where the conflict experienced differed significantly between species but three of the four species were listed in the same threat category of endangered. Similar findings are displayed in the wider literature where the local

economic and political situation can influence conflict severity, for instance the higher severity of conflict with saltwater crocodile in Timor-Leste than Australia, despite the species being listed with the same IUCN category (Fukuda, Manolis & Appel, 2014; Brackhane *et al.* 2018; Fukuda *et al.*, 2020).

Our findings have important management considerations for species found in lower threat categories, or those that are recovering in population size and increasingly experiencing conflict. Management strategies may be required as the species recovers in population size to prevent humans killing the recovering species or vice versa to reduce attacks on human populations (Jayson, Sivaperuman and Padmanabhan, 2006; Brackhane *et al.*, 2018). Human exploitation caused the historic decline of many crocodilians, cetaceans and otters (Smith, 1981; Mintzer *et al.*, 2013). Protection through CITES has allowed many species to successfully recolonise areas of their former ranges where human populations may now have increased (Groenendijk *et al.*, 2014; Antunes *et al.*, 2016). The growing spatial overlap between humans, crocodilians, cetaceans and otters has in some locations increased negative interactions. This may result in attacks on people, economic losses or coincidental declines in fish stocks, with these species potentially blamed or persecuted even if overfishing is the driving factor (Gopi & Pandav, 2009; Recharte, Bowler & Bodmer, 2009; Fukuda, Manolis & Appel, 2014; Lima, Marmontel & Bernard, 2014a).

Coexistence with recovering species can depend on perceived or actual population trends, and the conservation strategies used to manage conflict (Fukuda *et al.*, 2019; Patro & Padhi *et al.*, 2019; Fukuda *et al.*, 2020; Rose, Fukuda & Campbell., 2020). For instance, in the Juruá, where it is expected that black caiman and giant otter populations have increased in line with other localities since peak levels of hunting, 14.6% of interviewees in our study area reported

that coexistence with these species depends on their future population trends (Lima, Marmontel & Bernard, 2014a; Pimenta *et al.*, 2018; Marioni *et al.*, 2021). Currently such population trend data are limited in Amazonia, as with many other regions globally (Brum *et al.*, 2021).

We advise caution in the interpretation of some aspects our result. Firstly, there are a number of species listed as critically endangered or endangered that are exposed to moderate levels of conflict. Secondly, it could be argued that even minimal conflict could have a disproportionately higher effect on more threatened species due to their inherent rarity. Thirdly, rare species which occupy limited ranges or occur in particular countries, may suffer a bias in reduced reporting of conflicts (Sideleau & Britton, 2013). In this study for instance, we found that four critically endangered or endangered species had no documentation of conflicts. Disentangling whether this reflects a lack of evidence or absence of conflict would require more investigation.

Net Damage and Fish Depredation

Crocodilians, cetaceans and otters depredate fish, damaging nets in the process and causing competition with commercial and subsistence fisheries by catching commercially valuable fish and displacing fish. Economic losses are often cited in the literature but studies including quantifiable, standardised data and solutions to resolve these factors are limited (Aust *et al.*, 2009. Currently data concerning the coverage of depredation is better compiled for marine ecosystems alongside methods for reducing depredation (Tixier *et al.*, 2021). Similarly, in terrestrial ecosystems methods for reducing felid predation on livestock are better documented, although rigorous scientific evaluation remains poor (Inskip & Zimmermann, 2009).

Depredation of fish stocks and net damage can be extensive, and responses may include
retaliatory killing (Jacque, Moutou & Alary., 2002; Aust et al., 2009; Gopi & Pandav, 2009;
Barbieri et al., 2012). Riverine communities typically depend on fish for dietary protein and
financial income so damage to nets severely impacts their livelihoods (Michalski et al., 2012).
Our case study found the black caiman, giant otter and boto all damage fishing equipment,
although we did not document the frequency or economic severity of such damage. In north-
eastern Namibia approximately 71,500 nets are damaged annually by the Nile crocodile, and in
the Amazon black caiman can damage up to 50.0% of commercially deployed gill nets (Peres &
Carkeek, 1993; Aust et al., 2009). Replacement of fishing nets may have major financial
ramifications for fishers with limited resources since purchasing new nets can often exceed
monthly income, as in Namibia (Aust et al., 2009). To prevent damage, fishers may respond by
guarding nets, which conversely could increase exposure to attacks (McGregor, 2005).
Compared to crocodiles, depredation by otters is generally poorly documented although Barbieri
et al. (2012) showed that depredation by the Neotropical otter can cause repeated damage to nets
(Alary, Moutou & Jacques, 2002; Hussain, Gupta & Da Silva, 2011; Fonseca & Marmontel,
2011). Similarly, for cetaceans there are consistent reports of the boto raiding and damaging nets,
with all interviewees in our study supporting findings from elsewhere in the Amazon (Alves,
Zappes & Andriolo., 2012; Campbell et al; 2020; Fig. 4). This contrasts sharply with the
sympatric tucuxi, where only 4.1% of interviewees reported damaged nets (Fig. 4).
Otters can be perceived to either reduce or displace stocks of commercially important fish
(Fonseca & Marmontel, 2011). Conflicts with the giant otter occur in the western Amazon,
particularly in relation to matrinxã (Brycon cephalus) fisheries, which are important for both
subsistence and trade (Santos, Ferriera & Zuanon., 2006; Rosas-Ribeiro, Rosas, Zuanon, 2012).

In the Juruá, 50.0% of interviewees reported giant otters being responsible for a perceived decline in matrinxã, and 97.9% of interviewees stated that giant otters spatially displace fish (Fig. 4). Perceived competition can lead to retaliatory killing of 'problem individuals' which has detrimental impacts on the species by reducing population recovery (Brum *et al.*, 2021). Resource depletion by fisheries can intensify competition and conflict. In the Ganges river, competition for fish has intensified between fisheries and the South Asian river dolphin as commercial fisheries have reduced large fish abundance, increasing overlap between fisheries and the prey species targeted by dolphins (Kelkar *et al.*, 2010).

Entanglement

In this review we found 19.9% of studies focused on entanglement as a source of conflict, where there was a particular focus on cetaceans. Entanglement in fishing equipment threatens crocodilians, cetaceans and otters with impacts ranging from injury to death (Platt & Thorbjarnarson, 2000; Choudhary *et al.*, 2006; Alves, Zappes & Andriolo., 2012). All four species in our Amazonian case study were reported to become entangled in nets. Some net types, such as seine nets or nets with polyamide threads, may increase risk of fatality from entanglement, as found with otters and cetaceans (Leatherwood & Reeves, 1994; da Silva & Best, 1996; Lima, Marmontel & Bernard, 2014b). Further research regarding the impacts of different types of fishing equipment and practises on crocodilians, cetaceans and otters is required, building upon documented examples for marine predators (Tixier *et al.*, 2021).

Bycatch through entanglement has the potential to be a major factor influencing population trends of species as found in the marine realm (Mangel *et al.*, 2013; Anderson *et al.*, 2020; Tixier *et al.*, 2021). In extreme circumstances entanglement can contribute to extinction

such as for the Yangtze river dolphin (<i>Lipotes vexillifer</i>) where 40% of fatalities in the 1990s
were attributed to this factor (Zhou et al., 1998; Zhang et al., 2003; Turvey et al., 2007).
Entanglement is also cited as the primary source of conflict and a contributor to population
declines of the boto and tucuxi (Campbell et al; 2020), the latter now listed as endangered on the
IUCN Red List (da Silva et al., 2018; IUCN, 2020; Brum et al., 2021). This has resulted in all
river dolphin species now being listed as endangered, critically endangered or extinct (IUCN,
2020). Scientifically rigorous studies are required concerning methods to prevent or reduce risk
of entanglement occurring. For instance, many techniques have been tested to prevent
entanglement in marine ecosystems, with some methods such as acoustic deterrent pingers now
being tested for freshwater cetaceans (Waples et al., 2013; Prajith, Das & Edwin, 2014; Snape et
al., 2018; Tixier et al., 2021; Zanon, 2021).
Human responses to entanglement vary from release to retaliatory killing and are often
influenced by local perceptions and economics (this study; Sinha, 2002; Alves, Zappes &
initiation of room perceptions and contained (and study, simila, 2002, 111, es, 2upper ce
Andriolo., 2012; Campbell <i>et al.</i> , 2020). In our case study we found that the response between
Andriolo., 2012; Campbell et al., 2020). In our case study we found that the response between
Andriolo., 2012; Campbell <i>et al.</i> , 2020). In our case study we found that the response between the four studies species varied greatly with black caiman often killed as a food source. The
Andriolo., 2012; Campbell <i>et al.</i> , 2020). In our case study we found that the response between the four studies species varied greatly with black caiman often killed as a food source. The chance of a species being killed rather than released likely reflects the level of local conflict
Andriolo., 2012; Campbell <i>et al.</i> , 2020). In our case study we found that the response between the four studies species varied greatly with black caiman often killed as a food source. The chance of a species being killed rather than released likely reflects the level of local conflict severity which can be influenced by economic and political situations. For instance, both the
Andriolo., 2012; Campbell <i>et al.</i> , 2020). In our case study we found that the response between the four studies species varied greatly with black caiman often killed as a food source. The chance of a species being killed rather than released likely reflects the level of local conflict severity which can be influenced by economic and political situations. For instance, both the boto and tucuxi were always reported to be released in our Juruá waterscape, where piracatinga
Andriolo., 2012; Campbell <i>et al.</i> , 2020). In our case study we found that the response between the four studies species varied greatly with black caiman often killed as a food source. The chance of a species being killed rather than released likely reflects the level of local conflict severity which can be influenced by economic and political situations. For instance, both the boto and tucuxi were always reported to be released in our Juruá waterscape, where piracatinga fisheries are not of commercial importance. In contrast, in the Central Amazon negative

complex with most fishers releasing entangled botos and tucuxis, but some ports displaying a higher frequency of use for bait (Campbell *et al.*, 2020).

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

449

450

Conclusions

This study is the first review of conflicts with crocodilians, cetaceans and otters in the tropics and subtropics. Conflict was found to occur with 30 species with conflict including attacks on people, depredation of fisheries or livestock, damage to fishing equipment and entanglement in nets. We found as IUCN Red List status threats status decreased conflict severity increased, indicating a need for conflict management strategies as species recover in population size. We make three recommendations for future research. Firstly, there remains considerable gaps in our knowledge for many species. Determining if conflict occurs, the severity of this conflict and what economic or societal factors influence the conflict is a priority, with Table 1 an indicator of which species have been infrequently or rarely documented so far. Species experiencing the greatest level of conflict should be prioritised. Our second recommendation, based upon findings and limitations from our Amazonian case study, is the need to report conflicts in local case studies with commercial and subsistence fishers in a quantifiable and standardised manner to allow meta-analysis across studies. For instance, quantifying the number of nets damaged and financial costs of replacing nets, or frequency of entanglement over a set time period, in questionnaires would improve the ability to understand the severity of conflicts (Campbell et al., 2020). Our third recommendation is that for all conflict generating species, there is a need for future studies to focus on the resolution and management of conflicts in a scientifically robust manner.

471

4/2	Acknowledgements
473	We thank the Secretaria do Estado do Meio Ambiente e Desenvolvimento Sustentável (SDS-
474	DEMUC) and the Instituto Chico Mendes de Conservação da Biodiversidade (ICMPio) for
475	authorising this research. We are grateful to Franciney Silva da Souza for assisting fieldwork and
476	to all reserve residents for their hospitality and participation in interviews. We wish to thank
477	Frank Hajek and Jessica Groenendijk for allowing us to use their photographs of black caiman
478	and giant otter, and Sannie Brum for photographs of the boto and tucuxi. This publication is part
479	of the Instituto Juruá series (www.institutojurua.org.br).
480	
481	References
482	Alary, F., Moutou, F., Jacques, H., 2002. Still on the tracks of the Congo clawless otter (<i>Aonyx</i>
483	congicus): first mission in Cameroon. IUCN Otter Specialist Group Bulletin, 19(1), 51-
484	55.
485	Alves, L.C.P.D.S., Zappes, C.A., Andriolo, A., 2012. Conflicts between river dolphins (Cetacea:
486	Odontoceti) and fisheries in the central Amazon: a path toward tragedy? Zoologia, 29(5),
487	420-429 DOI: 10.1590/S1984-46702012000500005.
488	Anderson, R.C., Herrera, M., Ilangakoon, A.D., Koya, K.M., Moazzam, M., Mustika, P.L. and
489	Sutaria, D.N., 2020. Cetacean bycatch in Indian Ocean tuna gillnet fisheries. Endangered
490	Species Research, 41, pp.39-53.
491	Antunes, A.P., Fewster, R.M., Venticinque, E.M., Peres, C.A., Levi, T., Rohe, F., Shepard, G.H.,
492	2016. Empty forest or empty rivers? A century of commercial hunting in
493	Amazonia. Science Advances 2:e1600936. DOI: 10.1126/sciadv.1600936.

494	Aust, P., Boyle, B., Fergusson, R., Coulson, T. 2009. The impact of Nile crocodiles on rural
495	livelihoods in northeastern Namibia. South African Journal of Wildlife Research, 39(1),
496	57-69. DOI: 10.3957/056.039.0107.
497	Barbieri, F., Machado, R., Zappes, C.A., Oliveira, L.R.D., 2012. Interactions between the
498	Neotropical otter (Lontra longicaudis) and gillnet fishery in the southern Brazilian coast.
499	Ocean and Coastal Management, 63, 16-23. DOI: 10.1016/j.ocecoaman.2012.03.007
500	Batista, V S., Inhamuns, A. J., Freitas, C.E.C., Freire-Brasil, D., 1998. Characterisation of the
501	fishery in riverine communities in the Low-Solimões/High-Amazon region. Fisheries
502	Management Ecology, 5 , 101–117.
503	Belanger, M., Clough, N., Askin, N., Tan, L., Wittnich, C., 2011. A Review of violent or fatal
504	otter Attacks. IUCN Otter Specialist Group Bulletin. 28 (1): 11 – 16.
505	Brackhane, S., Webb, G., Xavier, F.M., Gusmao, M., Pechacek, P., 2018. When conservation
506	becomes dangerous: human-crocodile conflict in Timor-Leste. The Journal of Wildlife
507	Management, 82(7), pp.1332-1344. DOI: 10.1002/jwmg.21497.
508	Brackhane, S., Webb, G., Xavier, F.M., Trindade, J., Gusmao, M., Pechacek, P., 2019. Crocodile
509	management in Timor-Leste: drawing upon traditional ecological knowledge and cultural
510	beliefs. Human Dimensions of Wildlife, 24(4), pp.314-331. DOI:
511	10.1080/10871209.2019.1614240.
512	Brum, S., Rosas-Ribeiro, P., Amaral, R.D.S., de Souza, D.A., Castello, L., da Silva, V.M.F.,
513	2021. Conservation of Amazonian aquatic mammals. Aquatic Conservation: Marine and
514	Freshwater Ecosystems. DOI: 10.1002/aqc.3590.

515	Cabral, M.M., Zuanon, J., de Mattos, G.E., Rosas, F.C., 2010. Feeding habits of giant otters
516	Pteronura brasiliensis (Carnivora: Mustelidae) in the Balbina hydroelectric reservoir,
517	central Brazilian Amazon. Zoologia, 27(1), 47-53.
518	Caldicott, D.G., Croser, D., Manolis, C., Webb, G., Britton, A., 2005. Crocodile attack in
519	Australia: an analysis of its incidence and review of the pathology and management of
520	crocodilian attacks in general. Wilderness and Environmental Medicine, 16(3), 143-159.
521	DOI: 10.1580/1080-6032(2005)16[143:CAIAAA]2.0.CO;2.
522	Campbell, E., Mangel, J.C., Alfaro-Shigueto, J., Mena, J.L., Thurstan, R.H., Godley, B.J., 2020.
523	Coexisting in the Peruvian Amazon: Interactions between fisheries and river
524	dolphins. Journal for Nature Conservation, 56, p.125859. DOI:
525	10.1016/j.jnc.2020.125859.
526	Campbell, H.A., Dwyer, R.G., Irwin, T.R., Franklin, C.E., 2013. Home range utilisation and
527	long-range movement of estuarine crocodiles during the breeding and nesting season.
528	PLoS One, 8, e62127. DOI: 10.1371/journal.pone.0062127.
529	Campos-Silva, J.V., Hawes, J.E., Andrade, P.C., Peres, C.A., 2018. Unintended multispecies co-
530	benefits of an Amazonian community-based conservation programme. Nature
531	Sustainability, 1(11), pp.650-656. DOI: 10.1038/s41893-018-0170-5.
532	Campos-Silva, J.V., Peres, C.A., 2016. Community-based management induces rapid recovery
533	of a high-value tropical freshwater fishery. Scientific Reports, 6(1), pp.1-13. DOI:
534	10.1038/srep34745.
535	Choudhary, S.K., Smith, B.D., Dey, S., Dey, S., Prakash, S., 2006. Conservation and
536	biomonitoring in the Vikramshila gangetic dolphin sanctuary, Bihar, India. Oryx, 40(2),
537	189-197. DOI: 10.1017/S0030605306000664.

538	CrocBITE 2021. The Worldwide Crocodilian Attack Database. Big Gecko, Darwin, accessed
539	(insert date). http://www.crocodile-attack.info .
540	da Silva, V.M., Freitas, C.E., Dias, R.L., Martin, A.R., 2018. Both cetaceans in the Brazilian
541	Amazon show sustained, profound population declines over two decades. PloS
542	one, 13(5), p.e0191304. DOI: 10.1371/journal.pone.0191304.
543	da Silva, V.M.F., Best, R.C., 1996. Freshwater dolphin/fisheries interaction in the central
544	Amazon (Brazil). Amazoniana. Kiel, 14(1), 165-175.
545	Dickman, A.J., 2010. Complexities of conflict: the importance of considering social factors for
546	effectively resolving human-wildlife conflict. Animal Conservation, 13(5), 458-466.
547	DOI: 10.1111/j.1469-1795.2010.00368.x.
548	Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.I., Knowler, D.J., Lévêque, C.,
549	Naiman, R.J., Prieur-Richard, A., Soto, D., Stiassny, M.L.J., Sullivan, C.A., 2006.
550	Freshwater biodiversity: importance, threats, status and conservation challenges.
551	Biological Reviews, 81 (2), 163-182. DOI: 10.1017/S1464793105006950.
552	Endo, W., Peres, C.A., Haugaasen, T., 2016. Flood pulse dynamics affects exploitation of both
553	aquatic and terrestrial prey by Amazonian floodplain settlements. Biological
554	Conservation, 201, 129-136. DOI: 10.1016/j.biocon.2016.07.006.
555	ESRI, 2014. ArcGIS v 10.2.2.
556	Fonseca, V., Marmontel, M., 2011. Local knowledge and conflicts with otters in western
557	Brazilian Amazon: a preliminary report. IUCN Otter Specialists Group Bulletin, 28(B),
558	64-68.
559	Fukuda, Y., Manolis, C., Appel, K., 2014. Featured article: management of human-crocodile
560	conflict in the Northern Territory, Australia: review of crocodile attacks and removal of

561	problem crocodiles. <i>The Journal of Wildlife Management</i> , 78 (7), 1239-1249. DOI:
562	10.1002/jwmg.767.
563	Fukuda, Y., Manolis, C., Saalfeld, K., Zuur, A., 2015. Dead or alive? Factors affecting the
564	survival of victims during attacks by saltwater crocodiles (Crocodylus porosus) in
565	Australia. PLoS One, 10(5), p.e0126778. DOI: 10.1371/journal.pone.0126778.
566	Fukuda, Y., Webb, G., Edwards, G., Saalfeld, K., Whitehead, P., 2020. Harvesting predators:
567	simulation of population recovery and controlled harvest of saltwater crocodiles
568	Crocodylus porosus. Wildlife Research. DOI: 10.1071/WR20033.
569	Fukuda, Y., Webb, G., Manolis, C., Lindner, G., Banks, S., 2019. Translocation, genetic
570	structure and homing ability confirm geographic barriers disrupt saltwater crocodile
571	movement and dispersal. PloS one, 14(8), p.e0205862. DOI:
572	10.1371/journal.pone.0205862.
573	Gopi, G. V., Pandav, B., 2009. Humans sharing space with <i>Crocodylus porosus</i> in Bhitarkanika
574	wildlife sanctuary: conflicts and options. Current Science, 96(4), 459-460.
575	Groenendijk, J., Hajek, F., Johnson, P.J., Macdonald, D.W., Calvimontes, J., Staib, E., Schenck,
576	C., 2014. Demography of the giant otter (Pteronura brasiliensis) in Manu national park,
577	south-eastern Peru: implications for conservation. PLOS One, 9(8). DOI:
578	10.1371/journal.pone.0106202.
579	Hawes, J.E., Peres, C.A., Riley, L.B., Hess, L.L., 2012. Landscape-scale variation in structure
580	and biomass of Amazonian seasonally flooded and unflooded forests. Forest Ecology and
581	Management, 281, 163-176. DOI: 10.1016/j.foreco.2012.06.023.

582 He, F., Zarfl, C., Bremerich, V., David, J.N., Hogan, Z., Kalinkat, G., Tockner, K., Jähnig, S.C., 2019. The global decline of freshwater megafauna. Global Change Biology, 25(11), 583 pp.3883-3892. DOI: 10.1111/gcb.14753. 584 Huang, S.L., Hao, Y., Mei, Z., Turvey, S. T., Wang, D., 2012. Common pattern of population 585 586 decline for freshwater cetacean species in deteriorating habitats. Freshwater Biology, 587 **57**(6), 1266-1276. DOI: 10.1111/j.1365-2427.2012.02772.x. Hunter, L., 2011. Carnivores of the World. Princeton: Princeton University Press. 588 Hussain, S.A., Gupta, S.K., De Silva, P.K., 2011. Biology and ecology of Asian small-clawed 589 590 otter Aonyx cinereus (Illiger, 1815): a review. IUCN Otter Specialist Group Bulletin, **28**(2), 63-75. 591 IBM SPSS Statistics, 2014. SPSS v 22. 592 593 Inskip, C., Zimmermann, A., 2009. Human-felid conflict: a review of patterns and priorities worldwide. Oryx, 43(1), 18-34. DOI: 10.1017/S003060530899030X. 594 IUCN, 2020, The IUCN red list of threatened species, IUCN, viewed 20 December 2020, < 595 596 https://www.iucnredlist.org/> Jayson, E.A., Sivaperuman, C., Padmanabhan, P., 2006. Review of the reintroduction 597 598 programme of the mugger crocodile *Crocodylus palustris* in Neyyar reservoir, India. *The* Herpetological Journal, 16(1), 69-76. 599 Junk, W.J., 1984. Ecology, fisheries and fish culture in Amazonia. In: H. Sioli, ed. *The Amazon*. 600 601 Netherlands: Springer, pp. 443-476. Junk, W.J., Piedade, M.T.F., Schöngart, J., Cohn-Haft, M., Adeney, J.M., Wittmann, F., 2011. A 602 603 classification of major naturally-occurring Amazonian lowland 604 wetlands. Wetlands, 31(4), pp.623-640.

605	Kelkar, N., Krishnaswamy, J., Choudhary, S., Sutaria, D., 2010. Coexistence of fisheries with
606	river dolphin conservation. Conservation Biology, 24(4), 1130-1140. DOI:
607	10.1111/j.1523-1739.2010.01467.x.
608	Lakin, R.J., Barrett, P.M., Stevenson, C., Thomas, R.J., Wills, M.A., 2020. First evidence for a
609	latitudinal body mass effect in extant Crocodylia and the relationships of their
610	reproductive characters. Biological Journal of the Linnean Society, 129(4), pp.875-887.
611	DOI: 10.1093/biolinnean/blz208.
612	Leatherwood, S., Reeves, R.R., 1994. River dolphins: a review of activities and plans of the
613	cetacean specialist group. Aquatic Mammals, 20, 137-154.
614	Lima, D.S., Marmontel, M., Bernard, E., 2014a. Conflicts between humans and giant otters
615	(Pteronura brasiliensis) in Amanã reserve, Brazilian Amazonia. Ambiente and
616	Sociedade, 17(2), 127-142. DOI: 10.1590/S1414-753X2014000200009.
617	Lima, D.S., Marmontel, M., Bernard, E., 2014b. Reoccupation of historical areas by the
618	endangered giant river otter Pteronura brasiliensis (Carnivora: Mustelidae) in Central
619	Amazonia, Brazil. Mammalia, 78(2), pp.177-184. DOI: 10.1515/mammalia-2013-0023.
620	Loch, C., Marmontel, M., Simoes-Lopes, P.C., 2009. Conflicts with fisheries and intentional
621	killing of freshwater dolphins (Cetacea: Odontoceti) in the western Brazilian Amazon.
622	Biodiversity and Conservation, 18 (14), 3979-3988. DOI: 10.1007/s10531-009-9693-4.
623	Macdonald, D.W., 2009. The Encyclopaedia of Mammals. Oxford: Oxford University Press.
624	Mangel, J.C., Alfaro-Shigueto, J., Witt, M.J., Hodgson, D.J., Godley, B.J., 2013. Using pingers
625	to reduce bycatch of small cetaceans in Peru's small-scale driftnet fishery. Oryx, 47(4),
626	pp.595-606.

627	Marioni, B., Barão-Nóbrega, J.A.L., Botero-Arias, R., Muniz, F., Campos, Z., Da Silveira, R.,
628	Magnusson, W.E., Villamarín, F., 2021. Science and conservation of Amazonian
629	crocodilians: a historical review. Aquatic Conservation: Marine and Freshwater
630	Ecosystems. DOI: 10.1002/aqc.3541.
631	McGregor, J., 2005. Crocodile crimes: people versus wildlife and the politics of postcolonial
632	conservation on Lake Kariba, Zimbabwe. <i>Geoforum</i> , 36 (3), 353-369. DOI:
633	10.1016/j.geoforum.2004.06.007.
634	Michalski, F., Conceição, P.C., Amador, J.A., Laufer, J., Norris, D. 2012. Local perceptions and
635	implications for giant otter (Pteronura brasiliensis) conservation around protected areas
636	in the eastern Brazilian Amazon. IUCN Otter Specialist Group Bulletin, 29(1), 34-45.
637	Mintzer, V.J., Martin, A.R., Da Silva, V.M.F., Barbour, A.B., Lorenzen, K., Frazer, T.K., 2013.
638	Effect of illegal harvest on apparent survival of Amazon river dolphins (Inia geoffrensis)
639	Biological Conservation, 158, 280-286. DOI: 10.1016/j.biocon.2012.10.006.
640	Newton, P., Endo, W., Peres, C.A., 2012. Determinants of livelihood strategy variation in two
641	extractive reserves in Amazonian flooded and unflooded forests. Environmental
642	Conservation, 39(2), 97-110. DOI: 10.1017/S0376892911000580.
643	Patro, S., Padhi, S.K., 2019. Saltwater crocodile and human conflict around Bhitarkanika
644	National Park, India: a raising concern for determining conservation limits. Ocean &
645	Coastal Management, 182, p.104923. DOI: 10.1016/j.ocecoaman.2019.104923.
646	Pekel, J.F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution mapping of global
647	surface water and its long-term changes. <i>Nature</i> , 540 (7633), pp.418-422. DOI:
648	10.1038/nature20584.

649	Peres, C.A., Carkeek, A.M. 1993. How calmans protect fish stocks in Western Brazilian
650	Amazonia a case for maintaining the ban on caiman hunting. Oryx, 27(4), 225-230.
651	Pimenta, N.C., Gonçalves, A.L.S., Shepard, G.H., Macedo, V.W., Barnett, A.P.A., 2018. The
652	return of giant otter to the Baniwa Landscape: A multi-scale approach to species recovery
653	in the middle Içana River, Northwest Amazonia, Brazil. Biological Conservation, 224,
654	pp.318-326. DOI: 10.1016/j.biocon.2018.06.015.
655	Pimm, S.L., Raven, P., 2000. Biodiversity: extinction by numbers. <i>Nature</i> , 403 (6772), 843-845.
656	DOI: 10.1038/35002708.
657	Platt, S.G., Thorbjarnarson, J.B., 2000. Status and conservation of the American crocodile,
658	Crocodylus acutus, in Belize. <i>Biological Conservation</i> , 96 (1), pp.13-20. DOI:
659	10.1016/S0006-3207(00)00038-0.
660	Pooley, S., Botha, H., Combrink, X., Powell, G., 2020. Synthesizing Nile crocodile Crocodylus
661	niloticus attack data and historical context to inform mitigation efforts in South Africa
662	and eSwatini (Swaziland). <i>Oryx</i> , 54 (5), pp.629-638. DOI: 10.1017/S0030605318001102.
663	Prajith, K.K., Das, P.D., Edwin, L., 2014. Dolphin Wall Net (DWN)-an innovative management
664	measure devised by ring seine fishermen of Kerala-India to reducing or eliminating
665	marine mammal-fishery interactions. Ocean & coastal management, 102, pp.1-6.
666	R, 2020. R v 1.4.1106
667	Recharte, M., Bowler, M., Bodmer, R., 2009. Potential conflict between fishermen and giant
668	otter (Pteronura brasiliensis) populations by fishermen in response to declining stocks of
669	arowana fish (Osteoglossum bicirrhosum) in northeastern Peru. IUCN Otter Specialist
670	Group Bulletin, 25 (2), 89-93.

6/1	Rio, C.M.D., Dugelby, B., Foreman, D., Miller, B., Noss, R. and Phillips, M., 2001. The
672	importance of large carnivores to healthy ecosystems. Endangered Species Update, 18,
673	p.202.
674	Rosas-Ribeiro, P.F., Rosas, F.C.W., Zuanon, J., 2012. Conflict between giant otter and fishermen
675	Pteronura brasiliensis in western Brazilian Amazon. Biotropica, 44(3), 437-444. DOI:
676	10.1111/j.1744-7429.2011.00828.x.
677	Rose, A., Fukuda, Y., Campbell, H.A., 2020. Using environmental DNA to detect estuarine
678	crocodiles, a cryptic-ambush predator of humans. Human-Wildlife Interactions, 14(1),
679	p.11. DOI: 10.5061/dryad.jwstqjq5p.
680	Santos, G., Ferreira, E., Zuanon, J., 2006. Peixes Comerciais de Manaus. Manaus: IBAMA,
681	ProVárzea.
682	Scott, R., Scott, H., 1994. Crocodile bites and traditional beliefs in Korogwe District, Tanzania.
683	British Medical Journal, 309 , 1691-1692. DOI: 10.1136/bmj.309.6970.1691.
684	Sideleau, B., Britton, A.R.C. 2013. An analysis of crocodilian attacks worldwide for the period
685	of 2008 - July 2013. Crocodiles. Proceedings of the 22nd Working Meeting of the IUCN-
686	SSC Crocodile Specialist Group. IUCN: Gland, Switzerland: 110-113.
687	Sinha, R.K., 2002. An alternative to dolphin oil as a fish attractant in the Ganges river system:
688	conservation of the Ganges river dolphin. Biological Conservation, 107(2), 253-257.
689	DOI: 10.1016/S0006-3207(02)00058-7.
690	Smith, N.J., 1981. Caimans, capybaras, otters, manatees, and man in Amazônia. Biological
691	Conservation, 19(3), 177-187. DOI: 10.1016/0006-3207(81)90033-1.

692 Snape, R.T.E., Broderick, A.C., Cicek, B.A., Fuller, W.J., Tregenza, N., Witt, M.J., Godley, B.J., 693 2018. Conflict between dolphins and a data-scarce fishery of the European Union. Human Ecology, **46**(3), pp.423-433. DOI: 10.1007/s10745-018-9989-7. 694 Tixier, P., Lea, M.A., Hindell, M.A., Welsford, D., Mazé, C., Gourguet, S., Arnould, J.P., 2021. 695 696 When large marine predators feed on fisheries catches: Global patterns of the depredation 697 conflict and directions for coexistence. Fish and Fisheries, 22(1), pp.31-53. DOI: 10.1111/faf.12504. 698 Treves, A., Karanth, K.U., 2003. Human-carnivore conflict and perspectives on carnivore 699 700 management worldwide. Conservation Biology, 17(6), 1491-1499. DOI: 10.1111/j.1523-701 1739.2003.00059.x. 702 Turvey, S.T., Pitman, R.L., Taylor, B.L., Barlow, J., Akamatsu, T., Barrett, L.A., Zhao, X., 703 Reeves, R.R., Stewart, B.S., Wang, K., Wei, Z., Zhang, X., Pusser, L.T., Richlen, M., Brandon, J.R., Wang, D., 2007. First human-caused extinction of a cetacean species? 704 Biology Letters, **3**(5), 537-540. DOI: 10.1098/rsbl.2007.0292. 705 706 Waples, D.M., Thorne, L.H., Hodge, L.E., Burke, E.K., Urian, K.W., Read, A.J., 2013. A field 707 test of acoustic deterrent devices used to reduce interactions between bottlenose dolphins 708 and a coastal gillnet fishery. *Biological Conservation*, **157**, pp.163-171. DOI: 709 10.1016/j.biocon.2012.07.012. Woodroffe, R., Ginsberg, J.R., 1998. Edge effects and the extinction of populations inside 710 711 protected areas. Science, 280, 2126-2128. DOI: 10.1126/science.280.5372.2126. Zanon. S, 2021. Tucuxi na lista vermelha: todos os botos de rio do mundo agora ameaçados, 712 713 Mongabay, viewed 15/4/21,

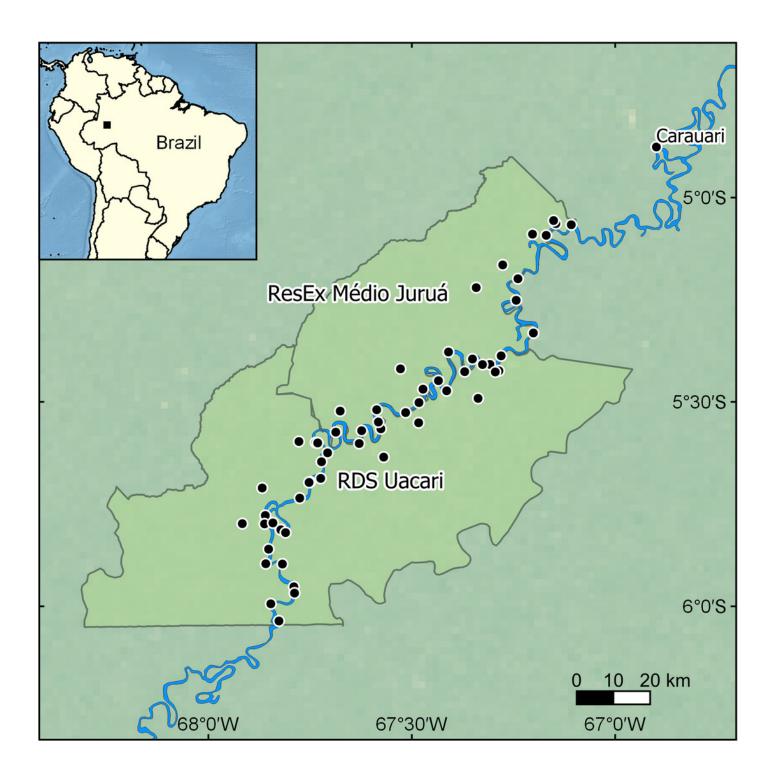

714	
-----	--

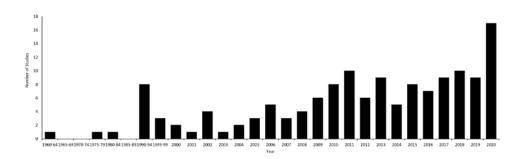
Figure 1

Map showing the location of the focal study landscape in the Médio Juruá region of western Brazilian Amazonia.

Interviews were conducted in local communities (black dots) along the Juruá River (blue line) within two sustainable-use reserves (light green polygons).

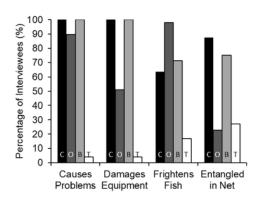
The four 'problem species' in the mid-Juruá.

A) black caiman, B) giant otter, C) boto and D) tucuxi. Photo credits: A and B) Jessica Groenendijk, C and D) Sannie Brum.



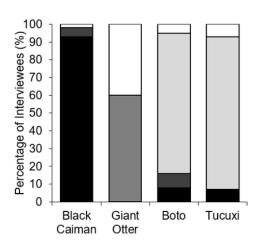
Number of human-wildlife conflict studies concerning crocodilians, cetaceans and otters over time (1962-2020).

Prior to 2000 data are displayed in five year categories. From 2000 onwards each year is represented by one bar.



Percent of interviewees (n=49) who indicated that each of four species of causes problems in general, damage fishing equipment, frightens away fish, or becomes entangled in nets

The species are black caiman (C, black bars), giant otter (O, dark grey bars), boto (B, light grey bars) and tucuxi (T, white bars)



Percent of interviewees (n=49) who indicated the potential outcomes of entanglement in fishing nets by four species of piscivorous mammals and reptiles

Outcomes are being killed by fishers (black), dying without fisher intervention (dark grey), being released by fishers (light grey) or escaping without fisher intervention (white)

Table 1(on next page)

Criteria for categories used to determine the frequency of conflict documentation in the primary literature and severity of conflicts found in the literature review.

- 1 Table 1. Criteria for categories (adapted from Inskip and Zimmermann, 2009) used to determine
- 2 the frequency of studies reporting conflict and severity of conflict found in the literature review.

Category	Definition
Frequency of Studies	
Conflict Frequently Documented	Conflict with piscivores documented in 5 or more primary
(CFD)	literature sources.
Conflict Infrequently Documented	Evidence in 2-4 primary literature sources.
(CID)	
Conflict Rarely Documented	Evidence in 1 literature source.
Required (CRR)	
Severity of Conflict Severe	Very high frequency of (or perceived) fish depredation
Severe	and/or attacks on people (>20 reported fatalities or >50
	non-fatal attacks as described in Sideleau and Britton,
	(2013))
	and/or very frequent retaliatory killing
	and/or very frequent entanglement in nets
	und or (v.) request vitting content in new
High	High frequency of (or perceived) fish depredation
	and/or low frequency of attacks on people (1-20 fatalities
	or 10-50 non-fatal attacks as described in Sideleau and
	Britton, (2013)) and/or retaliatory killing
	and/or frequent entanglement in nets
Moderate	Moderate fish depredation
	and/or < 10 non-fatal attacks on people as described in
	Sideleau and Britton, (2013)
	and/or occasional retaliatory killing
	and/or occasional entanglement in nets

Low Infrequent fish depredation
and/or no attacks on people
and/or very occasional retaliatory killing
and/or very occasional entanglement in nets

Data Deficient No evidence of conflict available

4

Table 2(on next page)

Species of crocodilian, cetacean and otter found in the tropics and subtropics known or suspected to have conflict with humans

Columns show frequency of conflict doumentation in the primary literature, severity of the human-wildlife conflict, body mass and IUCN Red List category.

- 1 Table 2. List of crocodilian, cetacean and otter species from tropical and subtropical regions. For
- 2 each species frequency of primary literature studies mentioning conflict, severity of the human-
- 3 wildlife conflict, body mass and IUCN Red List category are listed.

Primary			
Literature	Severity of	Body Mass	IUCN RED
Coverage	Conflict	Category (kg)	List Status ⁶
	Data		
CID	Deficient	$10-49^3$	VU
CFD	High	$\geq 50^{3}$	LC
CFD	Severe	$\geq 50^{3}$	VU
CID	Moderate	$10-49^3$	LC
CID	High	$\geq 50^{3}$	LC
CID	Moderate	10-49 ³ LC	
	Data		
CRD	Deficient	Not available	Not assessed
	Data		
CRD	Deficient	$10-49^3$	CR
	Data		
CRD	Deficient	$\geq 50^{3}$	CR
	Data		
CRD	Deficient	$\leq 10^{3}$	LC
CRD	High	>503	VU
	Literature Coverage CID CFD CID CID CID CID CID CRD CRD CR	Literature Severity of Coverage Conflict Data Deficient CFD High CFD Severe CID Moderate CID High CID Data CID Data CID Data CID Data CID Data CID Deficient Data CRD Deficient Data	Literature Coverage Severity of Conflict Body Mass Category (kg) Data CID Data Deficient 10-49³ CFD High ≥50³ CFD Severe ≥50³ CID Moderate 10-49³ CID High ≥50³ CID Moderate 10-49³ CID Moderate 10-49³ CID Data Data Not available Not available Data CRD Deficient Data 10-49³ CRD Deficient Data ≥50³ CRD Deficient Data ≥50³ CRD Deficient Data ≥50³ CRD Deficient Data ≤10³ CRD Deficient Data ≤10³

schlegelii)				
Gharial (Gavialis gangeticus)	CID	Low	$\geq 50^{3}$	CR
Hall's New Guinea crocodile		Data		
(Crocodylus halli)	CRD	Deficient	Not available	Not assessed
Morelet's Crocodile (Crocodylus				
moreletii)	CID	High	$10-49^3$	LC
Mugger (Crocodylus palustris)	CID	Severe	$\geq 50^{3}$	VU
New Guinea Crocodile		Data		
(Crocodylus novaeguineae)	CRD	Deficient	$10-49^3$	LC
Nile Crocodile (Crocodylus				
niloticus)	CFD	Severe	$\geq 50^{3}$	LC
Orinoco Crocodile (Crocodylus				
intermedius)	CRD	Moderate	$\geq 50^{3}$	CR
Philippine Crocodile				
(Crocodylus mindorensis)	CRD	Moderate	$10-49^3$	CR
Saltwater Crocodile (Crocodylus				
porosus)	CFD	Severe	$\geq 50^{3}$	LC
Siamese Crocodile (Crocodylus				
siamensis)	CRD	Moderate	10-493	CR
Slender-snouted Crocodile		Data		
(Mecistops cataphractus)	CID	Deficient	$\geq 50^{3}$	CR
Smooth-fronted Caiman		Data		
(Paleosuchus trigonatus)	CID	Deficient	$\leq 10^{3}$	LC
Spectacled Caiman (Caiman				
crocodilus)	CFD	High	$10-49^3$	LC
West African Crocodile				
(Crocodylus suchus)	CID	High	Not available	Not assessed
Yacaré (Caiman yacare)	CID	Moderate	$10-49^3$	LC
Otters				
African Clawless Otter (Aonyx	CID	Low	10-494	NT

capensis)				
Asian Small-clawed Otter				
(Aonyx cinereus)	CID	Low	$\leq 10^{4}$	VU
Congo Clawless Otter (Aonyx				
congicus)	CID	Low	10-494	NT
Spotted-necked Otter (Hydrictis				
maculicollis)	CFD	Moderate	$\leq 10^{4}$	NT
North American River Otter				
(Lontra canadensis)	CID	Moderate	10-494	LC
Neotropical River Otter (Lontra				
longicaudis)	CFD	Low	$\leq 10^{4}$	NT
		Data		
Eurasian Otter (Lutra lutra)	CRD	Deficient	10-494	NT
Hairy-nosed Otter (Lutra		Data		
sumatrana)	CRD	Deficient	$\leq 10^{4}$	EN
Smooth-coated Otter (Lutrogale				
perspicillata)	CFD	Moderate	$\leq 10^{4}$	VU
Giant Otter (Pteronura				
brasiliensis)	CFD	Moderate	10-494	EN
Cetaceans				
Amazon River Dolphin (Inia				
geoffrensis)	CFD	Moderate	$\geq 50^{5}$	EN
Baiji (Lipotes vexillifer)	CID	Moderate	$\geq 50^{5}$	CR
Yangtze Finless Porpoise				
(Neophocaena asiaeorientalis				
ssp. asiaeorientalis)	CID	Moderate	$\geq 50^{5}$	CR
Irrawaddy Dolphin (Orcaella				
brevirostris)	CID	Moderate	$\geq 50^{5}$	EN
South Asian River Dophin				
(Platanista gangetica)	CFD	Moderate	$\geq 50^5$	EN

	Tucuxi (Sotalia fluviatilis)	CFD	Low	10-495	EN
4					
5	¹ CFD = Conflict Frequently Docum	nented; CID =	= Conflict Infre	equently Documer	ited; CRD =
6	Conflict Rarely Documented (Table	e S1)			
7	² Conflict categories (Table S1)				
8	³ Lakin <i>et al.</i> , 2020				
9	⁴ Hunter (2011)				
10	⁵ Macdonald (2009)				
11	⁶ LC= Least Concern, NT= Near Th	reatened, VU	J= Vulnerable,	EN= Endangered	, CR= Critically
12	Endangered				
13					