

Human-wildlife conflicts with freshwater piscivores

Patrick Cook Corresp., 1, Joseph E Hawes 2, 3, 4, João Vitor Campos-Silva 2, 4, 5, 6, Carlos A Peres 1, 2

Corresponding Author: Patrick Cook Email address: flcook@tiscali.co.uk

Conservation of freshwater biodiversity and management of human-wildlife conflicts are major conservation challenges globally. Here we review the current literature on human conflicts with tropical and subtropical inland piscivores. We also present a new multispecies case study of conflicts with four large-vertebrate piscivores from the Western Amazon. Our review highlighted that documented conflicts occur with 30 piscivorous vertebrates including crocodilian, otter and cetacean species. Only 28.6% of the reviewed species have had conflicts well documented in the literature, with the saltwater crocodile the most studied species. We found a relationship between IUCN red list status and conflict severity, but no relationship between body mass and conflict severity. The saltwater crocodile accounted for most attacks on people between 2009 and 2019, but the Nile crocodile was responsible for the highest number of fatalities in the same period. Humanpiscivore conflict occurs due to attacks on people, depredation of fisheries or livestock, damage to fishing equipment and entanglement in nets. This can be influenced by factors such as access to pumped water, population trends of piscivorous species and social beliefs or perceptions. We recommend future research should focus on poorly documented species, define conflicts in a quantifiable metric and document methods of effective conflict resolution

¹ School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

² Instituto Iuruá, Manaus, Amazonas, Brazil

³ Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom

⁴ Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences, Ås, Norway

⁵ Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil

⁶ Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil

Human-wildlife conflicts with freshwater piscivores

2	
3	Patrick Cook ¹ , Joseph E. Hawes ^{2,3,4} , João Vitor Campos-Silva ^{2,4,5,6} , Carlos A. Peres ^{1,2}
4	
5	¹ School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
6	² Instituto Juruá, Rua Belo Horizonte, Manaus, Brazil
7	³ Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, East Road,
8	Cambridge, UK
9	⁴ Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life
10	Sciences, Ås, Norway
11	⁵ Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas, Brazil
12	⁶ Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
13	
14	Corresponding Author:
15	Patrick Cook ¹
16	School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ,
17	UK
18	Email address: pcooknature@gmail.com
19	

20

Abstract	
----------	--

21	Conservation of freshwater biodiversity and management of human-wildlife conflicts are major
22	conservation challenges globally. Here we review the current literature on human conflicts with
23	tropical and subtropical inland piscivores. We also present a new multispecies case study of
24	conflicts with four large-vertebrate piscivores from the Western Amazon. Our review highlighted
25	that documented conflicts occur with 30 piscivorous vertebrates including crocodilian, otter and
26	cetacean species. Only 28.6% of the reviewed species have had conflicts well documented in the
27	literature, with the saltwater crocodile the most studied species. We found clationship between
28	IUCN red list status and conflict severity, but no relationship between body mass and conflict
29	severity. The saltwater crocodile counted for most attacks on people between 2009 and 2019,
30	but the Nile crocodile was responsible for the highest number of fatalities in the same period.
31	numan-piscivore conflict occurs due to attacks on people, depredation of fisheries or livestock,
32	damage to fishing equipment and entanglement in nets. This can be influenced by factors such as
33	access to pumped water, population trends of piscivorous species and social beliefs or
34	perceptions. We recommend future research should focus on poorly documented species, define
35	conflicts in a quantifiable metric and document methods of effective conflict resolution.

36 Introduction 37 Conflict between humans and wildlife poses a major challenge for biological conservation 38 (Dickman, 2010). Conflicts arise as a result of recurring negative interactions and are frequently 39 deep rooted in social beliefs (Pimm & Raven, 2000). Understanding the underlying factors driving conflicts is integral to successful management, due to the often-increasing proximity 40 41 between humans and wildlife, driven by growing human populations and the recovery of rare 42 conflict-generating species (Inskip & Zimmermann, 2009; Groenendijk et al., 2014). Increasing our knowledge of conflicts in freshwater ecosystems, between fisheries and piscivores, is 43 44 especially important in the tropics and subtropics given the heavy exploitation pressure and 45 continued decline of wildlife populations in freshwater ecosystems (He et al., 2019). 46 Freshwater habitats cover approximately 3% of the Earth's land surface area (Pekel, 47 2016), exposing freshwater vertebrates to potential conflicts with humans, as a result of overlapping distributions and utilisation of similar resources (Woodroffe & Ginsberg, 1998; 48 49 Treves & Karanth, 2003; Dudgeon et al., 2006). Piscivores can impose significant impacts on human livelihoods in freshwater environments, including attacks on people and damage to 50 fishing gear, in addition to co-depletion of fish stocks (Rosas-Ribeiro, Rosas & Zunon, 2012; 51 CrocBITE, 2013). The species involved in conflicts are usually large-bodied, low-fecundity, and 52 53 their persistence can be directly or indirectly affected by the conflict (Alves et al., 2012; Huang et al., 2012; Groenendijk et al., 2014). Managing this conflict to ensure long-term persistence of 54 55 populations is vital to maintaining ecosystem integrity (Rio et al., 2001) but is particularly challenging in tropical and subtropical regions where freshwater fisheries more often represent a 56 57 critical component of the subsistence diets and commercial revenues of local people (Michalski et al., 2012). 58 59 Potential conflicts within marine fisheries have been well documented (Tixier et al., 60 2021), and show negative impacts on both the conservation of large marine predators and the socio-economic viability of fishing activities. However, despite the importance of inland 61 fisheries, a comparable review has not yet been undertaken of the conflicts reported in freshwater 62 63 systems. Here, we address this deficit by reviewing conflicts between fisheries and tropical and 64 subtropical freshwater piscivores worldwide. In addition, we also conduct a comprehensive assessment of conflicts between local communities and aquationiscivorous vertebrates in 65

western Brazilian Amazonia to elucidate how these conflicts arises at the frontline. Specific

66

37	research questions investigated include: (1) which piscivores are implicated in conflicts?; (2)
86	does species body mass, IUCN Red List status, proximity to human populations or percentage of
39	seasonally flooded forest around communities influence severity of conflict?; (3) what are the
70	key factors inducing human-piscivore conflicts?; and (4) what are the information gaps in the
71	current literature?
72	
73	Materials & Methods
74	Literature review
75	We conducted a literature review of human-wildlife conflicts, restricted to tropical and
76	subtropical freshwater piscivores. Studies and subtropics were
77	excluded for species with a range that crosses into the temperate zone. Primary literature sources
78	were collated from Google Scholar and Scopus using a Boolean search string search that
79	included the common or scientific name of a species, together with the following keywords:
30	attack, conflict, depredation, entanglement, perceptions and population. All keyword searches
31	were conducted in English, which may have precluded some studies. For each piscivore species,
32	Red List Status was assigned using IUCN (2020) and body mass in kilograms was attributed
33	using the following categories ≤10 kg, 11-4 , ≥50kg adopted from Inskip & Zimmermann
34	(2009). A category was designated for each species describing the severity and extent of
35	knowledge concerning the conflict, based on criteria adapted from Inskip and Zimmermann
36	(2009) (Table S1). In addition, we collated incidents of fatal and non-fatal crocodilian attacks on
37	humans worldwide for 2009-2019 from the CrocBITE (2013) database.
38	
39	Focal study area
90	Our focal landscape study was conducted in the state of Amazonas, Brazil along the mid-section
91	of the Juruá River in two contiguous sustainable-use forest reserves: the Médio Juruá Extractive
92	reserve (ResEx Médio Juruá), and the Uacari Sustainable Development Reserve (RDS Uacari)
93	(Fig. 1). These two reserves are home to a combined total of approximately 4,000 rural
94	Amazonians, living in 58 communities and employed in a diverse range of extractive livelihoods
95	(Newton, Endo & Peres., 2012). Communities typically have access to extensive floodplains and
96	are located along the main river channel or on oxbow lakes, which are embedded within forests
97	that are seasonally flooded by nutrient-rich white-water, known as <i>várzea</i> (Hawes <i>et al.</i> , 2012).

98	Communities are therefore deeply entwined with their aquatic environment, and fishing
99	represents both the principal source of protein in the subsistence diet of reserve residents (Endo,
100	Peres & Haugaason, 2016), and one of the main sources of disposable income (Batista et al.,
101	1998). Our focal study reserves represent an important site for globally significant community-
102	based conservation arrangements (Campos-Silva & Peres, 2016; Campos-Silva et al., 2018) that
103	benefit a wide range of freshwater piscivores, including the black caiman (Melanosuchus niger),
104	giant otter (Pteronura brasiliensis), and two cetaceans: the Amazon river dolphin or boto (Inia
105	geoffrensis) and the tucuxi (Sotalia fluviatilis) (Fig. 2).
106	
107	Amazonian fishers interviews
108	We employed a semi-structured questionnaire design to investigate perceptions of
109	human-piscivore conflic the western Brazilian Amazon: black caiman, giant otter, boto and
110	the tucuxi. We conducted a total of 49 interviews at 37 local communities located within two
111	sustainable-use reserves in the Médio Juruá region (Fig. 1), during September-November 2014.
112	We selected interviewees non-randomly, targeting the most experienced fishers in each
113	community (either one individual or a small group of individuals). Interviews typically lasted 30
114	min and included eight objective yes/no questions regarding whether any potential 'problem
115	species' cause problems, damages equipment, becomes entangled in nest, frightens away fish, or
116	causes the interviewee to leave an area where the species has been sighted to fish elsewhere.
117	Interviewees were also asked if the species had been hunted in the community, hunted in 2013 or
118	2014, or hunted within the informant's lifetime. In addition, interviewees rank-ordered the
119	potential problem of the conflict caused, with 1 being the greatest problem and 4 the least
120	(Michalski et al., 2012). All fieldwork was authorised by the Ministério do Meio
121	Ambiente/Instituto Chico Mendes de Conservação da Biodiversidade of the Brazilian
122	government (45054-1). Individual participation in our interviews was voluntary and anonymous,
123	and we attained verbal consent from all participants.
124	
125	Data analysis
126	used Spearman's rank correlation to investigate the change in the number of
127	reviewed studies over time. A Fisher's exact test was implemented to determine if the severity of
128	conflict differs between animal body mass categories (<10 kg, 10-49 kg, ≥50 kg) or the species

129 IUCN Red List category. In the Médio Juruá case study, we used a chi-squared test to determine if a difference occurred between the four species in terms of their ranking as a 'problem species', 130 131 and a Mann-Whitney U test to determine which species were ranked as the highest problem. A 132 chi-squared test was also used to determine if the response of fishers to aquatic animals entangled in fishing nets differed between species. We also calculated the nonlinear fluvial 133 distance from the nearest urban centre of Carauari to each community, and the percentage of 134 várzea floodplain forest within a 5-km buffer around each community, using ArcGIS v 10.2.2. 135 We then examined the influence of distance to Carauari and percentage *várzea* forest cover on 136 the eight binary interview questions using binary logistic regression. We used SPSS v 22 and R v 137 1.4.1106 for all statistical analyses. 138 139 140 **Results** 141 Literature review 142 We reviewed a total of 141 primary literature sources reporting conflicts with 30 freshwater piscivores, including crocodilians, cetaceans and otters. These studies covered 33 143 144 countries in the tropics and subtropics across Africa, Asia, Australia, North America and South America. Brazil was the country with the most studies undertaken (n = 24), followed by India (n = 24), followed by India 145 146 = 20) and Australia (n = 19). All other countries hosted seven or fewer studies. Studies were published between 1977 and 2020 and the number of sources published per year increased over 147 148 time (Spearman's: r_s =0.876, p<0.001; Fig. 3). Economic and livelihood reasons such as net damage or competition for fish accounted for 31.9% of studies, and attacks for 29.8% of studies. 149 150 A total of 19.9% of studies focused on entanglement covering five species of crocodiles and six species of cetaceans, the latter accounting for 87.1% of all studies on entanglement. Management 151

or resolution of conflict was the subject of only 10.6% of all studies covering five nations, notably Australia which accounted for 60.0% of management studies. Regarding conflict

documentation, 28.6% of species were well documented, 42.9% poorly documented and 28.6%

required further research (Table 1). The saltwater crocodile (*Crocodylus porosus*) had the highest

number of conflict publications at 32.

154

155

156

157

158

159

The severity of conflict did not differ significantly between body mass categories (Fisher's: p = 0.3047) but did differ significantly between IUCN Red List categories (p < 0.01). From 2009-2019, 17 crocodilian species were documented to attack humans, 12 species fatally,

160 with the saltwater crocodile responsible for the most attacks (1,327) and the Nile crocodile for most lethal attacks (734) (Fig. 4; CrocBITE, 2013). Four species, the Nile crocodile (C. 161 162 niloticus), saltwater crocodile (C. porosus), mugger (C. palustris) and American crocodile (C. acutus) accounted for 96.7% of all lethal attacks between 2009 and 2019. The literature 163 highlighted 42 studies with reference to sub-lethal or lethal attacks by crocodilians as a reason 164 165 for conflict. 166 167 Amazonian case study 168 Interview responses in the Médio Juruá region showed a significant difference between the perception of black caiman, giant otters, botos and tucuxis as problem species (Chi-squared: 169 $\chi^2 = 204.692$, p < 0.001). Black caiman was consistently regarded as the greatest source of 170 conflicts (mean rank = 1.37, n = 49), followed by the boto (2.06, n = 49), giant otter (2.51, n = 49), 171 45) and tucuxi (n -2). The black caiman was ranked significantly higher as a 'problem species' 172 than the boto (Mann-Whitney: U = 573.5, Z = -4.841, p < 0.001), and the boto was ranked 173 significantly higher than the giant otter (U = 714.0, Z = -3.195, p < 0.001). Of the 49 interviews 174 conducted, 100% of interviewees reported black caiman and boto as problem species, followed 175 by 89.8% for the giant otter (Fig. 5). In the study area least nine cases of lethal attacks 176 involving both adults and children have been reported between 2007 and 2020, a rate of about 177 0.3 persons killed each decade per 1000 people (C Peres, 2021, pers. comm). 178 179 Fishers responses showed a significant difference between all species regarding the outcomes whenever found entangled in fishing nets ($\gamma^2 = 152.123$, p < 0.001). Black caimans 180 181 were reported to be killed by 93.0% of fishers (Fig. 6). In contrast, 79.0% of botos and 85.7% of tucuxi were released alive, and 40.0% of interviewees stated that giant otters could escape from 182 183 gillnets without assistance (Fig. 6). Most interviewees reported that they could continue coexisting with these four species, ranging from 60.4% of interviewees considering coexistence 184 with the black caiman is possible to 75.0% for the tucuxi (Fig. S2). With the exception of one 185 variable, no interviewee responses showed a significant relationship with fluvial distance from 186 187 the nearest urban centre of Carauari or the percentage of várzea floodplain forest found within a 188 5-km buffer area around each community (Table S2). The exception is the damage caused to gillnets by giant otters, which increased with fluvial distance from Carauari (B=0.007, p=0.009). 189 190

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

•	•
Discus	sion
	Discus

192	Attacks	on Humans
-----	---------	-----------

Crocodilians pose the greatest threat to human life amongst all vertebrate piscivores. Of the 26 recognised crocodilian species, 17 have been documented to attack humans, 12 of which were responsible for lethal attacks between 2009 and 2019 (Fig. 4; CrocBITE, 2013). Otters rarely attack humans, with 95.2% of documented cases linked to the North American river otter (*Lontra canadensis*) (Belanger *et al.*, 2011). Our review found no relationship between body mass and conflict severity, contrary to the literature on crocodilians where larger-bodied species, particularly males, are associated with most attacks (Caldicott *et al.*, 2015; Campbell *et al.*, 2013; Fukuda *et al.*, 2015). This result may reflect the use of average female crocodilian body mass for our analyses, rather than maximum reported body mass.

Globally, the saltwater crocodile accounted for the greatest number of attacks and the Nile crocodile for the highest number of fatalities between 2009 and 2019 (CrocBITE, 2013). Three main factors influence attacks. The first is victim: predator body size ratio, with small individuals such as children considered particularly vulnerable (Haddard & Fonseca, 2011; Fukuda et al., 2015; Pooley et al., 2020). The second factor is the location of the victim during the attack, with activities conducted in the water such as swimming, bathing or fishing increasing risk (Fukuda et al., 2015; Pooley et al., 2020). The third factor is seasonality, with species displaying more aggressive behaviour during the nesting season (Patro & Padhi, 2019). Interactions between humans and crocodiles can be reduced dramatically by access to pumped water, as highlighted by the difference in saltwater crocodile attacks between Australia and Asia (Jayson, Sivaperuman, & Padmanabhan, 2006; Gopi & Panday, 2009; Brackhane et al., 2018). Calculating attack rates can be challenging with reports of authenticated attacks differing between areas, seasons and sometimes influenced by the local political and cultural context (Peres & Carkeek, 1993; Scott & Scott, 1994; McGregor, 2005). There is also likely to be a bias in the reporting of attacks depending on the country where the attacks occurred. For instance, attacks in Australia are well reported but in our study area in the mid-Juruá attacks are likely to

219

220

Economic Loss, Entanglement and Retaliation

be severely under-reported by official statistics.

221	Freshwater piscivores come into conflict with subsistence and commercial fisheries
222	causing damage to nets, depredating fish or livestock, causing competition for commercially
223	valuable fish, displacing fish and becoming entangled in nets. Economic losses and entanglement
224	are often cited in the literature but studies including quantifiable, standardised data and solutions
225	to resolve these factors are limited practices to marine ecosystems or suggested practices to
226	suppress felid depredation of livestock (Inskip & Zimmermann, 2009; Tixier et al., 2021).
227	Depredation of fish stocks and net damage by some piscivores and livestock in the case of
228	crocodilians can be extensive and responses may include retaliatory killing (Jacque, Moutou &
229	Alary., 2002; Aust et al., 2009; Gopi & Pandav, 2009; Barbieri et al., 2012). Riverine
230	communities typically depend on fish for dietary protein and financial income so damage to nets
231	severely impacts their livelihoods (Michalski et al., 2012). In north-eastern Namibia
232	approximately 71,500 nets are damaged annually by the Nile crocodile, and in the Amazon black
233	caiman can damage up to 50.0% of commercially deployed gill nets (Peres & Carkeek, 1993;
234	Aust et al., 2009). Replacement of fishing nets may have major financial ramifications for fishers
235	with limited resources since purchasing new nets can often exceed monthly income, as in
236	Namibia (Aust et al., 2009). To prevent damage, fishers may respond by guarding nets, which
237	conversely could increase exposure to attacks (McGregor, 2005). Compared to crocodiles,
238	depredation by otters is generally poorly documented although Barbieri et al. (2012) showed that
239	depredation by the Neotropical otter can persistently damage nets (Alary, Moutou & Jacques,
240	2002; Hussain, Gupta & Da Silva, 2011: Fonseca & Marmontel, 2011). Similarly, for cetaceans
241	there are consistent reports of the boto recraiding and damaging nets, with all interviewees in
242	our study supporting findings from elsewhere in the Amazon (Alves, Zappes & Andriolo., 2012;
243	Campbell et al; 2020; Fig. 5). This contrasts sharply with the sympatric tucuxi, where only 4.1%
244	of interviewees reported damaged nets (Fig. 5).
245	Piscivores can be perceived to either reduce or displace stocks of commercially important
246	fish (Fonseca & Marmontel, 2011). Conflicts with the giant otter occur in the western Amazon,
247	particularly in relation to matrinxã (Brycon cephalus) fisheries, which are important for both
248	subsistence and trade (Santos et al., 2006; Rosas-Ribeiro, Rosas, Zuanon, 2012). In the Juruá,
249	50.0% of interviewees reported giant otters being responsible for a perceived decline in
250	matrinxã, and 97.9% of interviewees stated that giant otters spatially displace fish (Fig. 5).
251	Perceived competition can lead to retaliation and reduced population recovery (Brum et al.,

252	2021). Resource depletion by fisheries can intensify competition and conflict. In the Ganges
253	river, competition for fish has intensified between fisheries and the South Asian river dolphin as
254	commercial fisheries have reduced large fish abundance, increasing overlap between fisheries
255	and the prey species prome targeted by dolphins (Kelkar et al., 2010).
256	Entanglement in fishing equipment threatens piscivores with impacts ranging from injury
257	to death across crocodilians, otters and cetaceans (Platt & Thorbjarnarson, 2000; Choudhary et
258	al., 2006; Alves, Zappes & Andriolo., 2012). Some net types may increase risk of fatality from
259	entanglement, as found with otters and cetaceans (Leatherwood & Reeves, 1994; da Silva &
260	Best, 1996; Lima, Marmontel & Bernard, 2014b). Certain species are better able to escape
261	entanglement in nets. For instance, in our Juruá study the giant otter is rarely reported to become
262	entangled, with 40.0% of interviewees stating that giant otters could escape (Fig. 6). This is
263	higher than for the black caiman, boto or tucuxi, reflecting their ability to tear through pots with
264	their teeth and dexterous paws. In extreme circumstances entanglement has been a fundamental
265	driver of extinction such as for the Yangtze river dolphin (Lipotes vexillifer) where 40% of
266	fatalities in the 1990s were attributed to this factor (Zhou et al., 1998; Zhang et al., 2003; Turvey
267	et al., 2007). Entanglement is also cited as the primary source of conflict and a contributor to
268	population declines of the boto and tucuxi (Campbell <i>et al</i> ; 2020), the latter now listed as
269	endangered on the (da Silva et al., 2018; IUCN, 2020; Brum et al., 2021). This has resulted in
270	all river dolphin species now being listed as endangered, critically endangered or extinct (IUCN,
271	2020). In order to reduce entanglement acoustic deterrent pingers are currently being trialled in
272	Peru for the species in line with trials in marine habitats (Waples et al., 2013; Snape et al., 2018;
273	Zanon, 2021).
274	Human responses to economic loss and entanglement vary from release to retaliatory or
275	assisted killing and are often influenced by local perceptions and economics (this study; Sinha,
276	2002; Alves, Zappes & Andriolo., 2012; Campbell et al., 2020). For instance, in the Central
277	Amazon negative perceptions of river dolphins from economic losses results in intentional
278	killing and retaliation for use as fishing bait for the piracatinga catfish (Calophysus macropterus)
279	(Loch, Marmontel & Simoes-Lopes, 2009; Alves, Zappes & Andriolo., 2012). The situation in
280	Peru is complex with most fishers releasing entangled botos and tucuxis, but some ports
281	displaying a higher frequency of use for bait (Campbell et al., 2020). In contrast, both boto and

282 tucuxi were always reported to be released in our Juruá waterscape, where piracating fisheries are not of commercial importance. 283 284 285 Community, Culture and Conflicts Human-wildlife conflict is a multidisciplinary topic, but consideration of communities 286 287 and culture is rarely considered in managing local conflicts. Community based approaches can be highly successful in achieving conservation outcomes (Campos-Silva & Peres, 2016; 288 Campos-Silva et al., 2018), but this access is influenced by the understanding of societal 289 290 beliefs, traditional practices and fisherfolk perspectives that can either reduce or enhance 291 management objectives (Jones, Andriamarovololona & Hockley, 2008; D'Lima et al., 2014; Mgomo & Reed-Smith, 2020). Examples include reduced reporting of attacks to local authorities 292 293 due to the association between African crocodilians and witchcraft, protective myths that 294 historically protected the boto, and the misinterpretation of feeding and defence behaviour of the 295 giant otter causing fear and retaliation (Scott & Scott, 1994; McGregor, 2005; Gravena et al., 296 2008; Lima, Marmontel & Bernard, 2014b). In some areas traditional protective beliefs are being 297 challenged by expanding commercial fisheries (Alves, Zappes & Andriolo, 2012). For instance, the boto is strongly ostracised by fisherfolk in some regions of the Amazon, in stark comparison 298 299 to the tucuxi (this study; Alves, Zappes & Andriolo, 2012). Managing these changing values through targeted education and integration of culture into management of conflict will be key to 300 301 maintaining and enhancing positive attitudes towards piscivores (Mintzer et al., 2015; Mgomo & Reed-Smith, 2020). An area that requires much further research is community-based conflict 302 303 resolution, which can prove highly successful as found with snow leopards (Jackson & Wanghcuk, 2004). 304 305 306 Population Recovery and Management Human exploitation caused the historic decline of many piscivorous species (Smith, 307 1981; Mintzer et al., 2013). For instance, 4.5 million caiman hides were exported from Brazil 308 309 between 1960 and 1969 and 40,663 giant otter pelts between 1960 and 1967 (Smith, 1981). 310 Protection through CITES has allowed many species to successfully recolonise areas of their former ranges where human populations may now have increased (Groenendijk et al., 2014; 311 312 Antunes et al., 2016). The growing spatial overlap between humans and piscivores has in some

locations increased negative interactions, sometimes resulting in attacks on people, economic 313 losses or coincidental declines in fish stocks, with piscivores potentially blamed even if 314 315 overfishing is the driving factor (Gopi & Panday, 2009; Recharte, Bowler & Bodmer, 2009; 316 Fukuda, Manolis & Appel, 2014; Lima et al., 2014a). Coexistence with apex predators can depend on population sizes and management 317 strategies. For instance in the Juruá, where it is expected that black caiman and giant otter 318 populations have increased in line with other localities since peak levels of hunting. 14.5% of 319 320 interviewees reported that coexistence with these species depends on their future population trends (Lima, Marmontel & Bernard, 2014a; Pimenta et al., 2018; Marioni et al., 2021; 321 Appendix A3). Currently such population trend data is limited in Amazonia, as with many other 322 323 regions globally (Brum et al, 2021). Studies concerning the management and resolution of 324 human-aquatic wildlife conflicts are poorly documented, except for the saltwater crocodile in Australia where methods trialled include population management and modelling, relocation and 325 early detection using eDNA (Fukuda et al., 2019; Patro & Padhi et al., 2019; Fukuda et al., 326 327 2020; Rose, Fukuda & Campbell., 2020). 328 **Conclusions** 329 330 This study is the first comprehensive review of conflicts with freshwater piscivores in the tropical and subtropical regions. Conflict was found to occur with 30 piscivore species with 331 332 conflict including attacks on people, depredation of fisheries or livesteek, damage to fishing equipment and entanglement in nets. This can be influenced by factors such as access to pumped 333 334 water, population trends of piscivorous species and social beliefs or perceptions. We found a relationship between IUCN red list status and conflict severity, but no relationship between body 335 336 mass and conflict severity. We make three recommendations for future research. Firstly, there 337 remains considerable gaps in our knowledge for many freshwater piscivores with only 28.6% of species well documented. Determining if conflict occurs, what the drivers of conflict are, and the 338 339 severity of conflict remains a priority for species identified as poorly documented or requiring 340 further research in Table 1. Many of these species are rare or cryptic, but some such as the 341 mugger, black caiman and Morelet's crocodile are responsible for a considerable number of attacks on humans. Our second recommendation for future research is the need to report conflicts 342

in a quantifiable and standardised manner to allow meta-analysis across studies. For instance,

343

55.

344	quantifying the number of nets damaged and financial costs of replacing nets in community	
345	questionnaires would improve the ability to understand the severity of conflicts. Questionnaire	
346	designs that report differences in fishing equipment used or whether fishers are commercial or	
347	subsistence add value to conflict detection (Campbell et al., 2020). Data are often lacking in	
348	remote tropical and subtropical areas, but the calculation of rates of attacks are also useful to	
349	determine if conflict severity is increasing or decreasing, particularly in relation to any	
350	management strategies. Our third recommendation is that for all conflict generating species,	
351	particularly those classified as well documented in Table Finere is a need for future studies to	
352	focus on the resolution and management of conflicts. Currently, much of the literature	
353	concerning management is focused on population control of the saltwater crocodile in Australia.	
354	There remain considerable gaps in our knowledge regarding other species and on mitigation	
355	techniques such as community-based conflict resolution or lifestyle changes, including access to	
356	pumped water. Studies documenting reasons for increased vulnerability to attacks are	
357	particularly valuable for informing such mitigation strategies.	
358		
359	Acknowledgements	
360	We thank the Secretaria do Estado do Meio Ambiente e Desenvolvimento Sustentável (SDS-	
361	DEMUC) and the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) for	
362	authorising this research. We are grateful to Franciney Silva da Souza for assisting fieldwork and	
363	to all reserve residents for their hospitality and participation in interviews. We wish to thank	
364	Jessica Groenendijk for photographs of the black caiman and giant otter, and Sannie Brum for	
365	photographs of the boto and tucuxi. This publication is part of the Instituto Juruá series	
366	(www.institutojurua.org.br).	
367		
368	References	
369		
370	Alary, F., Moutou, F., Jacques, H., 2002. Still on the tracks of the Congo clawless otter (<i>Aonyx</i>	
371	congicus): first mission in Cameroon. IUCN Otter Specialist Group Bulletin, 19(1), 51-	

373	Antunes, A.P., Fewster, R.M., Venticinque, E.M., Peres, C.A., Levi, T., Rohe, F., Shepard, G.H.,
374	2016. Empty forest or empty rivers? A century of commercial hunting in
375	Amazonia. Science Advances 2:e1600936. DOI: 10.1126/sciadv.1600936.
376	Alves, L.C.P.D.S., Zappes, C.A., Andriolo, A., 2012. Conflicts between river dolphins (Cetacea:
377	Odontoceti) and fisheries in the central Amazon: a path toward tragedy? Zoologia, 29(5),
378	420-429 DOI: 10.1590/S1984-46702012000500005.
379	Aust, P., Boyle, B., Fergusson, R., Coulson, T. 2009. The impact of Nile crocodiles on rural
380	livelihoods in northeastern Namibia. South African Journal of Wildlife Research, 39(1),
381	57-69. DOI: 10.3957/056.039.0107.
382	Batista, V S., Inhamuns, A. J., Freitas, C.E.C., Freire-Brasil, D., 1998. Characterisation of the
383	fishery in riverine communities in the Low-Solimões/High-Amazon region. Fisheries
384	Management Ecology, 5 , 101–117.
385	Barbieri, F., Machado, R., Zappes, C.A., Oliveira, L.R.D., 2012. Interactions between the
386	Neotropical otter (Lontra longicaudis) and gillnet fishery in the southern Brazilian coast.
387	Ocean and Coastal Management, 63, 16-23. DOI: 10.1016/j.ocecoaman.2012.03.007
388	Belanger, M., Clough, N., Askin, N., Tan, L., Wittnich, C., 2011. A Review of Violent or Fatal
389	Otter Attacks. IUCN Otter Spec. Group Bulletin. 28 (1): 11 – 16.
390	Brackhane, S., Webb, G., Xavier, F.M., Gusmao, M., Pechacek, P., 2018. When conservation
391	becomes dangerous: human-crocodile conflict in Timor-Leste. The Journal of Wildlife
392	Management, 82(7), pp.1332-1344. DOI: 10.1002/jwmg.21497.
393	Brum, S., Rosas-Ribeiro, P., Amaral, R.D.S., de Souza, D.A., Castello, L., da Silva, V.M.F.,
394	2021. Conservation of Amazonian aquatic mammals. Aquatic Conservation: Marine and
395	Freshwater Ecosystems. DOI: 10.1002/aqc.3590.

396	Caldicott, D.G., Croser, D., Manolis, C., Webb, G., Britton, A., 2005. Crocodile attack in
397	Australia: an analysis of its incidence and review of the pathology and management of
398	crocodilian attacks in general. Wilderness and Environmental Medicine, 16(3), 143-159.
399	DOI: 10.1580/1080-6032(2005)16[143:CAIAAA]2.0.CO;2.
100	Campbell, E., Mangel, J.C., Alfaro-Shigueto, J., Mena, J.L., Thurstan, R.H. and Godley, B.J.,
101	2020. Coexisting in the Peruvian Amazon: Interactions between fisheries and river
102	dolphins. Journal for Nature Conservation, 56, p.125859. DOI:
103	10.1016/j.jnc.2020.125859.
104	Campbell, H.A., Dwyer, R.G., Irwin, T.R., Franklin, C.E., 2013. Home range utilisation and
105	long-range movement of estuarine crocodiles during the breeding and nesting season.
106	PLoS One, 8, e62127. DOI: 10.1371/journal.pone.0062127.
107	Campos-Silva, J.V., Hawes, J.E., Andrade, P.C., Peres, C.A., 2018. Unintended multispecies co-
804	benefits of an Amazonian community-based conservation programme. Nature
109	Sustainability, 1(11), pp.650-656. DOI: 10.1038/s41893-018-0170-5.
10	Campos-Silva, J.V., Peres, C.A., 2016. Community-based management induces rapid recovery
111	of a high-value tropical freshwater fishery. Scientific Reports, 6(1), pp.1-13. DOI:
12	10.1038/srep34745.
113	Choudhary, S.K., Smith, B.D., Dey, S., Dey, S., Prakash, S., 2006. Conservation and
114	biomonitoring in the Vikramshila gangetic dolphin sanctuary, Bihar, India. Oryx, 40(2),
115	189-197. DOI: 10.1017/S0030605306000664.
116	CrocBITE 2013. The Worldwide Crocodilian Attack Database. Big Gecko, Darwin, accessed
17	22/09/2020. http://www.crocodile-attack.info>.">http://www.

418	Da Silva, V.M.F., Best, R.C., 1996. Freshwater dolphin/fisheries interaction in the central					
419	Amazon (Brazil). Amazoniana. Kiel, 14(1), 165-175.					
420	da Silva, V.M., Freitas, C.E., Dias, R.L., Martin, A.R., 2018. Both cetaceans in the Brazilian					
421	Amazon show sustained, profound population declines over two decades. PloS					
422	one, 13(5), p.e0191304. DOI: 10.1371/journal.pone.0191304.					
423	Dickman, A.J., 2010. Complexities of conflict: the importance of considering social factors for					
424	effectively resolving human-wildlife conflict. Animal Conservation, 13(5), 458-466.					
425	DOI: 10.1111/j.1469-1795.2010.00368.x.					
426	D'Lima, C., Marsh, H., Hamann, M., Sinha, A., Arthur, R., 2014. Positive interactions between					
427	irrawaddy dolphins and artisanal fishers in the Chilika Lagoon of Eastern India are driven					
428	by ecology, socioeconomics, and culture. Ambio, 43(5), pp.614-624. DOI:					
429	10.1007/s13280-013-0440-4.					
430	Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.I., Knowler, D.J., Lévêque, C.,					
431	Naiman, R.J., Prieur-Richard, A., Soto, D., Stiassny, M.L.J., Sullivan, C.A., 2006.					
432	Freshwater biodiversity: importance, threats, status and conservation challenges.					
433	Biological Reviews, 81 (2), 163-182. DOI: 10.1017/S1464793105006950.					
434	Endo, W., Peres, C.A., Haugaasen, T., 2016. Flood pulse dynamics affects exploitation of both					
435	aquatic and terrestrial prey by Amazonian floodplain settlements. Biological					
436	Conservation, 201, 129-136. DOI: 10.1016/j.biocon.2016.07.006.					
437	Fonseca, V., Marmontel, M., 2011. Local knowledge and conflicts with otters in western					
438	Brazilian Amazon: a preliminary report. IUCN Otter Specialists Group Bulletin, 28(B),					
439	64-68.					

440	rukuda, Y., Manons, C., Appel, K., 2014. Featured article. management of numan-crocodile
441	conflict in the Northern Territory, Australia: review of crocodile attacks and removal of
442	problem crocodiles. The Journal of Wildlife Management, 78(7), 1239-1249. DOI:
443	10.1002/jwmg.767.
444	Fukuda, Y., Manolis, C., Saalfeld, K. and Zuur, A., 2015. Dead or alive? Factors affecting the
445	survival of victims during attacks by saltwater crocodiles (Crocodylus porosus) in
446	Australia. PLoS One, 10(5), p.e0126778. DOI: 10.1371/journal.pone.0126778.
447	Fukuda, Y., Webb, G., Edwards, G., Saalfeld, K., Whitehead, P., 2020. Harvesting predators:
448	simulation of population recovery and controlled harvest of saltwater crocodiles
449	Crocodylus porosus. Wildlife Research. DOI: 10.1071/WR20033.
450	Fukuda, Y., Webb, G., Manolis, C., Lindner, G., Banks, S., 2019. Translocation, genetic
451	structure and homing ability confirm geographic barriers disrupt saltwater crocodile
452	movement and dispersal. PloS One, 14(8), p.e0205862. DOI:
453	10.1371/journal.pone.0205862.
454	Gopi, G. V., Pandav, B., 2009. Humans sharing space with Crocodylus porosus in Bhitarkanika
455	wildlife sanctuary: conflicts and options. Current Science, 96(4), 459-460.
456	Gravena, W., Hrbek, T., da Silva, V.M., Farias, I.P., 2008. Amazon river dolphin love fetishes:
457	from folklore to molecular forensics. Marine Mammal Science, 24(4), 969-978. DOI:
458	10.1111/j.1748-7692.2008.00237.x.
459	Groenendijk, J., Hajek, F., Johnson, P.J., Macdonald, D.W., Calvimontes, J., Staib, E., Schenck,
460	C., 2014. Demography of the giant otter (Pteronura brasiliensis) in Manu national park,
461	south-eastern Peru: implications for conservation. PLOS One, 9(8). DOI:
462	10.1371/journal.pone.0106202.

463	Hawes, J.E., Peres, C.A., Riley, L.B., Hess, L.L., 2012. Landscape-scale variation in structure					
464	and biomass of Amazonian seasonally flooded and unflooded forests. Forest Ecology and					
465	Management, 281, 163-176. DOI: 10.1016/j.foreco.2012.06.023.					
466	He, F., Zarfl, C., Bremerich, V., David, J.N., Hogan, Z., Kalinkat, G., Tockner, K., Jähnig, S.C.,					
467	2019. The global decline of freshwater megafauna. Global Change Biology, 25(11),					
468	pp.3883-3892. DOI: 10.1111/gcb.14753.					
469	Huang, S.L., Hao, Y., Mei, Z., Turvey, S. T., Wang, D., 2012. Common pattern of population					
470	decline for freshwater cetacean species in deteriorating habitats. Freshwater Biology,					
471	57 (6), 1266-1276. DOI: 10.1111/j.1365-2427.2012.02772.x.					
472	Hunter, L., 2011. Carnivores of the World. Princeton: Princeton University Press.					
473	Hussain, S.A., Gupta, S.K., De Silva, P.K., 2011. Biology and ecology of Asian small-clawed					
474	otter Aonyx cinereus (Illiger, 1815): a review. IUCN Otter Specialist Group Bulletin,					
475	28 (2), 63-75.					
476	Inskip, C., Zimmermann, A., 2009. Human-felid conflict: a review of patterns and priorities					
477	worldwide. Oryx, 43(1), 18-34. DOI: 10.1017/S003060530899030X.					
478	IUCN, 2020, The IUCN red list of threatened species, IUCN, viewed 20 December 2020, <					
479	https://www.iucnredlist.org/>					
480	Jackson, R.M., Wangchuk, R., 2004. A community-based approach to mitigating livestock					
481	depredation by snow leopards. Human Dimensions of Wildlife, 9(4), pp.1-16. DOI:					
482	10.1080/10871200490505756.					
483	Jacques, H., Moutou, F., Alary, F., 2002. On the tracks of the Congo clawless otter (Aonyx					
484	congicus) in Gabon. IUCN Otter Specialist Group Bulletin, 19(1), 40-50.					

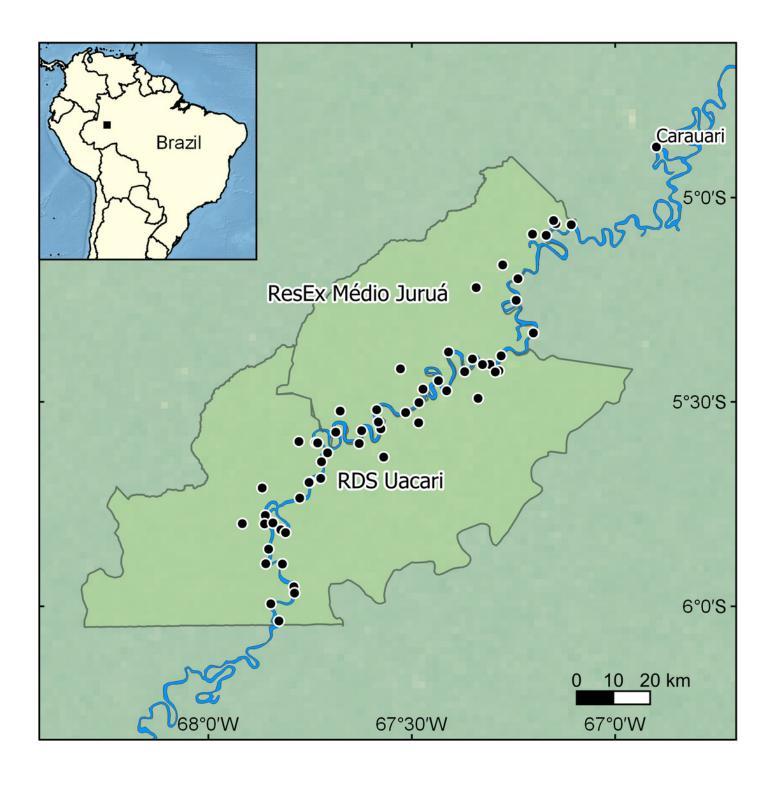
185	Jayson, E.A., Sivaperuman, C., Padmanabhan, P., 2006. Review of the reintroduction
186	programme of the mugger crocodile Crocodylus palustris in Neyyar reservoir, India. The
187	Herpetological Journal, 16(1), 69-76.
188	Jones, J.P., Andriamarovololona, M.M., Hockley, N., 2008. The importance of taboos and social
189	norms to conservation in Madagascar. Conservation biology, 22(4), pp.976-986. DOI:
190	10.1111/j.1523-1739.2008.00970.x.
191	Kelkar, N., Krishnaswamy, J., Choudhary, S., Sutaria, D., 2010. Coexistence of fisheries with
192	river dolphin conservation. Conservation Biology, 24(4), 1130-1140. DOI:
193	10.1111/j.1523-1739.2010.01467.x.
194	Lakin, R.J., Barrett, P.M., Stevenson, C., Thomas, R.J., Wills, M.A., 2020. First evidence for a
195	latitudinal body mass effect in extant Crocodylia and the relationships of their
196	reproductive characters. Biological Journal of the Linnean Society, 129(4), pp.875-887.
197	DOI: 10.1093/biolinnean/blz208.
198	Leatherwood, S., Reeves, R.R., 1994. River dolphins: a review of activities and plans of the
199	cetacean specialist group. Aquatic Mammals, 20, 137-154.
500	Lima, D.S., Marmontel, M., Bernard, E., 2014a. Conflicts between humans and giant otters
501	(Pteronura brasiliensis) in Amanã reserve, Brazilian Amazonia. Ambiente and
502	Sociedade, 17(2), 127-142. DOI: 10.1590/S1414-753X2014000200009.
503	Lima, D.S., Marmontel, M., Bernard, E., 2014b. Reoccupation of historical areas by the
504	endangered giant river otter Pteronura brasiliensis (Carnivora: Mustelidae) in Central
505	Amazonia, Brazil. Mammalia, 78 (2), pp.177-184. DOI: 10.1515/mammalia-2013-0023.

506	Loch, C., Marmontel, M., Simoes-Lopes, P.C., 2009. Conflicts with fisheries and intentional
507	killing of freshwater dolphins (Cetacea: Odontoceti) in the western Brazilian Amazon.
508	Biodiversity and Conservation, 18(14), 3979-3988. DOI: 10.1007/s10531-009-9693-4.
509	Macdonald, D.W., 2009. The Encyclopaedia of Mammals. Oxford: Oxford University Press.
510	Marioni, B., Barão-Nóbrega, J.A.L., Botero-Arias, R., Muniz, F., Campos, Z., Da Silveira, R.,
511	Magnusson, W.E., Villamarín, F., 2021. Science and conservation of Amazonian
512	crocodilians: a historical review. Aquatic Conservation: Marine and Freshwater
513	Ecosystems. DOI: 10.1002/aqc.3541.
514	McGregor, J., 2005. Crocodile crimes: people versus wildlife and the politics of postcolonial
515	conservation on Lake Kariba, Zimbabwe. Geoforum, 36(3), 353-369. DOI:
516	10.1016/j.geoforum.2004.06.007.
517	Michalski, F., Conceição, P.C., Amador, J.A., Laufer, J., Norris, D. 2012. Local perceptions and
518	implications for giant otter (Pteronura brasiliensis) conservation around protected areas
519	in the eastern Brazilian Amazon. IUCN Otter Specialist Group Bulletin, 29(1), 34-45.
520	Mintzer, V.J., Martin, A.R., Da Silva, V.M.F., Barbour, A.B., Lorenzen, K., Frazer, T.K., 2013.
521	Effect of illegal harvest on apparent survival of Amazon river dolphins (Inia geoffrensis).
522	Biological Conservation, 158, 280-286. DOI: 10.1016/j.biocon.2012.10.006.
523	Mintzer, V.J., Schmink, M., Lorenzen, K., Frazer, T.K., Martin, A.R., Da Silva, V.M., 2015.
524	Attitudes and behaviors toward Amazon River dolphins (Inia geoffrensis) in a sustainable
525	use protected area. Biodiversity and Conservation, 24(2), pp.247-269. DOI:
526	10.1007/s10531-014-0805-4.

527	Newton, P., Endo, W., Peres, C.A., 2012. Determinants of livelihood strategy variation in two					
528	extractive reserves in Amazonian flooded and unflooded forests. Environmental					
529	Conservation, 39 (2), 97-110. DOI: 10.1017/S0376892911000580.					
530	Patro, S., Padhi, S.K., 2019. Saltwater crocodile and human conflict around Bhitarkanika					
531	National Park, India: a raising concern for determining conservation limits. Ocean &					
532	Coastal Management, 182, p.104923. DOI: 10.1016/j.ocecoaman.2019.104923.					
533	Pekel, J.F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution mapping of global					
534	surface water and its long-term changes. <i>Nature</i> , 540 (7633), pp.418-422. DOI:					
535	10.1038/nature20584.					
536	Peres, C.A., Carkeek, A.M. 1993. How caimans protect fish stocks in western Brazilian					
537	Amazonia-a case for maintaining the ban on caiman hunting. Oryx, 27(4), 225-230.					
538	Pimenta, N.C., Gonçalves, A.L.S., Shepard, G.H., Macedo, V.W., Barnett, A.P.A., 2018. The					
539	return of giant otter to the Baniwa Landscape: A multi-scale approach to species recovery					
540	in the middle Içana River, Northwest Amazonia, Brazil. Biological Conservation, 224,					
541	pp.318-326. DOI: 10.1016/j.biocon.2018.06.015.					
542	Pimm, S.L., Raven, P., 2000. Biodiversity: extinction by numbers. <i>Nature</i> , 403(6772), 843-845.					
543	DOI: 10.1038/35002708.					
544	Platt, S.G., Thorbjarnarson, J.B., 2000. Status and conservation of the American crocodile,					
545	Crocodylus acutus, in Belize. Biological Conservation, 96(1), pp.13-20. DOI:					
546	10.1016/S0006-3207(00)00038-0.					
547	Pooley, S., Botha, H., Combrink, X., Powell, G., 2020. Synthesizing Nile crocodile Crocodylus					
548	niloticus attack data and historical context to inform mitigation efforts in South Africa					
549	and eSwatini (Swaziland). Oryx, 54 (5), pp.629-638. DOI: 10.1017/S0030605318001102.					

550	Recharte, M., Bowler, M., Bodmer, R., 2009. Potential conflict between fishermen and giant
551	otter (Pteronura brasiliensis) populations by fishermen in response to declining stocks of
552	arowana fish (Osteoglossum bicirrhosum) in northeastern Peru. IUCN Otter Specialist
553	Group Bulletin, 25 (2), 89-93.
554	Rio, C.M.D., Dugelby, B., Foreman, D., Miller, B., Noss, R. and Phillips, M., 2001. The
555	importance of large carnivores to healthy ecosystems. Endangered Species Update, 18,
556	p.202.
557	Rosas-Ribeiro, P.F., Rosas, F.C.W., Zuanon, J., 2012. Conflict between giant otter and fishermen
558	Pteronura brasiliensis in western Brazilian Amazon. Biotropica, 44(3), 437-444. DOI:
559	10.1111/j.1744-7429.2011.00828.x.
60	Rose, A., Fukuda, Y., Campbell, H.A., 2020. Using environmental DNA to detect estuarine
61	crocodiles, a cryptic-ambush predator of humans. Human-Wildlife Interactions, 14(1),
62	p.11. DOI: 10.5061/dryad.jwstqjq5p.
63	Santos, G., Ferreira, E., Zuanon, J., 2006. Peixes Comerciais de Manaus. Manaus: IBAMA,
64	ProVárzea.
65	Scott, R., Scott, H., 1994. Crocodile bites and traditional beliefs in Korogwe District, Tanzania.
666	British Medical Journal, 309 , 1691-1692. DOI: 10.1136/bmj.309.6970.1691.
67	Sinha, R.K., 2002. An alternative to dolphin oil as a fish attractant in the Ganges river system:
68	conservation of the Ganges river dolphin. Biological Conservation, 107(2), 253-257.
69	DOI: 10.1016/S0006-3207(02)00058-7.
570	Smith, N.J., 1981. Caimans, capybaras, otters, manatees, and man in Amazônia. Biological
571	Conservation, 19(3), 177-187. DOI: 10.1016/0006-3207(81)90033-1.

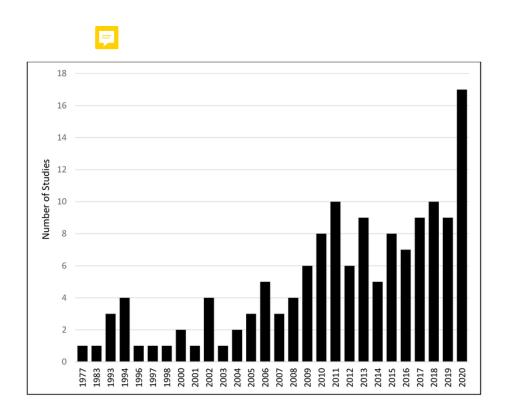
572 Snape, R.T.E., Broderick, A.C., Cicek, B.A., Fuller, W.J., Tregenza, N., Witt, M.J. and Godley, B.J., 2018. Conflict between dolphins and a data-scarce fishery of the European 573 Union. Human Ecology, **46**(3), pp.423-433. DOI: 10.1007/s10745-018-9989-7. 574 Tixier, P., Lea, M.A., Hindell, M.A., Welsford, D., Mazé, C., Gourguet, S., Arnould, J.P., 2021. 575 When large marine predators feed on fisheries catches: Global patterns of the depredation 576 577 conflict and directions for coexistence. Fish and Fisheries, 22(1), pp.31-53. DOI: 10.1111/faf.12504. 578 Treves, A., Karanth, K.U., 2003. Human-carnivore conflict and perspectives on carnivore 579 580 management worldwide. Conservation Biology, 17(6), 1491-1499. DOI: 10.1111/j.1523-1739.2003.00059.x. 581 582 Turvey, S.T., Pitman, R.L., Taylor, B.L., Barlow, J., Akamatsu, T., Barrett, L.A., Zhao, X., 583 Reeves, R.R., Stewart, B.S., Wang, K., Wei, Z., Zhang, X., Pusser, L.T., Richlen, M., Brandon, J.R., Wang, D., 2007. First human-caused extinction of a cetacean species? 584 Biology Letters, **3**(5), 537-540. DOI: 10.1098/rsbl.2007.0292. 585 Waples, D.M., Thorne, L.H., Hodge, L.E., Burke, E.K., Urian, K.W., Read, A.J., 2013. A field 586 test of acoustic deterrent devices used to reduce interactions between bottlenose dolphins 587 588 and a coastal gillnet fishery. *Biological Conservation*, **157**, pp.163-171. DOI: 589 10.1016/j.biocon.2012.07.012. Woodroffe, R., Ginsberg, J.R., 1998. Edge effects and the extinction of populations inside 590 591 protected areas. Science, 280, 2126-2128. DOI: 10.1126/science.280.5372.2126. Zanon. S, 2021. Tucuxi na lista vermelha: todos os botos de rio do mundo agora ameaçados, 592 593 Mongabay, viewed 15/4/21,


594					
-----	--	--	--	--	--

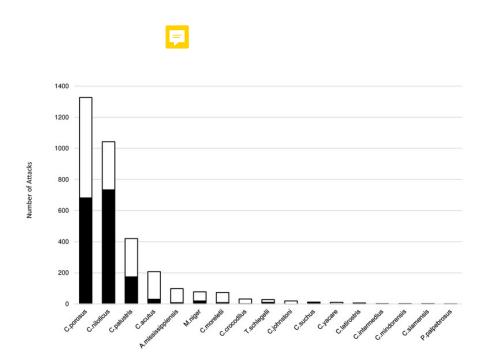
Map showing the location of the focal study landscape in the Médio Juruá region of western Brazilian Amazonia.

Interviews were conducted in local communities (black dots) along the Juruá River (blue line) within two sustainable-use reserves (light green polygons).

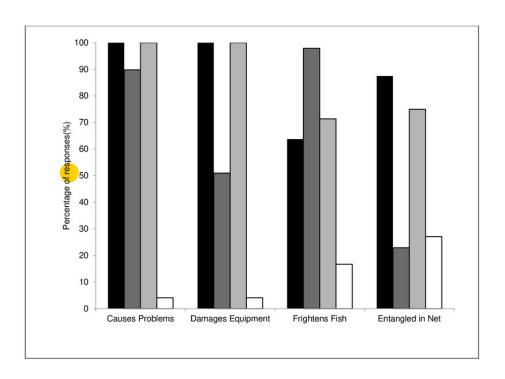
The four 'problem species' in the mid-Juruá.


A) black caiman, B) giant otter, C) boto and D) tucuxi. Photo credits: A and B) Jessica Groenendijk, C and D) Sannie Brum.

Number of human-wildlife conflict studies concerning freshwater mammals and reptiles over time (1977-2020).

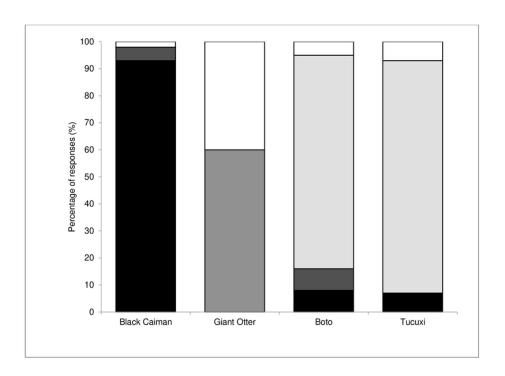


Number of fatal (black bars) and non-fatal (white) attacks on humans by crocodilian species recorded by CrocBITE (2013) between 2009 and 2019.



Interviewee responses (%) to different categories of conflict.

Categories include whether the species (black caiman in black, giant per in dark grey, boto in light grey and tucuxi in white) causes problems for fishing generally or specifically, by damaging equipment, frightening away fish or getting entangled in fishing nets.



Interviewee responses (%) to black caiman, giant otter, boto, and tucuxi being entangled in nets.

Responses were categorised as killed (black), died (dark grey), released (light grey) and escaped (white). Death is defined as an animal found dead in a net without human assistance. Escaped means the animal worked its way free from the net.

Table 1(on next page)

List of piscivore conflict species.

Columns show extent of knowledge for each species, severity of the human-wildlife conflict, body mass and IUCN Red List category.

- 1 Table 1. List of piscivore conflict species. Columns show extent of knowledge for each species,
- 2 severity of the human-wildlife conflict, ody mass and IUCN Red List category.

	Extent of	Scale of	Body Mass	IUCN RED
Species	Knowledge ¹	Conflict ²	Category (kg)	List Status
Crocodilians				
African Dwarf Crocodile		Data		
(Osteolaemus tetraspis)	CPD	Deficient	$10-49^3$	VU
American Alligator (Alligator				
mississippiensis)	CWD	High	$\geq 50^{3}$	LC
American Crocodile				
(Crocodylus acutus)	CWD	Severe	$\geq 50^{3}$	V U
Australian Freshwater Crocodile				
(Crocodylus johnstoni)	CPD	High	$10-49^3$	LC
Black Caiman (Melanosuchus				
niger)	CPD	High	$\geq 50^{3}$	LC
Broud-snouted Caiman (Caiman				
latirostris)	CPD	Moderate	$10-49^3$	LC
Central African Slender-snouted				
Crocodile (Mecistops		Data		
leptorhynchus)	RES	Deficient	Not available	Not assessed
Chinese Alligator (Alligator		Data		
sinensis)	RES	Deficient	$10-49^3$	CR
Cuban Crocodile (Crocodylus		Data		
rhombifer)	RES	Deficient	$\geq 50^{3}$	CR
Dwarf Caiman (Paleosuchus				
palpebrosus)	RES	Moderate	$\leq 10^{3}$	LC
False Gharial (Tomistoma				
schlegelii)	RES	High	$\geq 50^{3}$	VU
Gharial (Gavialis gangeticus)	CPD	Low	$\geq 50^{3}$	CR
Hall's New Guinea crocodile	RES	Data	Not available	Not assessed

(Crocodylus halli)		Deficient		
Morelet's Crocodile (Crocodylus				
moreletii)	CPD	High	10-493	LC
Mugger (Crocodylus palustris)	CPD	Severe	$\geq 50^{3}$	VU
New Guinea Crocodile		Data		
(Crocodylus novaeguineae)	RES	Deficient	$10-49^3$	LC
Nile Crocodile (Crocodylus				
niloticus)	CWD	Severe	$\geq 50^{3}$	LC
Orinoco Crocodile (Crocodylus				
intermedius)	RES	Moderate	$\geq 50^{3}$	CR
Philippine Crocodile				
(Crocodylus mindorensis)	RES	Moderate	$10-49^3$	CR
Saltwater Crocodile (Crocodylus				
porosus)	CWD	Severe	$\geq 50^{3}$	LC
Siamese Crocodile (Crocodylus				
siamensis)	RES	Moderate	$10-49^3$	CR
Slender-snouted Crocodile		Data		
(Mecistops cataphractus)	CPD	Deficient	$\geq 50^{3}$	CR
Smooth-fronted Caiman		Data		
(Paleosuchus trigonatus)	CPD	Deficient	$\leq 10^{3}$	LC
Spectacled Caiman (Caiman				
crocodilus)	CWD	High	$10-49^3$	LC
West African Crocodile				
(Crocodylus suchus)	CPD	High	Not available	Not assessed
Yacaré (Caiman yacare)	CPD	High	$10-49^3$	LC
Otters				
African Clawless Otter (Aonyx				
capensis)	CPD	Low	10-49 ⁴	NT
Asian Small-clawed Otter				
(Aonyx cinereus)	CPD	Low	$\leq 10^4$	VU

Congo Clawless Otter (Aonyx				
congicus)	CPD	Low	$10-49^4$	NT
Spotted-necked Otter (Hydrictis				
maculicollis)	CWD	Moderate	$\leq 10^4$	NT
North American River Otter				
(Lontra canadensis)	CPD	Moderate	10 - 49 ⁴	LC
Neotropical River Otter (Lontra				
longicaudis)	CWD	Low	$\leq 10^{4}$	NT
		Data		
Eurasian Otter (Lutra lutra)	RES	Deficient	10-49 ⁴	NT
Hairy-nosed Otter (Lutra		Data		
sumatrana)	RES	Deficient	$\leq 10^4$	EN
Smooth-coated Otter (Lutrogale				
perspicillata)	CWD	Moderate	$\leq 10^4$	VU
Giant Otter (Pteronura				
brasiliensis)	CWD	Moderate	10-494	EN
Cetaceans				
Amazon River Dolphin (Inia				
geoffrensis)	CWD	Moderate	$\geq 50^{5}$	EN
Baiji (Lipotes vexillifer)	CPD	Moderate	$\geq 50^5$	CR
Yangtze Finless Porpoise				
(Neophocaena asiaeorientalis				
ssp. asiaeorientalis)	CPD	Moderate	$\geq 50^5$	CR
Irrawaddy Dolphin (Orcaella				
brevirostris)	CPD	Moderate	$\geq 50^{5}$	EN
South Asian River Dophin				
(Platanista gangetica)	CWD	Moderate	$\geq 50^5$	EN
Tucuxi (Sotalia fluviatilis)	CWD	Low	10-49 ⁵	EN
	·			

- ¹CWD = Conflict Well Documented; CPD = Conflict Poorly Documented; FRR = Further
- 5 Research Required (Table S1).
- 6 ² Conflict categories (Table S1).
- ³ Lakin *et al.* (2020)
- 8 ⁴ Hunter (2011)
- 9 ⁵ Macdonald (2009)