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ABSTRACT
Starch provides primary storage of carbohydrates, accounting for approximately 85%
of the dry weight of cereal endosperm. Cereal seeds contribute to maximum
annual starch production and provide the primary food for humans and livestock
worldwide. However, the growing demand for starch in food and industry and
the increasing loss of arable land with urbanization emphasizes the urgency to
understand starch biosynthesis and its regulation. Here, we first summarized the
regulatory signaling pathways about leaf starch biosynthesis. Subsequently, we paid
more attention to how transcriptional factors (TFs) systematically respond to various
stimulants via the regulation of the enzymes during starch biosynthesis. Finally,
some strategies to improve cereal yield and quality were put forward based on the
previous reports. This review would collectively help to design future studies on
starch biosynthesis in cereal crops.
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Keywords Starch biosynthesis, Endosperm, Regulator, Cereals

INTRODUCTION
With the improvement of living standards, people have higher and higher requirements
for food quality. As the main component of grain crops, especially cereal crops, the
content, and quality of starch will directly affect the economic benefits of crops.
The harvested heterotrophic parts of staple crop plants are usually starch-storing organs
such as roots (cassava, taro, and sweet potato), tubers (potato), and cereal seeds (rice,
maize, wheat, barley, and sorghum) (Bahaji et al., 2014). Among of these, cereal seeds
contribute to maximum annual starch production (Zeeman, Kossmann & Smith, 2010;
Nuttall et al., 2017) and provide primary food to humans and livestock worldwide.
However, the growing demand for starch in the food industry and the increasing loss of
arable land due to urbanization emphasized the need to uncover starch biosynthesis and
its regulation. The detailed regulatory mechanisms of starch biosynthesis during seed
formation are largely unknown, irrespective of most starch metabolic enzymes have been
identified (Thitisaksakul et al., 2012).
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Starch is composed of amylose and amylopectin glucan polymers, which are packaged
to form the insoluble semi-crystalline starch granules (Sabelli & Larkins, 2009; Pfister &
Zeeman, 2016). There are at least two types of synthesized starch in plants (Fig. 1).
Transitory starch usually exists in the plastids of photosynthetic organs and display
circadian turnover regulation with diurnal cycles (Pfister & Zeeman, 2016; Stitt & Zeeman,
2012). More importantly, the non-photosynthetic amyloplasts usually serve as the
synthetic places for storage starch, which require the supply of sucrose and ATP from
leaves to realize the starch synthesis (Bahaji et al., 2014). Therefore, various transporters
are also essential for storage starch synthesis through the delivery of sucrose and energy by
using vascular system (Geiger, 2011).

Starch synthesis requires three sorts of enzymes (Myers et al., 2000), including starch
synthase (SS), branching enzymes (BEs), and debranching enzymes (DBEs). Among them,

Figure 1 Biosynthesis of transient starch in cereal crops. Starch biosynthesis in cereal leaves displays
the rhythmic turnover following the day and night oscillation of recurrent cycles of accumulation and
degradation. This was largely related to the light- and glucose/sucrose-mediated signals for the regulation
of starch synthases, i.e., AGP, SSIII, and SSIV. NADPH seemed to be served as one of the common
modules of the light- and glucose/sucrose-mediated signals, while SnRK1-Tre6P performed as an
independent pathway to mediate AGP. All these determine a subtle and flexible mechanism of starch
biosynthesis in leaves. Full-size DOI: 10.7717/peerj.12678/fig-1
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SSs are responsible for elongating glucan chains, and nowadays, six SS isoforms (SSI-SSV),
granule-bound starch synthase I (GBSS/Wx) have been well characterized into the
roles during starch synthesis, except for SSV (Nougué et al., 2014). SSI-SSIII are vital to
establish proper amylopectin synthesis, while GBSS mainly functions in amylose synthesis
(Pfister & Zeeman, 2016; Delvallé et al., 2005; Fujita et al., 2007). Besides, SSIV prefers to
create branched glucans together with BEs and DBEs and to initiate granule formation
(Crumpton-Taylor et al., 2013; Pfister et al., 2016; Roldán et al., 2010;Malinova et al., 2017;
Lu et al., 2018). Moreover, BEs form an a-1,6-linkage via transferring linear glucan, and
DBEs facilitate the formation of the crystalline amylopectin layers through removing
a-1,6-linkages (Pfister et al., 2014; Pfister & Zeeman, 2016).

Starch accounts for 85% of the dry weight of cereal endosperm (Bahaji et al., 2014;
Geigenberger, 2011) is a major storage carbohydrate formed in cereal seeds and contributes
to crop yield. Starch biosynthesis in cereal crops requires coordination of starch
biosynthetic enzymes and coordinates with other metabolic processes that utilize
starch biosynthetic enzymes (Table S1). Thus, it is vital to engineer crops with desirable
agronomic traits using biotechnological approaches (Bahaji et al., 2014) and marker-
assistant breeding (Rahim et al., 2020) in crops. Based on the current references, little
differences exist between several cereal crops. Nonetheless, more starch related references
are reported in rice. Also, as the model plant of monocotyledonous, rice could provide
referees for other species. Besides, the demand for rice quality has been getting higher and
higher with the improvement of people’s living standard (Bahaji et al., 2014). The rice
qualities determine its commercial value in the economic market, and have attracted the
focus of both consumers and rice breeders (Bahaji et al., 2014; Geigenberger, 2011; Chen
et al., 2012). With the increasing demand for rice of good qualities, it is vital to explore
starch biosynthesis and its regulatory mechanisms, which would be important for the
oriented genetic improvement of rice qualities.

Nowadays, there are many published reviews about starch biosynthesis in plants
(Geigenberger, 2011; Bahaji et al., 2014; López-González et al., 2019). Based on the
timeliness of starch research, more recent works on starch biosynthesis have been focused
on the transcriptional factors and the regulatory mechanisms. This review furthermore
updated the works of starch metabolism in cereal crops on the basis of previous reviews.
Since grain development is limited by the duration of flag leaf photosynthesis
(Borrill et al., 2015) and associated with the sugar levels and activities of important
starch-synthesizing enzymes (Fahy et al., 2018) during seed development in cereal crops,
we initiated to summarize the regulatory signals in leaf starch biosynthesis. Subsequently,
we paid more attention to how transcriptional factors (TFs) systematically respond to
various stimulates via regulations of the enzymes during endosperm starch synthesis.
Finally, the molecular mechanism of starch synthesis was summarized and strategies
for rice yield and quality improvement were discussed, providing theoretical basis for
improvement and breeding in rice. Some strategies were put forward to improve cereal
yield and quality based on the previous reports. Our review provides a critical review of the
studies on starch biosynthesis regulation and some potential starch-related strategies for
applications in crops.
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SURVEY METHODOLOGY
To complete this article, an electronic literature search was performed exhaustively on
the databases of Web of Science, Google Scholar, Science Direct, Mendeley and EndNote
using key words such as “starch metabolism”, “cereal crops”, “transcription factors”,
“transient starch”, “endosperm starch”, “rice”, “maize”, “wheat”, “Barley”, “sucrose-to-
starch”, integrated with the usage of “+”, “or”, “AND” for specific search returns. Works of
the past 20 years (up until Aug 29th, 2021) were mostly focused here. More than eight
hundred publications were retrieved, and article selection was conducted according to
previous method (Moher et al., 2009). First of all, the duplicated articles were deleted.
Subsequently, unrelated articles were then screened out after examining the titles and
abstracts. Eventually, the most relevant articles in English were used to complete this
review.

Biosynthesis of transient starch in cereal crops
Compared to many studies on the biosynthesis of transient starch in other plants,
i.e., Arabidopsis, few have focused on cereal crops. This is largely attributed to the
phenotypical obscurity derived from the aberrant metabolism of transient starch in
cereal leaves and the inedible traits of leaves. However, although sucrose-to-starch
metabolism occurs with transport via phloem to sink tissues (Macneill et al., 2017), due to
utilizing fructose phosphates to glucose phosphates to ADP-glucose, transient starch
metabolism in leaves is vital for the formation of seeds, and nowadays, it is also helpful to
explore the source of potential biofuels to relieve energy shortage. Several reviews
(Zeeman et al., 2002; Geigenberger, 2011; Stitt & Zeeman, 2012) have focused on starch
metabolism in plants. Our review highlights the possible signaling of starch biosynthesis
explicitly upon starch metabolism under light/darkness alternation in crops, including
glucose/sucrose signals (Fig. 1 and Table S1).

Light-dependent signaling pathway

The rhythmic turnover following the day and night oscillation of recurrent cycles of
accumulation and degradation has been displayed through the biosynthesis of transient
starch in cereal leaves (Bahaji et al., 2014; Fernandez et al., 2017). However, various types
of light/darkness alternation and glucose/sucrose availability, as well as protein-protein
interaction, determine a subtle and flexible mechanism of starch biosynthesis in leaves
(Fig. 1 and Table S1).

Because light-dependent photosynthesis provides raw materials for starch synthesis, the
synthetic rate of starch in leaves is regulated to encounter the fluctuating day length.
However, fluctuation of day length usually temporarily generates a period of carbon
shortage, which is mainly dependent on the light-dependent rebalance of the carbon
budget. The rebalance of the carbon budget is usually realized by accelerating the
starch synthesis while hindering the rate of starch degradation (Graf & Smith, 2011).
Moreover, from a part of the newly fixed carbon during the light period, starch was
synthesized and then degraded into glucan in the following night period, termed as starch
turnover (Bowsher et al., 2007; Lee et al., 2016). This promotes starch turnover to
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synchronize with the day length (Fernandez et al., 2017; Davies et al., 2003; Pan, Strelow &
Nelson, 1990), which maximizes the efficiency of carbon use. Therefore, starch turnover is
essential for plant development and biomass generation, and more importantly, is an
effective and efficient response to light-dependent environment adaptation.

Light-dependent signaling usually realizes its regulation to starch synthesis through the
control of starch biosynthetic enzymes. ADP-glucose pyrophosphorylase (AGPase) was
supposed to be one of the most studied enzymes involved in the light-dependent signaling
pathway, in which the regulation of AGPase was largely related to the modules of
photosynthesis. For example, ferredoxin (Fdx), thioredoxins (Trx), and Fdx-dependent
Trx reductase (FTR) participated in the regulation of AGPase in response to light (Lunn
et al., 2014; Davies et al., 2003). Besides, through nicotinamide–adenine dinucleotide
phosphate (NADPH) and NADP-thioredoxin reductase (NTRC), light-induced Fdx also
regulated the expression of AGPase/starch synthase III (SSIII)/SSIV/β-amylase (BAM)
(Yadav et al., 2014). 3-phosphoglycerate (3-PGA; Guo et al., 2012) and fructose-6-
phosphate (F6P; Koumoto et al., 2013) were also involved in the regulation of AGPase, but
the detailed mechanisms were not very clear. Collectively, for transient starch biosynthesis,
light is vital to regulate the activities of various starch biosynthetic enzymes through
(i) 3-PGA→AGPase, (ii) Fdx→FTR→Trx→AGPase, and (iii) Fdx→NADPH→NTRC→
AGPase/SSIII/SSIV/BAM (Fig. 1).

Glucose/sucrose-dependent signaling pathway
As important forms of carbon budget, glucose and sucrose also function in the regulation
of carbon allocation during starch biosynthesis. Nonetheless, this is a very complex
process. More than that, glucose and sucrose are also greatly related to the balancing of
growth and reproduction using the available carbon, which involves trehalose 6-phosphate
(Tre6P) in higher plants (Fig. 2).

Tre6P, an intermediate of trehalose (TRE) biosynthesis, functions in the sucrose-Tre6P
sensor nexus (Paul et al., 2010;Martins et al., 2013). It involves the coordination of carbon
and nitrogen metabolism in plants (Bledsoe et al., 2017; Paul et al., 2008). To optimize
the intracellular sucrose concentrations for plants’ growth and development, Tre6P
usually acts as both a signal and a negatively retrograde regulator (Yadav et al., 2014).
Although the contents of Tre6P and TRE are low, Tre6P is essential in making sucrose
available to organs, correlating strongly with changes in available carbon (Martínez-
Barajas et al., 2011). During sucrose and starch metabolism, the interaction of Tre6P
with the sucrose nonfermenting1-related kinase 1 (SnRK1) system occurred (Zhang et al.,
2009; Nunes et al., 2013). It provided new views on the allocation of carbon to the
developing cereal grains.

In fact, in the endosperm of cereal crops, the deposition of starch grains is closely
connected with Tre6P. In several cereal crops, a model for the role of Tre6P in carbon
partitioning and yield was proposed and confirmed (Langlois, Shulman & Arbesman,
2015). Local sucrose availability played key roles in Tre6P/SnRK1 signaling to determine
yield and grain quality (Martínez-Barajas et al., 2011; Lawlor & Paul, 2014). In Tre6P/
SnRK1 signaling, another key factor was trehalose-6-phosphate phosphatase 7 (TPP7),
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which increased Tre6P turnover and served as an energy sensor (Kretzschmar et al., 2015).
Also, TPP7 could measure anabolism or catabolism depending on the availability of
local sucrose (Nuccio et al., 2015), thereby enhancing starch mobilization to trigger
the growth dynamics of the germinated embryo and elongated coleoptile sheath.
This consequently improved anaerobic germination tolerance in direct-seeded rice
(Kretzschmar et al., 2015). Because of high sucrose concentration, the accumulation of
Tre6P inhibited SnRK1 to promote growth. However, low sugar promoted the conversion
from Tre6P to TRE, and therefore, phosphorylated SnRK1 to activate C/S1 basic leucine
zipper (bZIP) transcription factors (TFs) for resource sequestration in sinks (Langlois,
Shulman & Arbesman, 2015). The Tre6P-C/S1 bZIP-SnRK1 regulatory module existed in
both monocotyledon (i.e., rice; Cho et al., 2012) and dicotyledons (i.e., Arabidopsis;
Lunn et al., 2014; ƠHara, Paul & Wingler, 2013). The effective nutrient-sensing system
served as a spatial-temporal regulator (Langlois, Shulman & Arbesman, 2015; Cho et al.,
2012), which improved the yield stability of staple crops under adverse conditions.

Figure 2 Biosynthesis of storage starch in cereal crops. During the grain filling period, sucrose loca-
lized in vegetative organs (i.e., leaves) is intensively unloaded from the phloem and transported into the
reproductive organs (i.e., grains). Multiple starch biosynthetic enzymes co-operate to produce starch
granules both in transient and storage starch biosynthesis. Grain-filling is associated with the normal
development of amyloplasts, delivery of carbon precursors and energy from leaves to endosperm by
sucrose transporters (SUTs), and enzymes of endosperm starch biosynthesis during grain-filling periods,
which are greatly susceptible to fluctuated environments. Full-size DOI: 10.7717/peerj.12678/fig-2
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Aside from light, sucrose or glucose also served as another factor in activating the signaling
of NADPH-NTRC to regulate AGPase/SSIII/SSIV (Guo et al., 2012). Nonetheless,
oxidative pentose phosphate (OPP) and SnRK1 (Nunes et al., 2013) were supposed to be
the first sensors for sugar.

Collectively, the accumulation of sucrose was vital for plant growth through regulation
of starch biosynthesis, and several sucrose-dependent signaling has been summarized here,
including (i) sucrose→SnRK1→Tre6P→AGPase and (ii)
sucrose→OPP→NADPH→NTRC→AGPase/SSIII/SSIV (Fig. 1).

Circadian rhythms for starch biosynthesis
Circadian rhythm is also an important regulator for starch biosynthesis. Starch
biosynthesis followed the circadian rhythms (Annunziata et al., 2017) and relied on the
duration and light intensity (Fernandez et al., 2017). Thus, based on the light-dependent
activity of starch-degrading enzymes, starch was more susceptible to degradation. This was
partly attributed to the transcript levels of β-amylase 3 (BAM3), the major starch
degrading enzyme with a short half-life (Li et al., 2017a). However, many other starch
degradation-related enzymes, including glucan water dikinase (GWD), a-amylase 3
(AMY3), and disproportionating enzyme 2 (DPE2), had long half-lives over the day/night
cycle (Skeffington et al., 2014; Baerenfaller et al., 2012; Nelson et al., 2014;Wu et al., 2002).
This also determined that their activities were probably not regulated at the gene
expression level. For example, to activate enzymes’ activities and initiate starch breakdown
in light, the transcription levels of AMY3- and BAM1-encoded genes were greatly
upregulated in the present osmotic stress. Nonetheless, these two enzymes were not
essential for diel starch metabolism without abiotic stress conditions (Fulton et al., 2008;
Horrer et al., 2016; Thalmann et al., 2016). Inversely, in the presence of light, a higher
increased propensity of starch degradation with time largely depended on phosphorylation
of BAM1 and AMY3 (Fernandez et al., 2017; Thalmann et al., 2016). The phosphorylation
regulation was achieved by adding phosphate groups to glucose (Glc) residues with
two GWDs and phosphoglucan water dikinase (PWD). This reduced the level of crystalline
organization of the granule matrix and exposed the surface of BAMs to attack, thus
causing an increased propensity for starch degradation with time during the light period
(Scialdone et al., 2013; Fernandez et al., 2017). Therefore, the elaborate regulation of
enzymatic activities is tightly related to environmental conditions.

Besides the light period, several starch biosynthetic enzymes were prone to function in
dark conditions. For example, GBSS/Wx elongated the amylose polymers released from
the starch granule and rapid degradation of starch granule at night (Ortiz-Marchena et al.,
2014). Another was early starvation 1 (ESV1), a relatively novel starch degradation
factor, which was essential for controlling the starch breakdown rate at night (Feike et al.,
2016). Nonetheless, through phosphorylation/dephosphorylation enzymes, ESV1
performed a distinguished working mode and directly mediated starch-bound phosphate
(Feike et al., 2016). Besides, for starch degradation, ESV1 and its homologs also displayed
spatiotemporal specificity. In the absence of ESV1, for promoting the accumulation of
maltose from starch degradation, starch granules in leaves appeared to be accessible to
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hydrolytic enzymes during the day and night (Weise, Weber & Sharkey, 2004).
However, starch storage may be prevented in other organs due to simultaneous
biosynthesis and starch degradation (Feike et al., 2016).

The phenomenon of light alternating between day and night also made the metabolism
of starch rhythmicity. It was mainly realized through the starch-degrading enzyme (Fig. 1).
Compared with the regulation of starch synthase at the gene expression level,
phosphorylation regulation of long half-life enzyme activities appeared to be more
conducive to the biological adaptation of light rhythm and biological stress. Besides, some
of the regulatory elements and enzymes displayed certain temporal and spatial expression
specificity in the biosynthesis of starch. Therefore, there has been a certain difference
between the synthesis of temporary starch and the synthesis of storage starch. It might help
realize the effective regulation of seed formation to bring clarity in the commonness and
difference.

Delivery of the carbon precursors from leaves to developing grains
For energy production and starch biosynthesis, sucrose synthesized in leaves must be
transported from the leaves throughout a long-distance vascular pathway (phloem) to the
developing grains (Fig. 2 and Table S1). Three types of sucrose transporters (SUTs or
SUCs) have been identified in plants (Reinders, Sivitz & Ward, 2012; Kühn & Grof,
2010). Multiple SUTs have now been identified in cereal crops, including C3 grasses such
as rice (Sun et al., 2010), wheat (Aoki et al., 2004), and barley (Haupt et al., 2001), and C4
grasses, including maize (Baker et al., 2016; Guo et al., 2012) and sweet sorghum
(Bihmidine et al., 2016). The type I SUTs are unique to eudicots and play roles in loading
and retrieval of Suc in the transport phloem (Gould et al., 2012). For type II SUTs, at
least three functions have been proposed in cereals (Aoki et al., 2003; Scofield et al., 2002,
2007; Sauer, 2007; Baker et al., 2016), including (i) Suc phloem loading in leaves,
(ii) phloem unloading of Suc in sink tissues, and (iii) retrieval of leaked Suc. Among of
them, the type II SUTs in rice has been showed the likewise functions (Ishimaru et al.,
2001; Scofield et al., 2002, 2007). Besides, the type III SUTs localizes at vacuolar membrane
and functions in sucrose-uptake (Schulz et al., 2011). Besides, at least one Type III SUT
exists in each plant species. By regulating the energy status and controlling flowering,
sucrose supply to the filling grain was crucial for crop yield and quality (Kühn & Grof,
2010). SUTs were tightly regulated depending on fluctuating environments such as light
and photoperiod, and internal stimuli such as phosphate (P) starvation, sucrose leakage,
and H+ leak (Fig. 2).

Sucrose transporters appear to be relatively conserved within the Viridiplantae plants,
despite limited studies on the regulation of SUTs in cereal crops. The identification of
sucrose transporters in cereal crops could be aided by the complete genome sequences of
Arabidopsis and potato.

Biosynthesis of storage starch in cereal crops
Aside from sucrose and ATP from leaves, normal development of differential plastids,
amyloplasts, are essential for the synthesis of endosperm starch, and thereby, there are
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some common traits existing between chloroplasts and amyloplasts. During starch
biosynthesis, expression of starch biosynthetic genes was proposed to be regulated by
tetrapyrrole intermediates both in BY-2 cultured cells (Enami et al., 2011) and in rice (Li
et al., 2021). The mutation of rice genome uncoupled 4, which was revealed as one
predominant regulator of chlorophyll biosynthesis, performed negative effects on the
starch synthetic genes, such as GBSSI and AGPS1, in endosperm during early seed
development, partially through mediating the accumulation of heme (Li et al., 2021).
Obviously, the well-functioning of starch biosynthetic enzymes also plays key roles during
starch synthesis (Fig. 2), whereas mutations of the genes encoding starch biosynthetic
enzymes usually lead to negative yield and/or quality of crops. Nonetheless, part of the
mutation also contributes to some peculiar features of starchy endosperm, which could
serve as excellent features in breeding applications (i.e., floury; Table S1). Obviously, one
complex regulatory network seems to be employed for the accumulation of storage
substances and relies on coordination among different metabolic and cellular processes.

Regulators of transcriptional factors

Regulation of transcriptional factors for storage starch biosynthesis has been greatly
reported in plants (Mangelsen et al., 2010; Tiessen et al., 2012; Fu & Xue, 2010) and greatly
depends on varied environments (Fig. 3). For example, high temperature stress usually
downregulated the expression of starch synthesis-related genes, including GBSS,

Figure 3 Regulators of transcriptional factors involved in starch biosynthesis of cereal crops. A great
deal transcription factors (TFs), including bZIPs, bHLHs, NACs and MYBs, are involved in the reg-
ulation of starch biosynthesis, and functions with the different conditions, especially under the envir-
onmental stress (i.e., high temperature, osmotic stress) and the stimulations of various phytohormones,
including ABA, GA, and ethylene. Response of TFs to the stimulates usually showed systematic tran-
scriptional regulation. Almost all TFs control multiple genes, including bZIP58, MYB14, bZIP91 and so
on; in turn, one gene may also response to several TFs, e.g.,Wx (GBSSI), BEI et al. All these suggests that
one complex and elaborate regulated network is existed during starch synthesis in cereal crops, despite
showing many unknown mechanisms. Full-size DOI: 10.7717/peerj.12678/fig-3
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branching enzyme I (BEI; Blauth et al., 2002; Satoh et al., 2003), substandard starch
grain (Matsushima et al., 2014; 2016), and BEIIb (Nishi et al., 2001; Regina et al., 2005),
whereas ABA and sucrose induced the ZmSSIIIa expression (Huang et al., 2016). Although
diverse starch biosynthetic genes were subjected to be driven through different
specific TFs, some regulations appeared to have pleiotropisms or multigenic effects.
One ZmEREB156 specifically combined with ZmSSIIIa promoter to regulate starch
synthesis in maize (Huang et al., 2016). However, to regulate starch synthesis in rice
endosperm, one leucine zipper bZIP58 showed wide compatibility to regulate several genes
(Zhang et al., 2012; Hanashiro et al., 2008; Lee et al., 2007; Wei et al., 2017), including
OsAGPL3, OsGBSSI (Wx), OsSSIIa, BEI, OsBEIIb, and isoamylase-type debranching
enzyme 2 (ISA2). Besides, GBSSI was reported to be regulated by several TFs, including
bZIP33, bZIP34 (Wang et al., 2013), and bZIP58 (Onodera et al., 2001) in rice and
ZmMYB14 (Xiao et al., 2017) and prolamin-box binding factor/opaque 2 (PBF/O2)
(Zhang et al., 2016a) in maize. Nowadays, many TFs involved in endosperm starch
biosynthesis have been reported, including GRAS20 (Cai et al., 2017), ethylene response 2
(ETR2; Wuriyanghan et al., 2009), bZIP91 (Zhang et al., 2016b), NAC36 (Chen et al.,
2016), FLOURY ENDOSPERM7 (FLO7) (Zhang et al., 2014; Li et al., 2014a), and
SUSIBA2 (Sun et al., 2003; Su et al., 2015) in rice, barley, and maize. However, most of
them have not been explored in specific regulated genes with their given degree of studies.

Besides, transcriptional regulation on starch biosynthesis can also be realized through
TF combination with other factors. Under high temperatures, starch biosynthesis-
associated nuclear genes (SBANGs) were regulated by the interaction of FLO2 and
bHLH (She et al., 2010). One novel FLO2-interacting protein was demonstrated to
maintain fertility and seed quality in rice (Suzuki et al., 2020). Regulation of pyruvate
orthophosphate dikinase (PPDK), SSIII, and zein during protein and starch synthesis were
subjected to the co-interaction of O2 and PBF (Zhang et al., 2016a).

Additionally, in different cereal crops, transcriptional regulation on starch biosynthesis
also showed a certain degree of conservation. The DOF transcription factors bound to
GaMyb to mediate a-amylase (AMY) in rice (Yamamoto et al., 2006; Kawakatsu et al.,
2009) and in barley (Diaz et al., 2002), while a WRKY transcription factor SUSIBA2
regulated endosperm starch synthesis in barley and rice (Sun et al., 2003; Su et al., 2015).
Moreover, the bZIP transcription factor was also bound to a conserved cis-element to
regulate storage starch and storage proteins in maize (Zhang et al., 2016a), wheat
(Albani et al., 1997), and rice (Onodera et al., 2001). Recently, one endosperm-specific
NAC-type TF, TaNAC019, was revealed to directly mediate the accumulation of storage
proteins via TaSPA and TaGAMyb to regulate SSIIa and sucrose synthase 1 (SuSy1)
consequently affecting the starch accumulation in wheat (Gao et al., 2021). This was
distinguished with previous studies of ZmNAC128 and ZmNAC130 that regulated the
transcription of brittle 2 (BT2) and 16-kDa γ-zein in maize (Zhang et al., 2019). Still, both
were subjected to the regulation of the balance between storage starch and storage proteins.
Interestingly, the balance between storage starch and storage proteins also required
spatio-temporal coordinating TFs and was subjected to the control of other pivotal
upstream regulators to these TFs. In maize, during seed filling, a group of spatio-temporal
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coordinating transcription factors (including OPAQUE2, Prolamin Binding Factor1,
NAC128, NAC130, and OPAQUE11) were reported to regulate the synthesis of starch
and protein in endosperm. And ZMABI19 bind to the promoters of O2 and other
transcription factors (i.e., Prolamin Binding Factor1, NAC128, NAC130, and
OPAQUE11) that play a key role in seed filling and plant hormone response to
regulate their expression (Yang et al., 2020). However, the pivotal role of ZMABI19 in
maize seed development still needs to be further clarified by exploring the regulation
mechanism of ZMABI19 at both transcriptional and translational levels, as well as other
upstream factors regulating embryo and endosperm development in coordination with
ZMABI19 (Yang et al., 2020). To sum up, the regulation of transcription factors on starch
biosynthesis shows different levels and forms in diverse environments (Fig. 3).

Functions of starch biosynthetic enzymes
The function of starch biosynthetic enzymes usually depends on posttranslational
regulation, including phosphorylation, the formation of a transient complex, and so on
(Fig. 2). For starch biosynthesis in cereal endosperms, the phosphorylation-dependent
multienzyme complex is essential. The phosphorylation-dependent SSI/SSIIa/BEIIa/BEIIb
complex was detected in barley endosperm (Ahmed et al., 2015; Hirose & Terao, 2004).
From SSIIa/SSIIIa/SSIVb/BEI/BEIIb/pullulanase (PUL) in the amyloplast of rice
endosperm, a 700 kD protein complex could be formed (Crofts, Nakamura & Fujita,
2017; Guo et al., 2017; Fujita et al., 2009). The formation of BEs and SSs complexes
depends on the phosphorylated BE and phosphorylase 1 (Pho1) isoenzymes, while their
segregation is activated upon the suppressed dephosphorylation (Pang et al., 2018;
Rahman et al., 1997; Secco, Baumann & Poirier, 2010; Kang et al., 2013; Mizuno et al.,
2001). Besides, the regulation of phosphorylation is also greatly associated with the seed
development period. A 260 kDa SSI/BEIIa/BEIIb complex formed in the middle and
late development period of the grain endosperm instead of the early stage (Tetlow et al.,
2008). However, the SSIIa/SSI/BEIIb tripolyprotein complex of the initial amyloid matrix
participated in synthesizing a starch-branched chain during late seed development (Liu
et al., 2014, 2012a). Interestingly, the formation and action sites of the starch complex were
also different. The phosphorylation site of SSIIa and BEIIb varied with species (Crofts,
Nakamura & Fujita, 2017; Li & Gilbert, 2016). For example, the amino acid sequence of
Thr323 was conserved in rice, maize, and barley but not in wheat. A 670 kDa protein
complex consisting of PPDK/AGPase/SSIII/SSIIa/BEIIa/BEIIa was formed to regulate
carbon distribution among amino acids, lipids, and starch in the maize endosperm (Guo
et al., 2012). The Ser residue of BEIIb was phosphorylated by kinases, of which Ser286 and
Ser297 were highly conservative between species, but the phosphor-Ser649 was not
conservative, which seemed to be confined to the enzyme in cereals and was not universal
(Makhmoudova et al., 2014; Liu et al., 2012).

Importantly, as an important rate-limiting enzyme for starch synthesis, AGPase
subunits form a complex with different roles of large and small subunits to make
ADP-Glucose, and thereby, the enhanced activity of AGPase would greatly increase the
starch content (Geigenberger, 2011). AGPase was activated by sucrose (Tiessen et al., 2012),
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pyridoxal, DTT, and 3-PGA, while suppressed by Pi and nitrate (Scheible et al., 1997) to
adapt to environmental changes (Geigenberger, 2011).

Starch biosynthetic enzymes also functioned via the formation and segregation of
transient complexes (Fig. 2). Proteomic analysis of soluble fractions from different
developmental stages of seeds or endosperms showed that the upregulated expression of
many starch-biosynthetic enzymes led to efficient starch biosynthesis in different cereal
crops (Mechin et al., 2007; Xu et al., 2010; Mu et al., 2009; Kazuaki, Kanako & Kazufumi,
2010; Long et al., 2017; Satoh et al., 2008). It was also well demonstrated that the size of
starch granules correlated with the activity of granule-associated starch biosynthetic
enzymes in wheat (Cao et al., 2015). Likewise, in maize endosperms, the formation of
starch granules were associated with phosphorylation modification of the transient
complexes that constituted GBSS, SSI, SSIII, BEI, BEIIa, BEIIb, and Pho1 (Grimaud et al.,
2008). The developmentally altered SGAPs mainly played significant roles in polyglucan
elongation and granule structure modification in developing rice endosperms (Yu &
Wang, 2016).

Here, to promote efficient carbon partitioning during starch and protein storage, a
synergetic network is composed of starch biosynthesis and protein biosynthesis, as well as
protein folding and PPDK pathways (Fig. 2 and Table S1).

Granule formation in starch biosynthesis
Granule formation in storage starch shows distinct specific mechanisms from transient
starch, and some related enzymes, including SSIV, FLO6 and ISA (Fig. 2). SSI, SSII,
SSIII, and GBSS mainly showed activity on linear oligosaccharides, while SSIV seemed to
focus on linear maltooligosaccharides (Ryoo et al., 2007; Cuesta-Seijo et al., 2016; Lu et al.,
2018; Dian, Jiang & Wu, 2005; Fujita et al., 2006). SSI is referred to as “DP < 10,
soluble starch synthase” with an assigned role of type of amylopectin structure, when
the soluble starch synthases extends progressively longer glucan chains from SSI to SSIII,
with SSIV plays roles in granule initiation of starch (Kosar-Hashemi et al., 2007; Fujita
et al., 2011; Cuesta-Seijo et al., 2016).

Moreover, FLO6 serves a vital function to regulate starch biosynthesis and granule
initiation of endosperm starch in rice (Peng et al., 2014). Unlike in Arabidopsis leaves,
the initiation of starch granules in developing seeds largely depends on the distinct
interaction with ISA1 in rice, e.g., the interaction of FLO6 with ISA1 (Dinges et al.,
2003; Utsumi et al., 2011; Peng et al., 2014). Interestingly, PROTEIN TARGETING TO
STARCH 2 (PTST2), the homologous protein of FLO6 in leaves, is not interacted with
ISA1, whereas the interaction between PTST2 and SSIV is explored to affect granule
numbers (Seung et al., 2017). Nonetheless, PTST2/FLO6 performs a conserved function in
granule initiation of leaf and endosperms, but further investigations are required to
determine the specific mechanism.

Starch synthesis in rice
As one of the most important food crops, grains of rice (Oryza sativa L.) consist of embryo,
endosperm and seed coat, among which endosperm is a major storage organ for grain
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development (Yu & Wang, 2016). As the major storage material, starch accounts for 85%
dry weights of the cereal endosperm, and thus, serves as one main food source for human
beings (Ferreira et al., 2017). Since utilizations of the dwarf gene (Miura et al., 2009) and
heterosis (Tian et al., 2009), the yields of rice have been significantly improved twice.
However, with the improvement of people’s living standard, the demand for rice
quality has been getting higher and higher. Therefore, the rice qualities, especially for
eating and cooking qualities (ECQs), determine its economic value and consumer
recognition in the commercial market, and have attracted the focus of both consumers and
rice breeders (Lau et al., 2015). Rice quality mainly includes appearance characteristics,
ECQs and minor element contents (Rabiei et al., 2004; Okpala et al., 2017). However,
rice quality shows various preferences due to differences in dietary culture (Ferrero &
Nguyen, 2004). Although some regions prefer trace elements and appearances (Lau et al.,
2015), more regions, including China and some European countries, pay more attention to
taste qualities (Ferrero & Nguyen, 2004). Therefore, starch not only is the main storage
form of carbohydrate in plants, but also performed important values of biological and
economical (Sulpice et al., 2009; Zeeman, Kossmann & Smith, 2010). With the increasing
demand for rice of good qualities, it is vital to explore starch biosynthesis and its regulatory
mechanisms, which would be important for the oriented genetic improvement of rice
qualities.

As shown in above, starch deposition of grains depends greatly on T6P in endosperm
(Lawlor & Paul, 2014; Yadav et al., 2014). In rice, OsTPP7 is involved in increased
Tre6P turnover and plays central roles to promote starch mobilization (Kretzschmar et al.,
2015). A model has been proposed to illuminate the roles of T6P in carbon partitioning
and plant yield (Langlois, Shulman & Arbesman, 2015). Accumulation of T6P induced
by high sucrose inhibits the SnRK1 activity to repress growth, while low sugar levels would
promote the conversion of TRE from T6P, and thereby, the phosphorylated SnRK1
subsequently activate C/S1 bZIP transcription factors for resource sequestration in sinks
(Langlois, Shulman & Arbesman, 2015). This model is confirmed by several reports from
cereal crops. The allogeneic expression of the OsTPP1 gene in developing maize ears
significantly improved yield stability under both normal conditions and mild drought
stress (Nuccio et al., 2015). Also, in OsMADS6-TPP1 maize transgenics, lower T6P
contents but increased sucrose levels were observed in ear spikelets and developing ears,
indicating the function of MADS in the improved sink of reproductive tissues (Nuccio
et al., 2015). Interestingly, the T6P-C/S1 bZIP-SnRK1 regulatory module has been revealed
in Arabidopsis (Ma et al., 2011; ƠHara, Paul & Wingler, 2013; Lunn et al., 2014).
Interestingly, Tre6P not only plays roles in the sucrose-Tre6P sensor nexus (Martins
et al., 2013) but also involves the coordination of carbon and nitrogen balance
(Figueroa et al., 2016). Using 14CO2 and

13CO2 labelling, the increased Tre6P has been
revealed to decrease the sucrose content, but increase the levels of amino acids (Figueroa
et al., 2016).

The mutation of OsFLO6, an ortholog of Arabidopsis PROTEIN TARGETING TO
STARCH 2 (PTST2), affects the endosperm starch synthesis and alters starch properties of,
which is associated with defects in granule initiation (Peng et al., 2014; Seung et al., 2017).

Li et al. (2021), PeerJ, DOI 10.7717/peerj.12678 13/32

http://dx.doi.org/10.7717/peerj.12678
https://peerj.com/


However, mechanism underlying starch granule initiation in rice grains maybe
different from Arabidopsis leaves (Peng et al., 2014). Rice FLO6 may interact with ISA1
based on protein interaction assays (Peng et al., 2014), while no evidence indicates in vivo
interaction of PTST2 with ISA1 in Arabidopsis by using both isa1 and ptst2 mutants
(Seung et al., 2017; Delatte et al., 2005). Unlike as an ISA1/ISA2 complex in Arabidopsis,
ISA1 primarily exists as a homodimer in rice (Streb & Zeeman, 2012). Aside from
possessing starchless amyloplasts, the ISA1-deficient mutants in rice also failed to
initiate starch granule, interestingly, the both traits were presented in flo6, but the
phenomenon of accumulate phytoglycogen as shown isa1 was not detected in flo6
(Kawagoe et al., 2005; Peng et al., 2014). Therefore, granule initiation in cereals endosperm
requires the conserved PTST2/FLO6 complex as that in leaves (Peng et al., 2014; Seung
et al., 2017), but its underlying mechanisms still requires more studies, especially for
different plant tissues.

Strategies for grain improvement through starch biosynthesis
Compared with conventional breeding, genetic engineering seems to be more
cost-effective and efficient to improve the screening of grain quality. Biosynthesis of
storage starch requires the transport of carbon precursors and ATP from leaf organs to
storage organs such as developing seeds through a long-distance transport of phloem.
Further transformation of sucrose starch into amyloplasts through a series of enzymatic
activity reactions and the transport of carbon precursors (e.g., ADPG, G6P), which are
finally stored in the endosperm of seeds. Therefore, the modified synthesis of
endosperm starch can be achieved at least by the following pathways (Table 1), including
(i) accelerating sucrose transport through leaf-phloem-seed; (ii) promoting the conversion
of sucrose to UDPG in endosperm cells; (iii) promoting UDPG to enter amyloplasts in
endosperm cells. Some starch-mediated strategies are summarized here for further
applications of quality improvement in crop breeding.

Table 1 Strategies for grain improvement through starch biosynthesis.

Pathway Strategy Effectiveness

ATP supply Down-regulated ANK Increased ADPG, UDPG and starch contents

Sucrose synthesis Over-expressed SUT1 Increased starch content

Sucrose → UDPG Enhanced SuSy activity Increased ADPG, UDPG and starch contents

UDPG → ADPG Mutated Brittle1 Increased lipid content, but decreased protein and amylopectin contents

Enhanced AGP activity Increased starch content

Over-expressed AGPase Increased starch content

ADPG → Starch Over-expressed GBSSI/Wx Increased GC and AC

Over-expressed SBE/ISA3 Increased GC and GT

Over-expressed SSII Increased GC, GT and GT

Over-expressed SSIV Change starch structure

Down-regulated AMY Increased amylopectin contents

Over-expressed PPDK Increased starch content, but decreased protein content

Down-regulated Pho Increased starch content
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Promoted conversion from sucrose to starch
Although more enhanced transportation would benefit starch biosynthesis, overexpressed
SUTs, one of the major sucrose transporters, could not significantly increase the starch
content (Table 1). Nonetheless, it is feasible to promote the conversion to starch from
sucrose that has entered the storage organs. Promoted conversion of sucrose to starch
could effectively increase the starch content through the enhanced activity of SuSy.
Overexpressed SuSy would significantly increase the contents of UDPG, ADPG, and
starch (Bowsher et al., 2007; Li et al., 2013; Patron et al., 2004), and lead to higher AGP
activity and higher amylopectin/amylose ratio (Asano et al., 2002; Cho et al., 2011).
Therefore, it is feasible to increase the starch content by expressing SuSy into plastids
to produce more ADPG. One possible explanation is that the SuSy–AGP–ADPG
transporter-mediated starch synthesis and amylopectin or SP-regulated degradation
reached a balance (Kazuaki, Kanako & Kazufumi, 2010; Li et al., 2013; Lee et al., 2016;
Davies et al., 2003). Besides, SuSy competed with acid invertase to substrate sucrose
and reached a balance to regulate the starch content (Baroja-Fernández et al., 2009;
Murayama & Handa, 2007; Jia et al., 2008). This is supposed to be another reasonable
mechanism. Therefore, the promoted conversion to starch from sucrose in the storage
organs is feasible and seems to be subjected to the concentration balance of sucrose and
starch (Table 1).

Increased supply of ATP
The supply of ATP is essential for storage starch biosynthesis; thus, the storage starch
could be enhanced through the increased supply of ATP. For example, downregulated
expression of plastidial adenylate kinase, an enzyme that catalyzes ATP to ADP and AMP,
would increase the supply of ATP in amyloid and double starch content (Table 1). This
may be related to the weakened competition between adenylate kinase and AGP to
increase the ATP pool (Fernandez et al., 2017).

Promoted ADPG transport

As shown above, the downregulation of genes encoding plastidial adenylate kinase could
increase the content of ADPG, which was one of the key precursors in starch synthesis.
Besides increased synthesis, the enhanced transport of cytosolic ADPG to amyloid
appeared to be another reasonable pathway to increase ADPG (Table 1). The enhanced
expression of BT1 protein could promote the transport of cytosolic ADPG to amyloid,
thereby increasing the endosperm’s starch content (Patron et al., 2004; Bowsher et al.,
2007; Kirchberger et al., 2007; Li et al., 2017b). However, the bt1 mutant had abnormal
growth and infertility, which was not only related to decreased ADPG transport
activity and starch deficiency in the endosperm amyloid (Kirchberger et al., 2007) but may
also be related to some processes in the mitochondria (Bahaji et al., 2011). Nonetheless,
due to the white heart endosperm and the decreased amylose content, the bt1 mutant can
serve as one of the floury materials in special food fields.

Li et al. (2021), PeerJ, DOI 10.7717/peerj.12678 15/32

http://dx.doi.org/10.7717/peerj.12678
https://peerj.com/


Enhanced activity of AGPase
As an important rate-limiting enzyme, the enhanced activity of AGPase would greatly
increase the starch content (Table 1). Two ways were proposed to apply this strategy in
seed improvement (Wang et al., 2013; Peng et al., 2014). One was the heterologous
expression of the E. coli glgC gene in plants to produce AGP isomerase, which could
significantly enhance AGP activity in seeds (Nagai et al., 2009). In contrast, another was
the heterologous expression of the AGP large subunit encoding SH2 gene (Pérez-Ruiz
et al., 2006) and the small subunit encoding BT2 gene (Pérez-Ruiz et al., 2006) in rice,
which could significantly enhance AGPase activity and increase starch content. Thus,
ways to enhance the activity of AGPase in seeds mainly focused on the heterologous
expression of AGP isomerase. Therefore, it appears to be infeasible in breeding
applications at present, given the legal limitations.

Regulated activity of starch synthase
Undoubtedly, starch biosynthetic enzymes’ regulation would greatly influence the
biosynthesis of storage starch in seeds and mediate the grain quality, especially for
eating and cooking qualities (ECQs). In rice, overexpressed GBSSI/Wx affected amylose
content (AC) and gel consistency (GC) but had fewer effects on gelatinization temperature
(GT) (Hanashiro et al., 2008). However, the overexpression of SSII affected AC, GC,
and GT (Tian et al., 2009; Lin et al., 2013). Besides, the overexpression of ISA and
SBE3 was prone to affect GC and GT (Yun, Takayuki & Yasushi, 2011). In addition to
improving grain quality, the overexpression of some starch synthases would preferentially
increase the starch content, e.g., SSIV (Guo et al., 2017; Gámez-Arjona et al., 2011).

Besides, modifications of starch biosynthetic genes could be a feasible pathway to
improve grain quality and yields (Table 1). Recently, the editing of ISA1 via CRISPR/
CRISPR-associated endonuclease 9 (CRISPR/Cas9) system has affected GT and starch
chain length distribution during endosperm development, which have potential
implications for quality improvement in rice (Chao et al., 2019). Moreover, repression
of SSI by RNA interference (RNAi) could greatly affect starch biosynthesis and
amylopectin chain distribution in rice under high temperature (Zhao et al., 2019).
The suppression of a-amylase genes could also improve seed quality in rice under high
temperature (Hakata et al., 2012).

Prevented degradation of starch

A network balance between starch synthesis and degradation resulted in enrichment of
starch in endosperm. Therefore, it is feasible to increase starch content via preventing
starch degradation (Bahaji et al., 2014; Fujita et al., 2009; Li et al., 2013). Alpha-amylase
(Hakata et al., 2012; Seung et al., 2013) and the starch phosphorylation-related enzyme
GWD (Ral et al., 2012) performed important regulatory roles in the degradation of
endosperm starch. Under high temperature, the downregulated expression of
alpha-amylase encoding genes would increase starch content (Hakata et al., 2012).
Although the downregulated expression of GWD also increased starch content, it did not
display the matched traits of dry weight, tiller number, and effective branch number of rice
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(Ral et al., 2012; Koumoto et al., 2013). Thus, it seems to be infeasible to produce varieties
of high-quality through the single regulation of starch degradation enzymes, but indeed, it
also provides a way to improve the contents of starch (Table 1).

Elevated contents of starch in leaves
Although leaf starch synthesis did not directly affect grain yield or quality as endosperm
starch synthesis did, the biotechnological application could also be an effective way to
improve crop starch content by altering or modifying related enzyme activities.
The overexpression of OsCRCT, a CO2-Responsive CONSTANS, CONSTANS-like and
Time of Chlorophyll a/b Binding Protein1 (CCT) Protein (CRCT), would significantly
increase the starch content in the phloem of the leaf blade and leaf sheath during vegetative
stages, which was supposed to be an alternative or potential approach to improve yields of
food and biofuel (Morita et al., 2015). Recently, in maize, plants’ tolerance to high
temperature has been realized through the modification of 6-phosphogluconate
dehydrogenase (PGD) and originally plastid-localized enzymes (Ribeiro et al., 2020).
PGD3 showed thermal stability in amyloplasts by fusing the chloroplast peptide encoding
Waxy1 into the open coding reading frame of PGD1 and PGD2, thus significantly
improving plants’ heat resistance and yield in maize (Ribeiro et al., 2020). All these
suggested the potential application of leaf starch biosynthetic genes to improve grain
quality and yield (Table 1).

Breeding of high-amylose cereal varieties

Resistant starch (RS) is the sum of starch that could not digest and absorb by the
small intestine (Reddy, Suriya & Haripriya, 2013), and its consumption can modulate
postprandial metabolic responses (MacNeil et al., 2013). So, it possesses potential values for
special populations, i.e., diabetics. The formation of RS largely depends on GBSSI/
W. expression. SSIIIa regulates the formation of RS through the high expression of Wx
gene, while its mutation would greatly suppress the Wx expression to produce resistant
starch and amylose–lipid complexes (Ryoo et al., 2007; Hanashiro et al., 2008; Li et al.,
2014b; Zhou et al., 2016). Other functioning enzymes in the formation of RS consist of
pullulanase (Long et al., 2018) and amylase (Hakata et al., 2012). Recently, maize
high-amylose lines with AC of more than 55% showed decreased expression of BEIIb and
SSIIIa but the enhanced expression of ISA2, which was prone to extend amylopectin
chains but restrain the length of short amylose chains (Zhong et al., 2020). Interestingly, we
recently also found that the mutation of one plastid genes, OsGUN4, caused the high
contents of amylose in rice (Li et al., 2021), which may be largely associated with the
upregulated expression of GBSSI. Therefore, the formation of RS or high-amylose appears
to be more relevant to the balance of GBSSI and other starch biosynthetic genes, i.e., SSIIIa,
BEIIb, and PUL/ISA.

CONCLUSION
Starch biosynthesis not only plays a critical role in the formation of grain yield and quality
in cereal crops but also involves the coordination of different biological processes and
various organs. These processes include sucrose synthesis and transport in source organs
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(such as leaves), sucrose and energy delivery from source organs throughout the vascular
system (phloem) to sink organs (endosperm), conversion from sucrose to ADPG in the
endosperm, and formation of amylopectin- and amylose-starch in the endosperm.
The target-oriented improvement on yield and grain quality in cereal crops would
optimize the current demand for starch to meet the living standard and be beneficial to
overcome the problems in the availability of arable land by using the known mechanisms
of starch biosynthesis.
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