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ABSTRACT
Flash flooding and landslides regularly cause injury, death, and homelessness in
Thailand. An advancedwarning system is necessary for predicting natural disasters,
and analyzing the variability of daily precipitation might be usable in this regard.
Moreover, analyzing the differences in precipitation data among multiple weather
stations could be used to predict variations inmeteorological conditions throughout the
country. Since precipitation data in Thailand follow a zero-inflated lognormal (ZILN)
distribution, multiple comparisons of precipitation variation in different areas can be
addressed by using simultaneous confidence intervals (SCIs) for all possible pairwise
ratios of variances of several ZILN models. Herein, we formulate SCIs using Bayesian,
generalized pivotal quantity (GPQ), and parametric bootstrap (PB) approaches. The
results of a simulation study provide insight into the performances of the SCIs. Those
based on PB and the Bayesian approach via probability matching with the beta prior
performed well in situations with a large amount of zero-inflated data with a large
variance. Besides, the Bayesian based on the reference-beta prior and GPQ SCIs can be
considered as alternative approaches for small-to-large and medium-to-large sample
sizes from large population, respectively. These approaches were applied to estimate the
precipitation variability amongweather stations in lower southern Thailand to illustrate
their efficacies.

Subjects Statistics, Computational Science, Natural Resource Management, Environmental
Impacts
Keywords Precipitation variation, Ratio of variances, Bayesian approach, Parametric bootstrap
approach, Simulation, Rainfall data, Beta prior

INTRODUCTION AND MOTIVATION
In early 2021, approximately 186,300 people in lower southern Thailand were affected
by heavy rainfall resulting in flash flooding, landslides, and windstorms, as reported
by Thailand’s Department of Disaster Prevention and Migration (DDPM) (Thailand,
2021). Four provinces in the lower southern region of Thailand were affected by flooding:
Songkhla (60 households), Pattani (2,810 households), Yala (12,082 households), and
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Narathiwat (22,308 households). Meanwhile, landslides occurred in Yala and Narathiwat
that affected approximately 57 households (Thailand, 2021). Unfortunately, these natural
disasters resulted in deaths and injuries (David, 2021).

It would be possible to reduce the impact of natural disasters if governmental
organizations had an early warning system that could be triggered to warn people in
high-risk areas in advance of impending catastrophes. Rainfall dispersion data can provide
essential information indicating imminent flooding when variation is high by analyzing
historical precipitation data. Importantly, it could also be used to predict precipitation
variation in each area. From the historical evidence of flooding in lower southern Thailand,
the precipitation data in four areas are inflated with zero observations, while the non-
zero precipitation records are log-normally distributed, as can be seen in An Empirical
Application Section. These properties indicate that precipitation data obey the assumptions
for a zero-inflated lognormal (ZILN) distribution and can be modeled accordingly.

The ZILN model, also referred to as the delta-lognormal model, is appropriate
for modeling right-skewed data with a proportion of zero (Aitchison & Brown, 1963;
Fletcher, 2008; Wu & Hsieh, 2014; Hasan & Krishnamoorthy, 2018; Maneerat, Niwitpong
& Niwitpong, 2019). Variance is a dispersion measure of probability used in statistical
inference for both point and interval (e.g., confidence interval: CI) estimation. Several
researchers have formulated point and interval estimates via various approaches. For
example, Burdick & Graybill (1984) established CIs for linear combinations of the variance
components using the unbalanced one-way classification model and the Graybill-Wang
procedure by considering the inequality of the design (Graybill & Wang, 1980). Ciach &
Krajewski (1999) estimated the radar-raingauge difference variances which can be separated
into the area-point ground raingauge originating from resolution difference between them,
and the error of the radar area-average rainfall estimate. Another important approach for
variance estimation is bootstrapping based on t-statistics to formulate nonparametric CIs
for a single variance and the difference between variances, which was used to estimate
the variance in insurance data for properties (Cojbasic & Tomovic, 2007). Bebu & Mathew
(2008) used a modified single log-likelihood ratio procedure to construct CIs for the
ratio of bivariate lognormal variances and applied it to compare variation in health care
costs. Cojbasic & Loncar (2011) suggested Hall’s bootstrapped-t method for constructing
one-sided CIs (lower and upper endpoint CIs) for the variances of skewed distributions
and illustrated the efficacy of their method by analyzing revenue variability within the food
retail industry.

Later, Herbert et al. (2011) suggested an analytical method for the difference between
two independent variances that performed well even with small unequal sample sizes and
highly skewed leptokurtic data; they used data from a randomized trial for a cholesterol-
lowering drug to portray the efficacies of their proposed methods. Harvey & Merwe (2012)
revealed that a Bayesian CI based on the highest posterior density outperformed one
based on the equal-tailed interval for the variance of lognormal distribution with zero
observations. Maneerat, Niwitpong & Niwitpong (2020) showed that the highest posterior
density interval based on a probability matching prior produced the narrowest interval with
correct coverage for comparing delta-lognormal variances; they applied it to estimate the
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difference between rainfall variability in the lower and upper northern regions of Thailand.
Recently, Bayesian credible intervals based on a non-informative prior were presented
by Maneerat, Niwitpong & Niwitpong (2021a) for the single variance of a delta-lognormal
model that was used on daily rainfall records.

Nevertheless, no studies have yet been conducted on simultaneousCIs (SCIs) for pairwise
comparisons of the variances of several ZILN models, and so we addressed our research
toward filling this gap. Hence, we estimated all possible ratios of variances of several ZILN
models by using SCIs based on Bayesian, parametric bootstrap (PB), and generalized pivotal
quantity (GPQ) approaches. The reasons for choosing them are that the Bayesian and PB
approaches can be used to construct CIs capable of handling situationswith large differences
in the variances and high proportion of zero values of delta-lognormal models, respectively
(Maneerat, Niwitpong & Niwitpong, 2020), while CI based on the GPQ approach perform
quite well when the variance was large maneeratEstimatingFishDispersal2020. Their
efficacies were determined via simulation studies and precipitation data from four areas of
the lower southern region of Thailand in terms of the coverage rate (CR), the lower error
rate (LER), the upper error rate (UER), and the average width (AW).

MODEL AND METHODS
Model
For h groups, di;i= 1, 2, . . . , h, denotes the probability of having zero observations while
the remaining probability for non-zero observations, d ′i = 1−di, follows a lognormal
distribution denoted as LN(µi,σ

2
i ) with mean µi and variance σ 2

i . For random samples
from the groups, let Yi= (Yi1,Yi2,....,Yini) denote a ZILN variate based on ni observations
from group i with the probability density function given by

g (yi;d ′,µi,σ
2
i )= di+d ′iy

−1(2πσ 2
i )
−1/2exp

{
−
(lnyi−µi)2

2σ 2
i

}
. (1)

For Yi = 0, the number of zero observations ni0 follows a binomial distribution with
sample size ni and the probability of having zero observations di, where ni = ni0+ni1,
ni0 = #{j : Yij = 0} and ni1 = #{j : Yij > 0}; j = 1,2,...,ni. For Yi > 0, Wi = lnYi are
normally distributed with mean µi and variance σ 2

i . For a ZILN model, the maximum
likelihood estimates of di, µi and σ 2

i are d̂i = ni0/ni, µ̂i =
∑

j:Yij>0 lnYij/ni1 and
σ̂ 2
i,mle =

∑
j:Yij>0[lnYij− µ̂i]

2/ni1, respectively. For the ith group, the population variance
of Yi is given by

Vi= d ′i exp(2µi+σ
2
i )[exp(σ

2
i )−d

′

i ] (2)

which can be log-transformed asTi= lnVi= lnd ′i+2(µi+σ
2
i )+ln[1−

d ′i
exp(σ 2

i )
]. Considering

the third term of Ti leads to obtaining lim
σ 2
i →∞

ln[1− d ′i
exp(σ 2

i )
] = 0 when σ 2

i is large. Thus, the

log-transformed variance of Vi can be approximated as

Ti≈ lnd ′i+2(µi+σ
2
i ). (3)
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Given d̂i, µ̂i and σ̂ 2
i from the observations, the estimates of Ti can be written as

T̂i≈ lnd̂ ′i +2(µ̂i+ σ̂
2
i ); σ̂

2
i =

∑
j:yij>0[lnYij− µ̂i]

2/(ni1−1). Using the delta theorem, the
variance of T̂i becomes

Var(T̂i)=
1−d ′i
nid ′i
+4

(
σ 2
i

ni1
+

2σ 2
i

ni1−1

)
. (4)

In the present study, the parameter of interest is all pairwise ratios among the log-
transformed variances of several ZILN models, which is defined as

λik = ln
(
Vi

Vk

)
=Ti−Tk . (5)

Its estimates can be obtained as λ̂ik = T̂i− T̂k ; ∀i 6= k and i,k =1 ,2,...,h. From Eq. (4),
the variance of λ̂ik can be expressed as

Var(λ̂ik)=Var(T̂i)+Var(T̂k), (6)

where the covariance between T̂i and T̂k is COV(T̂i,T̂k)= 0 because Yi= (Yi1,Yi2,....,Yini)
comprise independent and identically distributed (iid) random vector from a ZILNmodel.
Thus, we can obtain estimates of T̂i that are independent random variables. Using estimates
(d̂ ′i ,µ̂i,σ̂

2
i ) and d̂

′

k,µ̂k,σ̂
2
k from the samples enables the estimated variance of λ̂ik to become

V̂ar(λ̂ik)=
1− d̂ ′i
nid̂ ′i
+

1− d̂ ′i
nk d̂ ′k

+4
(
σ̂ 2
i

ni1
+

2σ̂ 2
i

ni1−1
+
σ̂ 2
k

nk1
+

2σ̂ 2
k

nk1−1

)
, (7)

where (d̂ ′i ,µ̂i,σ̂
2
i ) and (d̂ ′k,µ̂k,σ̂

2
k ) denote the estimated parameters of (d ′i ,µi,σ

2
i ) and

(d ′k,µk,σ
2
k ), respectively.

Methods
To estimate λik , the SCIs are formulated based on Bayesian, GPQ and PB approaches.

The Bayesian approach
The essential feature of Bayesian approach is to use the situation-specific prior distribution
that reflects knowledge or subjective belief about the parameter of interest; this is modified
in accordance with Baye’s Theorem to yield the posterior distribution. Thus, CIs based
on the Bayesian approach are derived by using the posterior distribution. In Bayesian
theory, the CI is referred to as the credible interval because it is not unique on the posterior
distribution. The following methods are used to define suitable credible intervals: the
narrowest interval for a univariate distribution (the highest posterior density interval) (Box
& Tiao, 1973); the interval when the probability of being below is the same as being above,
which is sometimes referred to as the equal-tailed interval (Gelman et al., 2014); or the
interval with themean as the central point (assuming that it exists). In the present study, the
SCIs based on the Bayesian approach were constructed based on the equal-tailed interval.
Motivated by Maneerat, Niwitpong & Niwitpong (2020), the probability-matching-beta
(PMB) and reference-beta (RB) priors were our choice for parameter (d ′i ,µi,σ

2
i ) in this

study. Thus, Bayesian SCIs for λik were established as follows:
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The PMB prior:

The probability-matching prior for (µi,σ
2
i ) is P(µi,σ

2
i )pm ∝ σ

−2
i

√
2+σ−2i combined

with the prior of d ′i as a beta distribution with ai = bi = 1/2. Thus, the PMB prior for
(d ′,µi,σ

2
i ) can be defined as

P(d ′,µi,σ
2
i )pmb∝

h∏
i=1

σ−2i

√
2+σ−2i

(1−d ′i )d
′

i
. (8)

When updated with its likelihood, we obtain

P(y|λ)∝
h∏

i=1

(1−d ′i )
ni0
i dni1i (σ 2

i )
−ni1/2exp

− 1
2σ 2

i

∑
j:xij>0

(
lnyij−µi

)2. (9)

The respective marginal posterior distributions of (d ′i ,µi,σ
2
i ) are

P(d ′i |yi)pmb ∝ (1−d ′i )
ni0+1/2
i dni1+1/2i (10)

P(µi|yi,σ 2
i )pmb ∝ exp

− 1
2σ 2

i,pmb

∑
j:xij>0

(
lnyij−µi

)2 (11)

P(σ 2
i |yi)pmb ∝ (σ 2

i )
−

ni1+1
2

√
2+σ−2i exp

{
−
(ni1−1)σ̂ 2

i

2σ 2
i

}
(12)

which are denoted as d(post )i,pmb|yi∼ beta(ni0+1/2,ni1+1/2), µ(post )
i,pmb|yi∼N(µ̂i,pmb,σ

2(post )
i,pmb ),

and σ 2(post )
i,pmb ∝ (σ 2

i )
−

ni1+1
2

√
2+σ−2i exp

{
−

(ni1−1)σ̂ 2
i

2σ 2
i

}
, respectively. Thus, the posterior of λ

becomes

λ
(post )
ik,pmb=T (post )

i,pmb −T
(post )
k,pmb, (13)

where T (post )
i,pmb ≈ lnd(post )i,pmb+2(µ

(post )
i +σ

2(post )
i,pmb ) and T (post )

k,pmb≈ lnd(post )k,pmb+2(µ
(post )
k,pmb+σ

2(post )
k,pmb ).

In agreement with Ganesh (2009), the 100(1−α)% Bayesian-based SCI with PMB prior
for λik is

[Lλik ,Uλik ]pmb=
[
λ
(post )
ik,pmb∓v

pmb
α

]
, (14)

where vpmb
α stands for the (1−α)th percentile of the distribution ofV pmb

=max
h

{
λ
(post )
ik,pmb

}
−

min
h

{
λ
(post )
ik,pmb

}
.

The RB prior:
This is a non-informative prior derived from the Fisher information matrix (Maneerat,

Niwitpong & Niwitpong, 2020). The RB prior of (d ′,µi,σ
2
i ) is defined as

P(d ′,µi,σ
2
i )rfb∝

h∏
i=1

σ−1i

√
1+ (2σ 2

i )−1

(1−d ′i )d
′

i
(15)
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in which the prior of d ′ is a beta distribution. When combined with its likelihood Eq. (9),
the posterior of (µi,σ

2
i ) differs from the PMB prior as follows:

P(µi|yi,σ 2
i )rfb ∝ exp

− 1
2σ 2

i,rfb

∑
j:xij>0

(
lnyij−µi

)2 (16)

P(σ 2
i |yi)rfb ∝ (σ 2

i )
−

ni1
2

√
1+ (2σ 2

i )−1exp
{
−
(ni1−1)σ̂ 2

i

2σ 2
i

}
. (17)

Moreover, it can be similarly denoted as d(post )i,rfb |yi∼ beta(ni0+1/2,ni1+1/2),µ
(post )
i,rfb |yi∼

N(µ̂i,rfb,σ
2(post )
i,rfb ) and σ 2(post )

i,rfb ∝ (σ 2
i )
−

ni1
2

√
1+ (2σ 2

i )−1exp
{
−

(ni1−1)σ̂ 2
i

2σ 2
i

}
, respectively. The

posterior of λik is λ
(post )
ik,rfb =T (post )

i,rfb −T (post )
k,rfb , where T (post )

i,rfb ≈ lnd(post )i,rfb +2(µ(post )
i +σ

2(post )
i,rfb )

and T (post )
k,rfb ≈ lnd(post )k,rfb +2(µ

(post )
k,rfb +σ

2(post )
k,rfb ). According to Ganesh (2009), the 100(1−α)%

Bayesian-based SCI with the RB prior for λik is

[Lλik ,Uλik ]rfb=
[
λ
(post )
ik,rfb ∓v

rfb
α

]
, (18)

where vrfbα stands for the (1−α)th percentile of the distribution of V rfb
=max

h

{
λ
(post )
ik,rfb

}
−

min
h

{
λ
(post )
ik,rfb

}
.

The GPQ approach
Motivated byWu & Hsieh (2014), the GPQ of di is formulated using the arcsin square-root
transformation of the variance. Moreover, the GPQs for (µi,σ

2
i ) are also obtained from

transformation of the normal approximation by using the central limit theorem (Tian,
2005; Hasan & Krishnamoorthy, 2017). The GPQ for Ti can be written as

GTi = ln
[
1− sin2

{
sin−1

√
d̂i−

Ri

2
√
ni

}]
+2

µ̂i−Si

√
Gσ 2

i

ni1
+Gσ 2

i

, (19)

where Gσ 2
i
= (ni1−1)σ̂ 2

i /Ui. The random variables Ri = 2
√
ni
(
sin−1

√
d̂i− sin−1

√
di
)
,

Si= (µ̂i−µi)/(σ 2
i /ni1) and Ui= (ni1−1)σ̂ 2

i /σ
2
i are independent from standard normal,

normal and χ2
ni1−1 distributions, respectively. Thus, the corresponding GPQ of λik can be

expressed as

Gλik =GTi−GTk . (20)

Similarly, GTk = ln(1− Gdk )+ G2µk + G2σ 2
k
denotes the GPQ of Tk ; Gdk =

sin2
{
sin−1

√
d̂k−

[
Rk
(
2
√
nk
)−1]}, G2µk = 2

(
µ̂k−Sk

√
Gσ 2

k
/nk1

)
, and

G2σ 2
k
= 2(nk1− 1)σ̂ 2

k /Uk . Therefore, the 100(1−α)% SCI for λjk based on the GPQ
approach is given by

[Lλik ,Uλik ]gpq=
[
λ̂ik∓qGPQα

√
V̂ar(λ̂ik)

]
, (21)
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where qGPQα denotes the (1−α)th percentile of the QGPQ distribution; the QGPQ is derived
as

QGPQ
=max

j 6=l

∣∣∣∣{λ̂ik−Gλik (Y ,Y ∗,d,µ,σ 2)
}
/

√
V̂ar(λ̂ik)

∣∣∣∣. (22)

In agreement with Hannig et al. (2006), Kharrati-Kopaei & Eftekhar (2017), the
asymptotic coverage probability of the SCI for λik based on the GPQ is slightly modified
from that in Maneerat, Niwitpong & Niwitpong (2021b) (the proof of Theorem 1 in the
Appendix).

Theorem 1 Let Yi = (Yi1,Yi2,....,Yini)
iid
∼ ZILN (di,µi,σ

2
i ). For Yi = 0, ni0 is binomially

distributed with the proportion of zero inflation di = E(ni0/ni) . For Yi > 0, lnYi is log-
normally distributed with mean µi = E(lnYi)and variance σ 2

i =Var(lnYi). Moreover, let
λik = Ti/Tk ; Ti ≈ lndi+2(µi+σ

2
i )from group ibe the log-transformed variance of ZILN.

Given yi = (yi1,yi2,....,yini), let V̂ar(λ̂ik)be an approximated variance of λ̂ik = T̂i/T̂k ,
where (T̂i,T̂k) are the estimates of (Ti,Tk). Suppose that ni/n→ ϕi ∈ (0,1) as n=∑h

i=1ni→∞, thus it follows that the asymptotically coverage probability of 100 (1−α)%
SCI for λjk based the GPQ approach is given by

P
(
λjk ∈

[
λ̂ik∓qGPQα

√
V̂ar(λ̂ik)

])
→ 1−α (23)

for ∀i 6= k and i,k =1 ,...,h.

The PB approach
Here, we assume that the data come from a known distribution with unknown parameters
that are estimated by using samples stimulated from the estimated distribution. In the
present study, the PB approach is adjusted to suit our particular situation. Let d̂∗i , µ̂

∗

i and
σ̂ 2∗
i be the observed values of d̂i, µ̂i, and σ̂ 2

i representing the estimated values of parameters
di,µi, and σ 2

i , respectively. Thus, we can obtain the empirical distribution of T based on the
PB approach. In accordance with Sadooghi-Alvandi & Malekzadeh (2014), the respective
sampling distributions of (d̂∗i , µ̂

∗

i , σ̂
2∗
i ) are

d̂(pboot )i ∼ beta(n∗i0+1/2,n
∗

i1+1/2) (24)

µ̂
(pboot )
i = µ̂∗i +Di

√
σ̂ 2∗
i

n∗i1
(25)

σ̂
2(pboot )
i =

σ̂ 2∗
i U

n∗i1−1
, (26)

where Di= [µ̂
(pboot )
i − µ̂∗i ]/

√
σ̂ 2∗
j /n

∗

i1 ∼N (0,1) and Uj = [n∗i1−1]σ̂ 2(pboot )
i /σ̂ 2∗

i ∼ χ
2
n∗i1−1

are independent random variables with standard normal and Chi-square distributions,
respectively. The PB variable-based pivotal quantity is expressed as

MPB
=

∣∣∣∣(λ̂pbootik − λ̂∗ik

)
/

√
V̂ar(λ̂∗ik)

∣∣∣∣, (27)

where λ̂(pboot )ik = T̂ (pboot )
i − T̂ (pboot )

k and λ̂∗ik = T̂ ∗i − T̂ ∗k . By replacing observed values
(d̂∗i µ̂

∗

i ,σ̂
2∗
i ) from the samples, we respectively obtain
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λ̂∗ik = ln

(
d̂∗i
d̂∗k

)
+2

[
(µ̂∗i − µ̂

∗

k)+ (σ̂
2∗
i − σ̂

2∗
k )
]

(28)

λ̂
(pboot )
ik = ln

(
d̂(pboot )i

d̂(pboot )k

)
+2

[
(µ̂(pboot )

i − µ̂
(pboot )
k )+ (σ̂ 2(pboot )

i − σ̂
2(pboot )
k )

]
(29)

ˆVar(λ̂∗ik)=
d̂∗i
nid̂∗i
+

d̂∗i
nk d̂∗k
+4

(
σ̂ 2∗
i

n∗i1
+

2σ̂ 2∗
i

n∗i1−1
+
σ̂ 2∗
k

n∗k1
+

2σ̂ 2∗
k

n∗k1−1

)
, (30)

where d̂∗i = 1− d̂∗i and n∗i1= nid̂∗i . Hence, the 100(1−α)% SCI for λik based on the PB
approach is

[Lλik ,Uλik ](PB)=
[
λ̂ik∓MPB

α

√
V̂ar(λ̂ik)

]
, (31)

where mPB
α is the (1−α)th percentile of the distribution of MPB. Theorem 2 shows the

asymptotic coverage probability of the 100(1−α)% SCI for λik based on the PB approach
(see the proof in the Appendix ).
Theorem 2 Suppose that Yi = (Yi1,Yi2,....,Yini) comprise an iid random vector from a
ZILN model based on ni observations from population group i. Let λ̂ik = T̂i− T̂kbe the
estimate of λik , where T̂i and T̂k are the approximately log-transformed variances of T̂i

and T̂k from the population groups ith and kth, respectively. Hence,

P
[
λik ∈

(
λ̂ik∓MPB

α

√
V̂ar(λ̂ik)

)]
→ 1−α, (32)

where V̂ar(λ̂ik)is the estimated variance of λ̂ik ; ∀i 6= k and i,k =1 ,2,..,h.

SIMULATION STUDIES AND RESULTS
Simulation studies were conducted to assess the performances of the SCIs based Bayesian,
GPQ, and PB approaches for all pairwise ratios of variances of several ZILN distributions:
Bayesian SCIs based on PMB and RB priors (Maneerat, Niwitpong & Niwitpong, 2020),
the GPQ-based SCI (Wu & Hsieh, 2014), and the PB-based SCI (Sadooghi-Alvandi &
Malekzadeh, 2014; Li, Song & Shi, 2015; Kharrati-Kopaei & Eftekhar, 2017). CRs, LERs,
UERs, and AWs of the SCIs were determined when the population group size(h) were fixed
at 3 and 5; the optimal values of CR, LER,UER, andAWare 95%, 5%, 5%and 0, respectively,
which were used to judge the best-performing SCI. Critical values vpmb

α , vrbα , qGPQα andmPB
α

for the Bayesian SCIs based on PMB and RB priors, GPQ and PB, respectively, were also
assessed. Throughout the simulation studies, the simulation procedure to estimate the
CRs, LERs, and UERs was as follows:

(i) Generate random samples Yi= (Yi1,Yi2,....,Yini) from ZILN(di,µi,σ
2
i ), and compute

d̂i, µ̂i,σ̂
2
i ; i= 1,2,...,h from the samples.

(ii) Compute the critical values for each method using 2500 Monte Carlo simulations.
(iii) Apply the SCIs based onBayesian-based PMBandRBpriors, GPQ, andPB approaches
given in Eqs. (14), (18), (21) and (31), respectively, and record whether or not the values
of (λik;i 6= k) fall within their corresponding confidence intervals.
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(iv) Repeat steps (i)-(iii)M = 5000 times.
(v) For each method: obtain the number of times that all (λik;i 6= k) are in their
corresponding SCIs to estimated the CR.

(vi) Obtain the number of times that all (λik;i 6= k) is less than or greater than their
corresponding SCIs to estimate the LER and UER, respectively.

For the three-group comparison, the following parameter combinations were used:
large variances (σ 2

1 ,σ
2
2 ,σ

2
3 )= (3,5,7); small (30,30,30), moderate (50,50,50), large

[(100,100,100) and (100,100,200)], small-to-large (30,50,100) and medium-to-large
(50,100,200) sample sizes; and zero-inflation percentages of (10,20,30), (10,30,50) and
(30,50,50). For the five-group comparison, the following parameter combinations were
used: large variances (σ 2

1 ,σ
2
2 ,σ

2
3 ,σ

2
4 ,σ

2
5 )= (1,1,2,2,3); small-to-large (30,50,50,100,200),

medium-to-large (50,50,50,) (100,100), and large (70,100,100,200,200) sample sizes; and
zero-inflation percentages of (10,10,20,20,20), (20,20,30,30,50) and (50,50,50,70,70).
The results are reported in Table 1.

For h= 3 with large variance, Table 1 and Fig. 1 reveal that all of the methods provided
CR performances close to and greater than the nominal confidence level (95%).Meanwhile,
the SCIs based on the Bayesian approach based on the PMB prior and GPQ maintained a
good balance between LER and UER. Importantly, the AW of PB was narrower than the
other methods for small sample sizes, while those of the Bayesian approach based on the
PMB prior were slightly narrower than the others for the other sample sizes. When a group
comparison was h= 5 (Table 1 and Fig. 2), the PB approach provided the best CRs and
narrowest AWs for all scenarios tested.

AN EMPIRICAL APPLICATION OF THE FOUR METHODS TO
DAILY PRECIPITATION DATA
Daily precipitation records comprise publicly available data from the ThailandMeteorology
Department (Department, 2021). Flash floods, landslides, and windstorms caused by heavy
rainfall occurred in the four provinces in the lower southern area of Thailand: Songkhla,
Yala, Narathiwat, and Pattani during January 2021, as reported by Thailand’s Department
of Disaster Prevention and Mitigation (Thailand, 2021). According to automatic weather
system (Department, 2021), Songkhla has two weather stations in the Songkhla and Sadao
districts, which means that we could simultaneously estimate variations in precipitation at
five weather stations.

Daily precipitation data from December 2020 to January 2021 (Table 2) were used
in the analysis. Figure 3 shows histogram along with normal quantile–quantile (Q-Q),
cumulative density function (CDF) and probability-probability (P-P) plots. Furthermore,
the Akaike information criterion (AIC) and Bayesian information criterion (BIC) values
of five models: normal, logistic, lognormal, exponential, and Cauchy applied to fitting
the non-zero precipitation data were compared to check the appropriateness of each
model for fitting the data (Table 3). The AIC and BIC results for the lognormal model
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Table 1 Performance measures of SCIs-based different approaches.

ni di (%) B-PMB B-RB GPQ PB AW

LER CR UER LER CR UER LER CR UER LER CR UER B-PMB B-RB GPQ PB

3 sample groups and (σ 21 ,σ
2
2 ,σ

2
3 )= (3,5,7)

(303) (10,20,30) 1.993 97.973 0.033 1.307 98.693 0.000 0.707 99.293 0.000 2.460 97.540 0.000 22.961 25.493 27.764 22.942

(10,30,50) 1.880 98.113 0.007 1.200 98.800 0.000 0.967 99.033 0.000 2.900 97.100 0.000 28.702 33.323 33.300 27.254

(30,50,50) 1.120 98.873 0.007 0.427 99.573 0.000 0.620 99.380 0.000 2.520 97.480 0.000 30.764 35.737 36.813 29.113

(503) (10,20,30) 2.833 96.800 0.367 2.300 97.567 0.133 1.107 98.887 0.007 2.347 97.627 0.027 15.521 16.544 19.078 16.893

(10,30,50) 2.887 97.027 0.087 2.173 97.800 0.027 1.253 98.747 0.000 2.607 97.393 0.000 18.848 20.654 22.403 19.733

(30,50,50) 2.087 97.840 0.073 1.413 98.567 0.020 0.973 99.027 0.000 2.320 97.673 0.007 20.104 21.996 24.567 21.096

(1003) (10,20,30) 3.480 95.140 1.380 3.200 95.693 1.107 1.273 98.527 0.200 1.960 97.767 0.273 10.015 10.325 12.448 11.681

(10,30,50) 3.660 95.627 0.713 3.200 96.420 0.380 1.427 98.540 0.033 2.087 97.833 0.080 11.866 12.410 14.327 13.422

(30,50,50) 3.220 96.040 0.740 2.780 96.747 0.473 1.167 98.813 0.020 2.073 97.853 0.073 12.389 12.948 15.408 14.202

(30,50,100) (10,20,30) 1.787 96.753 1.460 1.367 97.453 1.180 0.380 99.480 0.140 1.127 98.467 0.407 12.846 13.402 16.552 14.152

(10,30,50) 1.853 97.127 1.020 1.387 97.993 0.620 0.420 99.553 0.027 1.420 98.353 0.227 14.348 15.042 18.368 15.604

(30,50,50) 1.013 97.947 1.040 0.547 98.687 0.767 0.260 99.653 0.087 1.053 98.627 0.320 16.343 17.452 20.826 17.181

(50,100,200) (10,20,30) 2.580 94.773 2.647 2.247 95.293 2.460 0.467 99.047 0.487 0.847 98.307 0.847 8.637 8.822 11.261 10.230

(10,30,50) 2.847 95.073 2.080 2.593 95.560 1.847 0.667 99.093 0.240 1.313 98.140 0.547 9.522 9.725 12.334 11.166

(30,50,50) 2.173 95.880 1.947 1.793 96.533 1.673 0.380 99.380 0.240 1.020 98.460 0.520 10.618 10.939 13.751 12.189

(1002 ,200) (10,20,30) 3.253 94.213 2.533 2.953 94.693 2.353 0.967 98.673 0.360 1.507 97.920 0.573 7.952 8.090 10.266 9.647

(10,30,50) 2.940 95.013 2.047 2.620 95.533 1.847 0.980 98.793 0.227 1.460 98.127 0.413 8.985 9.184 11.489 10.773

(30,50,50) 2.567 95.387 2.047 2.227 96.007 1.767 0.900 98.893 0.207 1.547 98.047 0.407 9.888 10.197 12.666 11.709

5 sample groups and (σ 21 ,σ
2
2 ,σ

2
3 ,σ

2
4 ,σ

2
5 )= (1,1,2,2,3)

(30,502,100,200) (10,10,20,20,20) 0.326 99.504 0.170 0.232 99.626 0.142 0.344 99.568 0.088 0.756 99.002 0.242 6.224 6.471 6.310 5.600

(20,20,30,30,50) 0.244 99.620 0.136 0.154 99.754 0.092 0.244 99.694 0.062 0.666 99.164 0.170 6.952 7.250 7.067 6.201

(20,30,50,50,70) 0.154 99.738 0.108 0.092 99.828 0.080 0.322 99.642 0.036 0.788 99.084 0.128 8.510 8.971 8.513 7.369

(50,50,50,70,70) 0.062 99.882 0.056 0.026 99.942 0.032 0.116 99.872 0.012 0.426 99.490 0.084 9.572 10.226 9.861 8.223

(503,1002) (10,10,20,20,20) 0.398 99.504 0.098 0.338 99.582 0.080 0.558 99.414 0.028 1.122 98.788 0.090 6.614 6.826 6.557 5.914

(20,20,30,30,50) 0.392 99.512 0.096 0.312 99.618 0.070 0.526 99.448 0.026 1.092 98.810 0.098 7.791 8.100 7.567 6.768

(20,30,50,50,70) 0.358 99.618 0.024 0.244 99.748 0.008 0.582 99.398 0.020 1.196 98.754 0.050 10.067 10.737 9.488 8.354

(50,50,50,70,70) 0.204 99.766 0.030 0.136 99.850 0.014 0.254 99.746 0.000 0.822 99.166 0.012 10.687 11.352 10.571 9.039

(70,1002,2002) (10,10,20,20,20) 0.784 99.038 0.178 0.710 99.140 0.150 0.810 99.120 0.080 1.232 98.640 0.128 4.499 4.565 4.507 4.237

(20,20,30,30,50) 0.666 99.174 0.160 0.580 99.280 0.140 0.620 99.310 0.070 1.058 98.826 0.116 5.218 5.321 5.116 4.783

(20,30,50,50,70) 0.620 99.290 0.090 0.550 99.380 0.060 0.750 99.200 0.060 1.158 98.744 0.098 6.546 6.743 6.202 5.753

(50,50,50,70,70) 0.374 99.548 0.078 0.310 99.630 0.060 0.370 99.600 0.030 0.680 99.258 0.062 6.938 7.139 6.892 6.249

Notes.
Note: (1003,2002)= (100,100,100,200,200). Bold denotes the best-performing method.
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Figure 1 The CR and AW performance measures for three sample groups: (A) CR (B) AW.
Full-size DOI: 10.7717/peerj.12659/fig-1

were the lowest, and thus it was the most efficient. The data from all of the stations were
zero-inflated, thereby verifying that they follow the assumptions for ZILN.

The results in Table 4 reveals that since variance σ 2
i was greater than the mean µi, quite

large precipitation variations were required in the present study. For applying data of daily
precipitation to measure the efficacy of the four methods, the 95% SCIs-based Bayesian,
GPQ and PB approaches for all pairwise precipitation datasets from the five weather
stations cover their point estimates (Table 5). In a agree with the simulation results for
n1= n2= n3= 50 and n4= n5= 100, the PB approach provided the best SCI performance
for ratio of variances of several ZILN models. This can be interpreted as Narathiwat has
the highest variation in precipitation, followed by Yala. These results are in line with the
Asia Disaster Monitoring and Response System (Thailand, 2021), which reported that both
areas were affected by flooding and landslides damaging 22,308 households in Narathiwat
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Figure 2 The CR and AW performance measures for five sample groups: (A) CR (B) AW.
Full-size DOI: 10.7717/peerj.12659/fig-2

and 12,082 households in Yala during the time period covered by the data used in the
study.

DISCUSSION
From the above numerical results, it can be seen that the SCIs based on PB and the Bayesian
approach based on the PMB prior dealt with large variations in the data better than the
other approaches. The PB-based SCI has some strong points for small sample sizes due to
random samples being obtained via bootstrap resampling. Furthermore, the performance
of the Bayesian SCI based on the PMB prior declined as the number of populations
increased and the sample size decreased. Although, the GPQmethod provided appropriate
CRs, its AWs were wider than the other methods, possibly because the GPQ of di is limited
for cases with unequal zero-inflated percentages. Since it has performed quite well for
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Table 2 Daily precipitation data in five stations of southern Thailand.

Dates Weather stations: December 2020 Dates Weather stations: January 2021

Shongklha Songkhla-based
Sadao district

Yala Narathiwat Pattani Shongklha Songkhla-based
Sadao district

Yala Narathiwat Pattani

1 160.0 56.4 46.4 38.6 82.0 1 0.8 4.2 6.6 31.2 0.8

2 14.6 85.8 46.6 70.0 0.0 2 1.4 8.2 5.6 6.4 2.0

3 20.8 4.2 55.8 74.2 0.0 3 2.6 42.6 49.6 38.6 49.8

4 8.8 0.2 27.0 0.4 7.2 4 21.4 8.4 28.6 10.4 4.4

5 0.0 0.0 0.2 0.0 0.0 5 9.2 70.2 137.8 62.8 49.0

6 0.0 0.0 0.0 0.0 0.2 6 0.2 2.8 84.8 13.2 0.2

7 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 1.8 9.2 2.8

8 0.2 0.0 1.6 0.0 0.0 8 0.4 0.0 0.4 0.0 1.2

9 52.0 0.0 0.0 0.0 0.0 9 0.8 0.0 0.0 1.4 0.0

10 39.4 0.0 0.0 0.8 3.6 10 29.0 15.6 2.8 12.6 22.8

11 0.6 0.0 2.8 9.2 9.8 11 23.0 0.6 0.2 0.2 0.0

12 12.2 4.2 17.2 0.0 8.0 12 5.0 0.2 0.6 3.6 1.2

13 5.4 37.2 2.0 8.2 12.8 13 0.0 0.0 2.4 3.0 1.0

14 9.4 0.0 0.0 0.0 3.4 14 5.4 0.0 0.0 0.0 0.0

15 7.0 2.4 12.4 78.4 7.2 15 1.8 0.0 0.0 0.0 0.0

16 19.2 25.6 43.8 43.0 62.8 16 0.8 0.0 0.0 0.0 0.0

17 84.4 97.4 126.4 162.0 164.8 17 0.0 0.0 0.0 0.0 0.0

18 97.2 9.2 113.8 141.2 46.4 18 0.0 0.0 0.0 1.2 0.0

19 92.0 19.2 39.8 43.6 26.2 19 0.0 0.0 0.0 0.0 0.0

20 19.8 7.2 27.8 20.4 7.0 20 0.0 0.0 0.0 0.0 0.0

21 5.4 0.4 0.0 0.2 3.4 21 0.0 0.0 0.0 0.0 0.0

22 0.0 0.0 1.2 1.0 3.4 22 0.0 0.0 0.0 0.0 0.0

23 23.8 0.0 31.0 61.4 12.6 23 0.0 0.0 0.0 0.0 0.0

24 23.4 0.0 19.6 6.6 0.0 24 0.0 0.0 2.2 0.0 0.0

25 2.2 0.0 46.6 39.8 6.8 25 0.0 0.0 0.0 0.0 0.0

26 1.0 10.0 27.6 84.0 2.8 26 0.0 0.0 0.0 0.0 0.0

27 0.0 0.0 1.0 0.0 0.2 27 0.0 0.0 2.0 0.2 0.0

28 0.0 0.0 0.0 0.0 0.0 28 0.0 0.0 0.0 0.0 0.0

29 0.0 0.0 0.0 0.0 0.0 29 0.0 0.0 0.0 0.0 0.0

30 0.0 0.0 0.0 0.0 0.0 30 4.4 0.0 0.0 0.0 0.0

31 6.2 0.4 11.2 89.2 3.2 31 9.6 2.0 3.0 0.4 1.6

Notes.
Source: Thailand Meteorological Department Automatic Weather System.
http://www.aws-observation.tmd.go.th/web/climate/climate_past.asp.

one population group especially (Wu & Hsieh, 2014; Maneerat, Niwitpong & Niwitpong,
2021a). Further research could be conducted to explore subjective or prior beliefs about
parameters when using the Bayesian approach for parameter estimation

CONCLUSIONS
SCIs for the comparison of the variance ratios among several ZILNmodels were formulated
by applying Bayesian approaches based on the PMB and RB priors, along with the GPQ
and PB approaches. In practice, the daily precipitation data for each of the weather
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Figure 3 Histogram, normal Q-Q, CDF and P-P plots of nonzero precipitation records in five stations
of southern Thailand: (A) Songkhla (B) Songkhla-Sadao (C) Yala (D) Narathiwat (E) Pattani.

Full-size DOI: 10.7717/peerj.12659/fig-3
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Table 3 The AIC and BIC results for five associated models.

Stations Criterion Models

Normal Lognormal Logistic Exponential Cauchy

Songkhla AIC 387.611 305.171 373.337 317.644 345.549
BIC 390.938 308.498 376.664 319.308 348.876

Songkhla-Sadao district AIC 241.141 196.707 238.534 203.226 225.198
BIC 243.579 199.145 240.971 204.445 227.635

Yala AIC 373.538 313.718 368.171 322.168 365.426
BIC 376.760 316.940 371.393 323.779 368.648

Narathiwat AIC 362.209 310.600 359.299 317.455 358.947
BIC 365.320 313.711 362.410 319.010 362.058

Pattani AIC 328.067 242.474 313.959 260.584 273.318
BIC 331.060 245.467 316.952 262.080 276.311

Table 4 Summary statistics for five stations.

Weather stations i ni0 ni1 d̂i (%) µ̂i σ2
i λ̂i

Songkhla 1 39 23 37.097 1.909 2.982 9.317
Songkhla-Sadao district 2 25 37 59.677 1.828 3.509 9.766
Yala 3 37 25 40.323 2.155 3.490 10.774
Narathiwat 4 35 27 43.548 2.253 4.238 12.411
Pattani 5 33 29 46.774 1.669 2.950 8.607

stations considered were overdispersed (i.e., the variance was greater than the mean) and
zero-inflated (Table 4). Thus, the ZILN distribution is an appropriate model for estimating
parameters in the construction of SCIs for multiple comparisons between their variances.

For three populations, all of themethods produced 95%SCIs for all pairwise comparisons
among variances covering the true parameter. Meanwhile, the SCI constructed via the
Bayesian approach based on the PMB prior maintained a good balance between LER and
UER and provided the narrowest AWs except for small sample sizes. On the other hand,
the PB-based SCI could handle extreme cases when the sample sizes were small with large
variances. For five populations, the PB-based SCI performed the best overall, with the
Bayesian approach based on the RB prior for small-to-large sample sizes and the GPQ
approach for medium-to-large and large sample sizes providing acceptable results, and
thus can be recommended as alternative SCIs.

APPENDIX
The proofs of the methods for constructing the SCI for λik are covered here.

The GPQ approach
Proof of Theorem 1 The proof is similar to Hannig et al. (2006), Kharrati-Kopaei &
Eftekhar (2017), and Maneerat, Niwitpong & Niwitpong (2021b). Since random variable

Q= λ̂ik−λjk
√

V̂ar(λ̂ik )
is obtained by applying the central limit theorem, where λ̂ik is an estimate of
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Table 5 95% SCIs of all pairwise log-ratios of precipitation variabilities amoung five weather stations in lower southern Thailand.

Methods Limits All pairwise log-ratios of precipitation variabilities among weather stations

Songkhla/
Songkhla-sadao

Songkhla/
Yala

Songkhla/
Narathiwat

Songkhla/
Pattani

Songkhla-sadao/Yala

−0.4489 −1.4568 −3.0939 0.71043 −1.0079

Bayesian SCIs -based PMB prior Lower −8.7881 −9.796 −11.4331 −7.6287 −9.3471
Upper 7.8903 6.8824 5.2452 9.0496 7.3313
Width 16.6783 16.6783 16.6783 16.6783 16.6783

Bayesian SCIs -based RB prior Lower −9.4711 −10.479 −12.1161 −8.3117 −10.0301
Upper 8.5733 7.5654 5.9283 9.7326 8.0143
Width 18.0444 18.0444 18.0444 18.0444 18.0444

SCI-based GPQ Lower −9.3037 −9.2166 −11.9695 −6.6362 −10.4292
Upper 8.4059 6.303 5.7816 8.0571 8.4134
Width 17.7096 15.5196 17.7511 14.6932 18.8426

SCI-based PB Lower −7.4257 −7.5709 −10.0871 −5.0781 −8.4311
Upper 6.5279 4.6573 3.8992 6.4989 6.4153
Width 13.9536 12.2281 13.9863 11.577 14.8464

Methods Limits Songkhla-sadao/
Narathiwat

Songkhla-sadao/
Pattani

Yala/
Narathiwat

Yala/
Pattani

Narathiwat/
Pattani

−2.645 1.1593 −1.6371 2.1672 3.8043
Bayesian SCIs -based PMB prior Lower −10.9842 −7.1798 −9.9763 −6.1719 −4.5348

Upper 5.6941 9.4985 6.702 10.5064 12.1435
Width 16.6783 16.6783 16.6783 16.6783 16.6783

Bayesian SCIs -based RB prior Lower −11.6672 −7.8629 −10.6593 −6.855 −5.2178
Upper 6.3771 10.1815 7.385 11.1894 12.8266
Width 18.0444 18.0444 18.0444 18.0444 18.0444

SCI-based GPQ Lower −13.0047 −7.9247 −11.078 −5.8532 −5.2999
Upper 7.7146 10.2433 7.8037 10.1876 12.9086
Width 20.7193 18.168 18.8817 16.0408 18.2085

SCI-based PB Lower −10.8075 −5.9981 −9.0757 −4.1522 −3.369
Upper 5.5175 8.3168 5.8014 8.4866 10.9777
Width 16.325 14.3149 14.8771 12.6388 14.3467

the log-ratio transformation of variances of theZILNs (λjk), and V̂ar(λ̂ik) is the approximate
variance of λ̂ik . Consider

P
(
λjk ∈

[
λ̂ik∓qGPQα

√
V̂ar(λ̂ik)

])
= P

(
max
i6=k

∣∣∣∣∣ λ̂ik−λjk√
V̂ar(λ̂ik)

∣∣∣∣∣≤ qGPQα

)
= P

(
Qn≤ qGPQα

)
(33)

as n→∞. Hence, P
(
λ̂ik−qGPQα

√
V̂ar(λ̂ik)<λjk < λ̂ik+ qGPQα

√
V̂ar(λ̂ik)

)
→ 1−α; ∀i 6= k.

The parametric bootstrap approach
Proof of Theorem 2 The proof is similar to Hannig et al. (2006), Li, Song & Shi (2015);
Kharrati-Kopaei & Eftekhar (2017) and Maneerat, Niwitpong & Niwitpong (2021b). Recall
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that V̂ar(λ̂ik) is the estimated variance of λ̂ik . From the 100(1−α)% SCI for λik based on
the PB approach, we can derive

P
[
λik ∈

(
λ̂ik∓MPB

α

√
V̂ar(λ̂ik)

)]
=P

(
max
i6=k

∣∣∣∣∣ λ̂ik−λjk√
V̂ar(λ̂ik)

∣∣∣∣∣≤mPB
α

)
(34)

Let ni/n→ ϕi as n= n1+n2+ ...+nh→∞. Thus, by applying the central limit theorem,
n(λ̂i−λi)→Wi, we arrive at

W = (W1,W2,...,Wh)∼N (0,σ 2
i /ϕi) (35)

By applying Slutsky’s theorem, we obtain

max
i6=k

∣∣∣∣∣ λ̂ik−λik√
V̂ar(λ̂ik)

∣∣∣∣∣ d
→max

i6=k

∣∣∣∣∣∣ Wi−Wk√
σ 2
i
ϕi
+
σ 2
k
ϕk

∣∣∣∣∣∣ (36)

Assume that Wi andW ∗i are iid random variables, then

T (Y,Y∗,d,µ,σ2)→max
i6=k

∣∣∣∣∣∣W
∗

i −W
∗

k√
σ 2
i
ϕi
+
σ 2
k
ϕk

∣∣∣∣∣∣, (37)

where T (Y,Y∗,d,µ,σ2) comprises the distribution of a continuous random variable. Since
mPB
α (n)→m1−α , then

P

(
max
i6=k

∣∣∣∣∣ λ̂ik−λik√
V̂ar(λ̂ik)

∣∣∣∣∣≤mPB
α (n)

)
→ P

max
i6=k

∣∣∣∣∣∣ Wi−Wk√
σ 2
i
ϕi
+
σ 2
k
ϕk

∣∣∣∣∣∣≤m1−α


= P

max
i6=k

∣∣∣∣∣∣W
∗

i −W
∗

k√
σ 2
i
ϕi
+
σ 2
k
ϕk

∣∣∣∣∣∣≤m1−α


= 1−α (38)

as a→∞, where m1−α denotes the 100(1−α)th percentile of max
i6=k

∣∣∣∣∣∣ W ∗i −W ∗k√
σ2i
ϕi
+
σ2k
ϕk

∣∣∣∣∣∣. This implied

that
P
[
λik ∈

(
λ̂ik∓MPB

α

√
V̂ar(λ̂ik)

)]
→ 1−α.
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