Three new species of *Byrsopteryx* Flint microcaddisflies from Peru (Insecta: Trichoptera) including DNA-based larval associations

Allan P. M. Santos¹, Daniela Maeda Takiya²

5 6 7

8

1

2

3 4

- ¹ Departamento de Zoologia, Universidade Federal do Estado do Rio de Janeiro UNIRIO, Rio de Janeiro, Brazil
- 9 Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro UFRJ,

10 Braz

11

- 12 Corresponding Author:
- 13 Allan Santos¹
- 14 Av. Pasteur 458, sala 309A, Rio de Janeiro, RJ, 22290-240, Brazil
- 15 Email address: allanpms@gmail.com

16 17

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32 33

34

35 36

37

38

Abstract

In this paper, we have described and illustrated three new species of *Byrsopteryx* from Peru: Byrsopteryx inti sp. nov., Byrsopteryx mamaocllo sp. nov., and Byrsopteryx mancocapac sp. nov. Larvae of the latter two were also associated to male specimens based on comparison of a fragment of COI gene and pharate male identification. Byrsopteryx inti sp. nov. and Byrsopteryx mamaocllo sp. nov. share a unique feature: a semi-dome process formed by a thickened area on male forewings. The three species can be easily identified by wing coloration and male genitalia. Furthermore, Byrsopteryx inti sp. nov. can be recognized by its sternum VIII with a median digitate process on posterior margin, slightly capitate; and by long dorsolateral processes from segment VIII, which cross each other apically in dorsal view. Byrsopteryx mamaocllo sp. nov. can be distinguished by sternum VIII bearing a pair of short, posterior, spinelike processes, which are curved inwards and bordered by a rounded, membranous structure, and by a pair of short, heavily sclerotized, dorsolateral processes. Byrsopteryx mancocapac sp. nov. can be distinguished by strong spine-like processes arising dorsally from subgenital plate and by sternum VIII with posterior margin divided into two plate-like lobes. Larvae of B. mamaocllo sp. **nov.** and B. mancocapac sp. nov. are similar to other Byrsopteryx larvae known. They can be distinguished from each other by the shape of the operculum formed by terga VIII and IX, and number of setae on the second abdominal pleurite. Maximum likelihood analyses of 20 COI sequences, including nine Byrsopteryx species, placed B. inti sp. nov. and B. mamaocllo sp. nov. as sister species and related to a clade including B. gomezi, B. tapanti, and B. esparta, while B. mancocapac sp. nov. was found as sister to B. abrelata. Despite the close phylogenetic relationship found between B. inti sp. nov. and B. mamaocllo sp. nov., they are separated by

Formatted: Font: Not Italic

14.9% minimum K2P divergence of COI. The highest intraspecific distance observed was 1.4% for *B. mancocapac* **sp. nov.** individuals.

Introduction

Hydroptilidae, or microcaddisflies, constitute the most diverse family in the order Trichoptera, with over 2,500 named species in 74 genera (Morse et al., 2019). Microcaddisflies are recorded from all zoogeographic regions, except Antarctic, and are particularly diverse in the Neotropics, where almost a thousand species are currently known (Holzenthal & Calor, 2017, Morse et al., 2019). Despite their diversity, microcaddisflies are usually neglected by taxonomists due to their small body size, which makes difficult to manipulate specimens and to observe morphological features.

Current family classification derives mostly from the comprehensive revision provided by Marshall (1979), including 46 genera known at the time. Six subfamilies are recognized in Hydroptilidae, defined as tribes by Marshall (1979), all of them recorded from the Neotropics (Holzenthal & Calor, 2017). Leucotrichiinae are restricted to the New World, with most species recorded from the Neotropical Region. The subfamily delimitation has been revised by Santos et al. (2016) based on a phylogenetic hypothesis, and now it includes two tribes: Alisotrichiini and Leucotrichiini, with respectively six and ten genera (Santos et al., 2016). *Byrsopteryx* Flint, 1981 belongs to the Alisotrichiini and its monophyly has been consistently supported by morphological and molecular data (Harris & Holzenthal, 1994; Santos et al., 2016).

Among neotropical microcaddisflies, adults of *Byrsopteryx* are easily recognized by their coloration, with white spots over a black background (Harris & Holzenthal, 1994; Santos & Nessimian, 2010). They also differ from most caddisfly species due to their behavior, being mostly active under bright sunlight, when adults can be seen running fast over rocks or large leaves of riparian vegetation in a zigzag or in a more erratic way Flint, 1981; Harris & Holzenthal, 1994; Santos & Nessimian, 2010). They intercalate frantic running with moments when they seem frozen in a position or when they start to revolve around the axis of their own heads (Flint, 1981; Harris & Holzenthal, 1994; Santos & Nessimian, 2010). When disturbed, they just fly off to find another place and start these movements again. Thus, adults of *Byrsopteryx* are more easily collected with aspirators or directly with a finger moistened in alcohol. They occasionally come to light and Malaise traps, but in relatively low numbers, especially compared to other neotropical caddisflies.

Byrsopteryx larvae build purse-like portable cases, like those built by Celaenotrichia Mosely, 1934 larvae, another genus of Alisotrichiini. Larval case is weakly sealed dorsally, made mainly of silk and usually with mineral grains and/or algae filaments added (Holzenthal & Harris, 1991; Santos & Nessimian, 2010). Larvae are typically madicolous, being found in waterfalls, living in the spray and splash zone or in small streams on boulders (Holzenthal & Harris, 1991; Harris & Holzenthal, 1994; Santos & Nessimian, 2010). They seem to feed mainly on diatoms, which they apparently scrape from the substrate along with associated periphyton (Holzenthal & Harris, 1991; Santos & Nessimian, 2010). Pupae are fixed to the rocky substrate by a short peduncle,

Commented [ICR1]: To be clear on how small they can be, I suggest specifying the variation in body size of individuals in this family.

Commented [ICR2]: As it is an important information that allows us to identify *Byrsopteryx* adults in the field, I believe it is necessary to briefly explain the general habit and behavior seen in most caddisflies.

Commented [ICR3]: I suggest specifying here how many and which species have their larvae described.

and are commonly found in aggregation above the waterline in pits or small depressions (Holzenthal & Harris, 1991; Santos & Nessimian, 2010).

Currently, 16 species are assigned to *Byrsopteryx* and they occur from southern Mexico; in Central America, including the Caribbean; through northwestern and southeastern South America (Holzenthal & Calor, 2017). Just recently, typical larvae of *Byrsopteryx* were recorded from Colombia (Vásquez-Ramos et al. 2020). Santos et al. (2016) listed three undetermined *Byrsopteryx* species from Peru among the examined material used in for phylogenetic analyses, but no species of *Byrsopteryx* is recorded from the country so far. Peru has a highly diverse fauna of caddisflies, with around 320 known species, almost a third of them being microcaddisflies (Holzenthal & Calor, 2017). Important works on this fauna include those of Flint (1975, 1980, 1996) and Flint & Reyes (1991), and those focusing on hydroptilids of Flint & Bueno-Soria (1998, 1999) and Harris & Davenport (1992, 1999). However, many new species of caddisflies from Peru remain in collections to be described, indicating that this fauna is still very underworked. Here we describe three new species of *Byrsopteryx* from Peru, including larval descriptions for two of them. Larval associations for these species are based on comparison of a fragment of the mitochondrial gene cytochrome oxidase I (COI) from males and larvae and also, for one of them, comparison among cases and structures of pharate males and larvae.

Materials & Methods

Specimen collecting and morphological study

Adults and immatures of *Byrsopteryx* studied here were collected with aspirators, with finger moistened in alcohol (adults) or with aid of entomological forceps (immatures). In addition, adults were also collected with a Malaise trap set at one of the collecting sites. Specimens were collected under permit RD-0297-2012-AG-DGFFS-DGEFFS, issued by Dirección General Forestal y de Fauna Silvestre, Perú. Larvae and most adults were fixed and preserved in 96% ethanol, however some adults were killed in jars with ethyl acetate and pinned dry, to better preserve coloration. *Byrsopteryx* specimens were found in four sites, in Cusco and Puno provinces, Peru. Collecting sites exhibited the typical environment for *Byrsopteryx* species: rocky streams and small waterfalls (Fig. 1).

heated solution of 10% KOH for about 20 min. Then, abdomens were mounted in temporary slides, used to draw pencil sketches on a compound microscope equipped with camera lucida. Vector graphics were traced in Adobe Illustrator (Adobe Systems Inc.) using pencil sketches as templates. Adult male holotypes and larvae were photographed with a digital camera attached to a Leica stereomicroscope. Photographs at different focal planes were obtained and then stacked with Leica Application Suite or Helicon focus Lite software and then edited in Adobe Photoshop (Adobe Systems Inc.). After observation, specimens and their respective body parts were stored in microvials with 96% ethanol. Terminology used here follows that of Harris & Holzenthal (1994), unless otherwise noted. Holotypes of the newly described species are deposited at Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima (MUSM). Paratypes are

To observe genital structures, abdomen of males and females were removed and cleared in a

Commented [ICR4]: Check this information

Commented [ICR5]: According to Harris & Holzenthal (1994), the inferior appendages of *Byrsopteryx* are typically fused into a ventral tubular structure. If I understand correctly, when describing the new species, you consider this structure as the subgenital plate, and the dorsolateral processes of segment IX (according to Harris & Holzenthal, 1994) as the true inferior appendages. These changes were not noted in the Taxonomy section.

119 in the same institution and also in Coleção Prof. José Alfredo Pinheiro Dutra, Departamento de 120 Zoologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro (DZRJ) and Coleção de 121 Invertebrados, Instituto Nacional de Pesquisas da Amazônia, Manaus (INPA). Extracted DNA solutions are deposited at DZRJ. 122

DNA extraction, amplification, and sequencing

123 124

125

126 127

128

129

130

131

132

133

134

135

136

137

138

139 140

141 142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157 158

DNA was extracted from the entire body of specimens using the Wizard SV Genomic DNA Purification System (Promega Corporation, Madison, USA), without tissue maceration. After extraction, specimens were returned to ethanol and deposited in the original collection as a DNA voucher. COI fragments were amplified using different pair of primers (Folmer et al., 1994; Simon et al., 1994): HCO-2198 (5'-TAAACTTCAGGGTGACCAAAAAATCA) in combination with LCO-1490 (5'-GGTCAACAAATCATAAAGATATTGG): HCO-2198 with C1-J-1718 (5'-GGAGGATTTGGAAATTGATTAGTTCC); or Ron (5'-GGATCACCTGATATAGCATTCCC) and Nancy (5'-

CCCGGTAAAATTAAAATATAAACTTC).

Polymerase chain reaction (PCR) conditions were as follows: when using HCO-2198 and LCO-1490, initial denaturation at 95 °C for 3 min; 5 cycles of denaturation at 95 °C for 1 min, annealing at 45 °C for 1,5 min, and extension at 72 °C for 1 min, then 35 cycles of 95 °C for 40 s, 51 °C for 1 min, and 72 °C for 1 min; and final extension at 72 °C for 7 min. When using other primer combinations, initial denaturation at 94 °C for 3 min; then 35 cycles of 94 °C for 1 min, 50 °C for 1 min, and 72 °C for 2 min; and final extension at 72 °C for 7 min. PCR products were sent to Macrogen Inc., Seoul, for purification and sequencing reactions.

Sequence editing, alignment, and analyses Phylogenetic analysis

Forward and reverse electropherograms of each sample were assembled and manually edited in Sequencher 4.1 (Gene Codes, Ann Arbor, Michigan, USA). Consensus sequences were verified with the Blast tool in GenBank to check for contamination. Additional sequences of Byrsopteryx and of Celaenotrichia edwardsi Mosely, 1934 as outgroup, were obtained from Bold Systems (Table 1). COI sequences were aligned using ClustalW algorithm implemented in MEGA X (Kumar et al., 2018) and translated into amino-acid sequences to check for stop codons. Final alignment resulted in a matrix with 653 bp and 20 sequences (Supplementary File 1) All COI sequences were publicly available in GenBank (accession numbers are provided in Table 1). MEGA X was also used to Kimura 2-Parameter (K2P) divergences (Kimura, 1980), with pairwise deletion of missing information. A maximum likelihood analysis was conducted in RAxML 8.2.11 (Stamatakis 2014) with 500 search replicates and model GTR+G+I, as selected by AIC (Akaike 1974) in jModeltest 2 (Darriba et al. 2012) using the Akaike Information Criterion (Akaike 1974). Branch support tree was assessed with 1,000 pseudoreplicates of non-

Commented [ICR6]: Methods of phylogenetic analysis start from this point. The above information should be in a separate topic, or the topic name must be changed. See suggestion above.

New species names

parametric bootstrap (BS, Felsenstein, 1985).

- 159 The electronic version of this article in Portable Document Format (PDF) will represent a
- 160 published work according to the International Commission on Zoological Nomenclature (ICZN),
- and hence the new names contained in the electronic version are effectively published under that
- 162 Code from the electronic edition alone. This published work and the nomenclatural acts it
- 163 contains have been registered in ZooBank, the online registration system for the ICZN. The
- 164 ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed
- through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The
- LSID for this publication is: [urn:lsid:zoobank.org:pub:71531CB9-F919-4DB9-8885-
- 167 B8207F0A82F4]. The online version of this work is archived and available from the following
- digital repositories: PeerJ, PubMed Central and CLOCKSS.

Results

169 170

171 172

173

174

175176

177

178

179

180

181

182

183

184 185 186

187

Phylogenetic analysis and species divergences

The maximum likelihood tree (-lnL= 3322.784548, Fig. 2) recovered two of the new species described herein, B. inti **sp. nov.** and B. mamaocllo **sp. nov.**, as sister species (BS= 79) and related to a clade (BS= 52) including B. gomezi, B. tapanti, and B_ esparta. The other new species described, B. mancocapac **sp. nov.**, was found as sister to B. abrelata, but with no significant bootstrap support.

Concerning species interspecific COI K2P divergences, *Byrsopteryx* species varied from 12.3-26.1% (see Supplementary Table 1), minimum divergence (K2P distances) was between *B. tapanti* and *B. gomezi*, both from Costa Rica. Among the Peruvian species, minimum interspecific divergence was 14.9%, between *B. inti* **sp. nov.** and *B. mamaocllo* **sp. nov.**. Furthermore, maximum K2P intraspecific distances observed were 1.4% for *B. mancocapac* **sp. nov.** (n= 8), 0.7% for *B. mamaocllo* **sp. nov.** (n=3), and 0% for *B. gomezi* (n=2). Based on these divergences and phylogenetic placement (Fig. 2), we were able to associate males and larval specimens of *B. mamaocllo* **sp. nov. and** *B. mancocapac* **sp. nov.** (n= 8).

Taxonomy

Byrsopteryx inti new species

- 188 urn:lsid:zoobank.org:act:9B5FAC2D-A98F-4B88-97BC-CE7CA5105535
- Byrsopteryx sp. PE1 Santos et al. 2016:461. Phylogenetic placement.
- 190 Figs. 3-5
- 191 **Description.** Adult male. Coloration. General color dark brown; head dorsum and antennal base
- 192 densely covered with white setae; mesoscutum mostly covered with white setae; forewing with
- 193 four distinct maculae of white setae: an oval band at base of medial area, a trapezoidal macula
- 194 near midcostal margin, a small subapical spot near posterior margin of wing, and an apical spot
- 195 (Figs. 3a, 3b). Length. Total length 2.4-2.6 mm (n=3). Head. Unmodified. Antennae 19-
- 196 articulated. Ocelli 3. Maxillary palpi 5-articulated; articles I and II very short and globular,
- 197 article III very long, as long as articles IV and V combined; articles IV and V with similar
- lengths, each one about twice as long as wide. *Thorax*. Forewing venation strongly reduced; with

small, oblique basal lobe; line of weakness distinct, bordered by row of very long, thin setae; with semi-dome formed by a thickening of wing membrane, to which apices of very long setae converge; retinaculum distinct (Fig. 4a). Hind wing venation reduced; frenulum distinct, with row of four short, hooked setae (Fig. 4b). Tibial spur formula 0, 3, 4. Abdomen. Segment VII without ventromesal process. Male genitalia. Segment VIII shorter dorsally than ventrally. Sternum with median digitate process posteriorly, slightly capitate (Fig. 5a); with pair of posteroventral processes, diverging apically in ventral view (Fig. 5a), slightly upturned in lateral view (Fig. 5d), each one with a thin rounded membrane at apex (Figs. 5a, 5b, 5d); and with pair of dorsolateral processes, crossing each other apically in dorsal view (Fig. 5c), upturned in lateral view (Fig. 5d). Very long stout setae covering apical portions of both sternum and tergum. Segment IX recessed within segment VIII, projecting anteriorly through posterior portion of segment VII; open ventrally; with deep mesal incision anteriorly in dorsal and ventral views (Figs. 5a, 5c); narrowing anteriorly in lateral view (Fig. 5d). Subgenital plate slender, with rounded apex in ventral view (Fig. 5a), downturned and with apical semicircular incision (Fig. 5d). Inferior appendages positioned dorsolaterally; elongate, digitate, converging apically in ventral and dorsal view (Figs. 5a, 5c); downturned in lateral view (Fig. 5d); covered with very short setae. Tergum X membranous; covered with minute setae; with sclerotized lateral bars. Phallus tubular, with slight constriction between basal and apical portions; basal portion short, about half length of apical portion and slightly wider; sclerotized region of apex with deep median incision in dorsal view, with pair of short triangular projections at basal margin of the incision (Fig. 5e), with a V-shaped incision in lateral view (Fig. 5f); membranous at apex. Adult female. Unknown.

221 Larva, Unknown,

199

200

201

202

203 204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

227

228

229

230

232

233

234

235

236

237

238

222 Type material. Holotype male. PERU: Cusco, 19 rd km W Quincemil, Río Araza tributary.

223 13°20'10"S 70°50'57"W 874 m. 23-28.viii.2012. Malaise trap. RR Cavichioli, JA Rafael, APM

Santos, DM Takiya leg. Alcohol (MUSM). Paratypes. Same data as holotype, except 1 male, 224

225 pinned (DZRJ); same data as holotype, manual collecting, 2 males, in alcohol (MUSM), 1 male,

226 in alcohol (DZRJ).

> Etymology. The species name (used as a noun in apposition) is an allusion to the popular Inca god Apu Inti, the sun god. The Inca people appeared in the Andes region and established the Inca Empire in pre-Colombian America. Cusco, where the type material comes from, was the center

of the Inca Empire. 231 Distribution. Peru (Cusco).

> Remarks. Among the three new species described here from Peru, Byrsopteryx inti sp. nov. was the most rarely collected. Only 5 male specimens were collected, and, although Byrsopteryx larvae and adults were abundantly seen and collected in explored localities, both female and immature specimens of this new species were not found and remain unknown.

Males of B. inti sp. nov. share with B. mamaocllo sp. nov. the new species described below a feature not observed in any other species in the genus: presence of a sclerotized semidome on forewings (Figs. 3a, 4a). Also, the general aspect of the male genitalia of B. inti sp.

Commented [ICR7]: According to my interpretation, "new species described below" may include both B. mamaocllo sp. nov. and B. mancocapac sp. nov..

nov. (Figs. 5b, 5d) is also most similar to that of *B. mamaocllo* **sp. nov.** (Figs. 8b, 8d) in that they share both a pair of dorsolateral and a pair of posteroventral processes on sternum VIII. Other *Byrsopteryx* species that also have dorsolateral processes on segment VIII are *B. chaconi* Harris & Holzenthal, 1994, *B. cuchilla* Harris & Holzenthal, 1994, *B. esparta* Harris & Holzenthal, 1994, *B. solisi* Harris & Holzenthal, 1994, *B. tapanti* Harris & Holzenthal, 1994, and *B. tica* Harris & Holzenthal, 1994. However, *B. inti* **sp. nov.** can be further distinguished from all others based on (1) the sternum VIII with a median digitate process, slightly capitate posteriorly (Fig. 5a); and (2) longer dorsolateral processes from segment VIII, which cross each other apically in dorsal view (Fig. 5c).

Byrsopteryx mamaocllo new species

urn:lsid:zoobank.org:act:2F8A72D9-FE9C-4C82-BFA4-26238FBEEBB7

- Byrsopteryx sp. PE2 Santos et al. 2016:461. Phylogenetic placement.

Figs. 6-10

239

240

241

242

243244

245

246247

248249

250

251

252

253

254

255

256

257

258

259 260

261

262 263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

Description. Adult male. Coloration. General color dark brown; head dorsum and antennal base densely covered with white setae; mesoscutum mostly covered with white setae; forewing with three maculae of white setae, a longitudinal band along basal third of costal margin, a subapical spot near posterior margin of wing, and an apical spot (Figs. 6a, 6b). Length. Total length 2.6-3.0 mm (n=15). Head. Unmodified. Antennae 20-articulated. Ocelli 3. Maxillary palpi 5-articulated; articles I and II very short and globular, article III very long, as long as articles IV and V combined; articles IV and V with similar lengths, each one about twice as long as wide. Thorax. Forewing venation strongly reduced; with small, oblique basal lobe; line of weakness distinct, bordered by row of very long, thin setae; with semi-dome formed by thickening of wing membrane (absent in females), to which apices of very long setae converge; retinaculum distinct (Fig. 7a). Hind wing venation reduced; frenulum distinct, with row of five short, hooked setae (Fig. 7b). Tibial spur formula 0, 3, 4. Abdomen. Segment VII without ventromesal process. Male genitalia. Segment VIII shorter dorsally than ventrally. Sternum with a pair of short spinelike posteroventral processes, curved inwards in ventral and caudal views (Figs. 8a, 8b), upturned in lateral view (Fig. 8d), each one with a thin rounded membrane (Fig. 8a); and with pair of short dorsolateral digitate processes, slightly upturned in lateral view (Fig. 8d). Very long stout setae covering apical portions of both sternum and tergum. Segment IX recessed within segment VIII, projecting anteriorly through posterior portion of segment VII; with deep mesal incision anteriorly in ventral (Fig. 8a) and dorsal views (Figs. 8a, 8c); narrowing anteriorly in lateral view (Fig. 8d). Subgenital plate subtriangular in ventral and dorsal views, apex with a small darkened digitate projection (Figs. 8a, 8c); apex downturned in lateral view (Fig. 8d). Inferior appendages positioned dorsolaterally; elongate, almost straight, parallel in dorsal and ventral views (Figs. 8a, 8c); apex downturned in lateral view (Fig. 8d); covered with very short setae. Tergum X membranous; covered with minute setae or sensilla; with sclerotized lateral bars. Phallus tubular; with slight constriction between basal and apical portions; basal portion short, about half length

Formatted: Font: Italic

Commented [ICR8]: According to figures 6a and 6b the longitudinal band appears to reach the distal third of the wing.

278 of apical portion; sclerotized region of apex rounded in dorsal view, with a short bifid projection 279 subapically in dorsal view (Fig. 8e), trifid in lateral view (Fig. 8f); membranous at apex. 280 Adult female. Coloration and general morphology of head and thorax as in male, except 281 forewing simple, without semi-dome structure or any other modification. Length. Total length 2.8-3.8 mm (n=13). Abdomen. Segment VI without ventromesal process. Segment VII elongate, 282 ventrally with short plumose setae (Fig. 9a). Segment VIII slightly <mark>longer than wide</mark>, with row of 283 284 long setae on posterior margin, internally with pair of elongate lateral apodemes extending to 285 middle of segment VII (Fig. 9a). Segment IX short, slightly sclerotized, internally with pair of elongate lateral apodemes extending to anterior margin of segment VIII (Fig. 9a). Segment X 286 287 very short, narrowed apically, with a pair of digitate papillae (Fig. 9a). Vaginal apparatus slightly 288 sclerotized, inconspicuous in cleared specimens; elongate, with anterior region rounded (Fig. 289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Larva (final instar). Length 1.8–2.5 mm (n=29). Head brown to dark brown, unpigmented around eves; quadrangular; frontoclypeal and coronal sutures indistinct; dorsum with reticulate pattern formed by microscopic setae; setae 9 very long; antennae 1-articulated, apical seta indistinct; mandibles without distinct teeth. Thoracic nota strongly sclerotized, brown, with lateral and posterior margins dark brown, with short stout setae (Figs. 10a-10c); pro- and mesonota with transverse mesal sclerotized ridge, less developed on metanotum; pronotum with middorsal ecdysial line, pair of anterolateral depressed areas (Fig. 10c); meso- and metanota slightly broader than long, without middorsal ecdysial lines (Fig. 10c); meso- and metathoracic pleural sclerite large, sclerotized; ventrally, prothorax with two pairs of thin, elongate sclerites, which converge medially; with a ventral thin intersegmental sclerite between meso- and metathorax; thoracic legs short, stout, similar in size, shape, and setation (Fig. 10b). Abdomen slightly compressed (Figs. 10b, 10c); all abdominal segments with sclerotized tergites; segments I and II with large tergite, covering most of dorsal area of the segment (Fig. 10c); segments III-VII with transverse tergite, lightly sclerotized, bearing many setae; segments VIII and IX with platelike tergite, heavily sclerotized, setose, forming a dorsal, almost circular operculum (Fig. 10d), which has a typical color pattern, with each tergite with a pair of oval lighter areas (Fig. 10d); operculum closing posterior opening of the case. Pleurites of segments I and II small, with three and two setae respectively (Fig. 10b, in detail); those of segments III-VIII absent, but region with two small setae each one. Anal proleg short, setose with pair of long posterior setae; anal claw stout, curved to approximately 90°, with basal peglike setae.

Laval case. Length 1.6-2.8 mm (n=29). Made entirely of silk with bits of mineral material incorporated, translucid; slightly compressed laterally; with poorly closed dorsal seam (Fig. 10a); dorsal margin irregular; anterior and posterior openings circular.

Type material. Holotype male. PERU: Cusco, 20 rd km W Quincemil, Pte. Saucipata, Río 313 314 Araza tributary, 13°20'13"S 70°51'15"W 893 m. 22.viii.2012. APM Santos, DM Takiya leg.,

315 pinned (MUSM). Paratypes. Same data as holotype, except 5 males, 7 females, pinned (DZRJ);

316 Same data as holotype, except 5 males, in alcohol (MUSM); PERU: Cusco, 19 rd km W

Quincemil, Rio Araza tributary, 13°20'10"S 70°50'57"W 874 m. 23-28.viii.2012. APM Santos, 317

Commented [ICR9]: In figure 9a, segment VIII appears to be slightly wider than long

Commented [ICR10]: These depressed areas cannot be clearly visualized in the figure. I suggest putting it in detail as you did with the pleurites of the abdominal segments I and II in the figure 10b.

Commented [ICR11]: It is not clear what is the color pattern of the segments VIII and IX.

Commented [ICR12]: If known, specify the method of collection adopted at each locality

- 318 DM Takiya leg., 16 males, 8 females, in alcohol (MUSM); same data, except 5 males, in alcohol
- 319 (DZRJ); same data, except malaise trap, 4 males, in alcohol (INPA); PERU: Cusco, 3 rd km E
- 320 Quincemil, 13°13'03"S 70°43'40"W 633 m. 20.viii.2012. APM Santos, DM Takiya leg., 1
- 321 female, pinned (DZRJ); PERU: Puno, 6 rd km W Mazuko, Pte. La Cigarra 13°08'27"S
- 322 70°23'14"W 353 m. 01.ix.2012. APM Santos, DM Takiya leg., 5 females, pinned (DZRJ); same
- data, except 1 female, in alcohol (MUSM).
- 324 Additional material examined. Same data as holotype, 3 larvae, in alcohol (MUSM); PERU:
- 325 Cusco, 19 rd km W Quincemil, Rio Araza tributary, 13°20'10"S 70°50'57"W 874 m. 23-
- 326 28.viii.2012. APM Santos, DM Takiya leg., 11 larvae, in alcohol (INPA); same data, except 18
- 327 larvae, 2 male pharate adult, in alcohol (DZRJ); same data, except 10 larvae, in alcohol
- 328 (MUSM).
- 329 Etymology. The species name is an allusion to the Inca goddess Mama Ocllo (used as a noun in
- 330 apposition), the "mother fertility". According to Inca mythology, Mama Ocllo was daughter of
- 331 Apu Inti and Mama Quilla, and she married her brother Manco Capac. Together, Mama Oello
- and Manco Capac founded Cusco and guided the people, enabling the beginning of the Inca
- 333 civilization.
- 334 **Distribution.** Peru (Cusco, Puno).
- Remarks. In the field, *B. mamaocllo* sp. nov. can be recognized from other two Peruvian species
- 336 of Byrsopteryx by the color pattern, with a long longitudinal white band on each forewing (Fig.
- 337 6). *Byrsopteryx mamaocllo* **sp. nov.** can be easily distinguished from other *Byrsopteryx* species
- 338 also by its male genitalia; with segment VIII bearing a pair of short, posterior, spinelike
- processes on sternum, which are curved inwards and bordered by rounded, membranous
- 340 structure (Figs. 8a, 8b); and a pair of short, heavily sclerotized, dorsolateral processes (Figs.
- 841 $\frac{8a8c}{8}$, 8d). See further comments on above Remarks of *B. inti* sp. nov.

Larvae of *B. mamaocllo* **sp. nov.** differ from those of *B. mancocapac* **sp. nov.** by the: (1) almost circular operculum with two pairs of oval lighter areas, a pair on tergite VIII and another on IX (Fig. 10d), in *B. mancocapac* **sp. nov.** larvae the operculum is more rectangular (Fig. 14d); (2) case generally smaller than larva (Fig. 10a), in *B. mancocapac* **sp. nov.** its case is as long as larva (Fig. 14a); and (3) abdominal segment II with small pleurite bearing two setae (Fig. 10b), whereas in *B. mancocapac* **sp. nov.**, it has three setae (Fig. 14b).

347 348 349

342

343

344

345

346

Byrsopteryx mancocapac new species

- 350 urn:lsid:zoobank.org:act:1D7BEBF4-38D5-4A54-8545-A48B7A066E4A
- 351 Byrsopteryx sp. PE3 Santos et al. 2016:461. Phylogenetic placement.
- 352 Figs. 11-14
- 353 **Description.** Adult male. *Coloration*. General color dark brown; head dorsum and mesoscutum
- 354 densely covered with black setae, with no white setae; forewing with four distinct maculae of
- 355 white setae: a longitudinal oval band at base of medial area, a trapezoidal macula near midcostal
- 356 margin, a subapical spot near posterior margin of wing, and an apical spot, spreading towards
- 357 costal margin (Figs. 11a, 11b). Length. Total length 2.6-3.6 mm (n=23). Head. Unmodified.

Commented [ICR13]: I expected to read remarks from adult female, which have been described for other species in the genus.

Antennae 18-articulated. Ocelli 3. Maxillary palpi 5-articulated; articles I and II very short and globular, article III very long, as long as articles IV and V combined; articles IV and V with similar lengths, each one about twice as long as wide. *Thorax*. Forewing venation strongly reduced; with distinct line of weakness; basal lobe apparently absent; semi-dome or other wing modification absent; retinaculum distinct (Fig. 12a). Hind wing venation strongly reduced; frenulum distinct, with two rows of four or five short, hooked setae (Fig. 12b). Tibial spur formula 0, 3, 4. Abdomen. Segment VII without ventromesal process. Male genitalia. Segment VIII shorter dorsally than ventrally. Sternum with deep mesal incision posteriorly, forming pair of platelike lobes in ventral view, each one with rounded corners and bearing longer setae on the posterolateral quadrant and smaller setae surrounding the internal margin (Fig. 13a). Tergum with transverse row of long and stout setae near posterior margin (Fig. 13b). Segment IX recessed within segment VIII. projecting anteriorly through posterior portion of segment VII: with deep mesal incision anteriorly in dorsal and ventral views (Figs. 13a, 13b); narrowing anteriorly in lateral view (Fig. 13c); open dorsally; with pair of small, rounded posterior projections in ventral view, each one with acute beak on internal margin (Fig. 13a). Subgenital plate with lateral arms converging posteriorly to a single darkened apex, strongly downturned in lateral view (Fig. 13c); with strong horn-like process emerging from base of each arm (Figs. 13a, 13c). Inferior appendages positioned dorsolaterally; elongate, slender, almost parallel in ventral and dorsal views (Figs. 13a, 13b); in lateral view, each one with dorsal platelike projection at basal portion, narrowing to apex and downturned (Fig. 13c). Tergum X with a basal trapezoid sclerite, with shallow incision in anterior margin in dorsal view (Fig. 13b); posterior portion conical and membranous. Phallus tubular, with slight constriction between basal and apical portions; basal portion short, less than half length of apical portion; with an acute sclerotized apical projection (Figs. 13c, 13d); membranous at apex (Fig. 13c).

382 Adult female. Unknown.

358

359 360

361

362 363

364 365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

383 384

385

386

387

388

389

390

391

392

393

394

395 396

397

Larva (final instar). Length 2.0-3.8 mm (n=28). Head brown to dark brown, unpigmented around eyes; quadrangular; frontoclypeal and coronal sutures indistinct; dorsum with reticulate pattern formed by microscopic setae; setae 9 very long; antennae 1-articulated, apical seta indistinct; mandibles without distinct teeth. Thoracic nota strongly sclerotized, brown, with lateral and posterior margins dark brown, with short stout setae; pro- and mesonota with transverse mesal sclerotized ridge, less developed on metanotum; pronotum with middorsal ecdysial line, pair of anterolateral depressed areas (Fig. 14c); meso- and metanota slightly broader than long, without middorsal ecdysial lines (Fig. 14c); meso- and metathoracic pleural sclerite large, sclerotized (Fig. 14b); ventrally, prothorax with two pairs of thin, elongate sclerites, which converge medially; with ventral thin intersegmental sclerite between meso- and metathorax; thoracic legs short, stout, similar in size, shape, and setation (Fig. 14b). Abdomen slightly compressed (Figs. 14b, 14c); all abdominal segments with sclerotized tergites: segments I and II with large tergite, covering most of dorsal area of the segment (Fig. 14c); segments III-VII with transverse tergite, lightly sclerotized, bearing many setae; segments VIII and IX with platelike tergite, heavily sclerotized, setose, forming a dorsal, subrectangular operculum (Fig. 14d), which has a typical

Commented [ICR14]: I suggest putting it in detail in the

color pattern, with mesal, longitudinal darker area on tergite VIII and darker line near anterolateral margins, and darker border on anterior and lateral margins of tergite IX (Fig. 14d); operculum closing posterior opening of case. Pleurites of segments I and II small, each one with three setae (Fig. 14b, in detail); those of segments III-VIII absent, but region with two small setae each one. Anal proleg short, setose with pair of long posterior setae; anal claw stout, curved to approximately 90°, with basal peglike setae.

398

399

400

401

402 403

404

405 406

407 408

409

410

411

412

413

414

415

416

417

424

425

426

427

428

429

430

431

432

433

434

435

437

Laval case. Length 1.8-4.0 mm (n=28). Made entirely of silk with bits of mineral material incorporated, slightly compressed laterally, with poorly closed dorsal seam (Fig. 14a); dorsal margin irregular; anterior and posterior openings circular.

Type material. Holotype male. PERU: Cusco, 20 rd km W Quincemil, Pte. Saucipata, Río Araza tributary, 13°20'13"S 70°51'15"W 893 m. 22.viii,2012. APM Santos, DM Takiya leg., pinned (MUSM). Paratypes. Same data as holotype, except 9 males, pinned (DZRJ); same data as holotype, except 7 males, in alcohol (MUSM); same data as holotype, except 1 male, in alcohol (DZRJ). PERU: Cusco, 3 rd km E Quincemil, 13°13'03"S 70°43'40"W 633 m. 20.viii.2012. APM Santos, DM Takiya leg., 3 males, in alcohol (DZRJ). PERU: Puno, 6 rd km W Mazuko, Pte. La Cigarra, 13°08'27"S 70°23'14"W 353 m. 01.ix.2012. APM Santos, DM Takiya leg., 4 males, pinned (DZRJ), 4 males, pinned (MUSM); same data, except, 3 males, in alcohol (INPA), 6 males, in alcohol (DZRJ). Additional material examined. Same data as holotype, except 4 larvae, in alcohol (MUSM), 3

larvae, in alcohol (INPA). PERU: Cusco, 19 rd km W Quincemil, Rio Araza tributary, 418 419 13°20'10"S 70°50'57"W 874 m. 26.viii.2012. APM Santos, DM Takiya leg., 8 larvae, in alcohol 420 (DZRJ), 7 larvae, in alcohol (MUSM), 2 larvae, in alcohol (INPA). PERU: Puno, 6 rd km W Mazuko, Pte. La Cigarra, 13°08'27"S 70°23'14"W 353 m. 01.ix.2012. APM Santos, DM Takiya 421 422 leg., 4 larvae, in alcohol (DZRJ); same data, except 15 larvae, in alcohol (DZRJ); 15 larvae, in 423 alcohol (INPA); 18 larvae, in alcohol (MUSM)

Etymology. The species name is an allusion to Manco Capac (used as a noun in apposition), son of Inti and Mama Quilla, according to some legends. Manco Capac and Mama Ocllo, his sister and wife, were sent to Earth to find the best place to begin a civilization. They travelled to the region which later became Cusco, where they established the center of the Inca Empire. Remarks. Byrsopteryx mancocapac sp. nov. is very distinctive from the previous and other species described in the genus. In the field, this new species can be easily recognized from others occurring at same site by its coloration, whereas adults from both B. inti sp. nov. and B. mamaocllo sp. nov. have head and mesoscutum densely covered by white setae (Figs. 3, 6), and adults of B. mancocapac sp. nov. show only black setae on head and mesoscutum (Fig. 11). Among the three species described here, mFurthermore, males of B. mancocapac sp. nov. do not show the wing modification which is seen in males of both B. inti sp.nov, and B. mamaocllo sp. **nov.** Male genitalia are also unique among Byrsopteryx species, particularly due to the

436 conspicuous spine-like, curved processes projecting from dorsal region of subgenital plate (Figs. 13b, 13c). These processes superficially resemble those of B. loja Harris & Holzenthal, 1994, but Commented [ICR15]: The typical color pattern of segments VIII and IX in Byrsopteryx is not describe in this

Commented [ICR16]: If known, specify the method of collection adopted at each location

in *B. loja* the paired processes arise from segment IX, instead of subgenital plate, as in the new species described here. In addition to the spine-like processes, this new species is also easily distinguished from *B. loja* and other *Byrsopteryx* species by sternum VIII with posterior margin divided into two plate-like lobes (Fig. 13a). Although a relatively high number of males and larvae of *B. mancocapac* sp. nov. were collected, females were not found.

Larvae of this new species show typical features of *Byrsopteryx*, for example, lateral depressed areas on pronotum, tergites VIII and IX large, forming an operculum, and case made of silk, poorly sealed dorsally (Fig. 14). Comparing with larvae of *B. mamaocllo* **sp. nov.**, the only other *Byrsopteryx* larva known from Peru, the larvae of *B. mancocapac* **sp. nov.** can be recognized by the following features, as mentioned before: (1) operculum subrectangular, with rounded corners (Fig. 14d); (2) case usually as long as larva and, when compared with that of *B. mamaocllo* **sp. nov.**, opaquer (Fig. 14a); and (3) abdominal segment II with a small pleurite bearing three setae, instead of two in *B. mamaocllo* **sp. nov.** (Fig. 14b).

Discussion

Hydroptilids represent the most diverse caddisfly family (Morse et al. 2019), yet many undescribed species remain unnamed in entomological collections. Here, we provided descriptions for three new species of *Byrsopteryx* from Peru. Despite relevant works on Peruvian caddisfly fauna, such as Flint (1975, 1980, 1996), Flint & Reyes (1991), Flint & Bueno-Soria (1998, 1999), and Harris & Davenport (1992, 1999), no *Byrsopteryx* species had been described or recorded from the country so far. As indicated by studies in other South American countries, we have a very limited knowledge on caddisfly diversity in the Neotropics (e.g., Ríos-Touma *et al.* 2017 – Ecuador; Santos *et al.* 2020 – Brazil).

Byrsopteryx is a relatively small genus, now with 19 described species. The genus has been recorded from Mexico, Central America, north of South America, and south portion of Brazil (Holzenthal & Calor 2017; Vásquez-Ramos et al. 2020). Species usually show a limited geographic distribution, being associated to waterfalls and/or rocky streams. Adults are commonly seen active during daylight and usually they are not collected in high numbers using light (Harris & Holzenthal 1994) or Malaise traps. During collecting days, we saw many adults and larvae in the localities where we found Byrsopteryx, but very few specimens were collected by several days of Malaise trapping in the same site. Interestingly, the three species described here co-occur in these localities, but adults of B. mamaocllo sp. nov. were much more seen and collected than the other two species, and B. inti sp. nov. being rarely represented among sampled specimens. In addition, despite the relatively high numbers of specimens of Byrsopteryx mancocapac sp. nov., we were not able to associate any female to this species.

Species described here are very distinctive morphologically from other *Byrsopteryx* species, but they are typical members of this genus. The three new species, though unnamed, were previously included in the phylogenetic analyses presented by Santos et al. (2016), which recovered the genus as monophyletic, as indicated earlier by Harris & Holzenthal (1994).

Commented [ICR17]: However, they are quite similar in the larval stage (see Santos & Nessimian 2010).

Commented [ICR18]: As you did for the larvae, I suggest including here the typical features of the *Byrsopteryx* adults (in addition to the coloration).

In the present phylogenetic hypothesis B. mamaocllo sp. nov. grouped with B. inti sp. nov., although in the Bayesian analysis of Leucotrichiinae based on combined data (Santos et al. 2016), B. mamaocllo sp. nov. was recovered as sister to B. mirifica Flint, 1981, the type species. However, the latter clade was not recovered by parsimony analysis of the same dataset nor it was statistically supported, possibly due to the lack of molecular data for B. mirifica. Furthermore, in Santos et al. (2016), B. mamaocllo sp. nov. + B. mirifica was found related to B. inti sp. nov. in both analyses and with moderate support. The sister group relationship of these two new species is also herein supported by strong morphological evidence (not shared by B. mirifica according to Harris & Holzenthal, 1994): the presence of a semi-dome thickening on male forewings (Figs. 5a, 6a), a feature unique among Byrsopteryx species. Females of Byrsopteryx inti sp. nov. are unknown, but those of Byrsopteryx mamaocllo sp. nov. do not show this wing modification, and since this structure is associated with very long and specialized setae (Figs. 4a, 7a), it could be related to pheromone communication. Species of Leucotrichiinae can show different wing modifications, but they are commonly seen among species in the tribe Leucotrichiini. Among the Alisotrichiini, wing modifications are found in species of Cerasmatrichia Flint, Harris, and Botosaneanu, 1994 (Flint et al. 1994), with more sclerotized or inflated areas, but the feature described here for these two new species is unique.

So far, only four *Byrsopteryx* species had their larvae described (Holzenthal & Harris 1992, Santos & Nessimian 2010) and here we describe larvae for two of the new species. These larvae show typical features known for the genus, particularly the case poorly sealed dorsally; prothorax with a pair of anterolateral depressed areas; and all abdominal segments with distinct tergites, with tergites VIII and IX forming an operculum to close posterior opening of the case. Both larvae herein described were associated to adult males based on comparison of COI sequences, and additionally, pharate adults were assigned to *B. mamaocllo* **sp. nov.** due to the general aspect of the case. Caddisfly larvae are conspicuous components of freshwater ecosystems and are much more used in ecological or biomonitoring studies than adults. However, Pes et al. (2018) pointed out that only 9.0% of neotropical caddisfly species have their immatures described, an indicative that more taxonomic studies should be developed in this diverse and poorly known region, in particular, those including larva-adult associations.

Conclusions

The present paper is a contribution to the knowledge of neotropical caddisflies, providing descriptions of three new species of *Byrsopteryx* from Peru. We were able to associate larvae and adults of two new species based on comparison of a fragment of COI gene. Combining different sources of information, e.g., morphological and molecular data, results in a better understanding of biodiversity, especially of a megadiverse region. The present study highlights the demand for taxonomic work on caddisflies from the neotropics, a region increasingly threatened by deforestation due to urbanization and uncontrolled exploration of natural resources.

Acknowledgements

Commented [ICR19]: To discuss: According to Harris & Holzenthal (1994), there is no sexual dimorphism in color in *Byrsopteryx*.

517 Peruvian collecting permit was obtained with the help of G. Melo and A. Asenjo (UFPR) and we are very grateful for field assistance provided by J. Rafael (INPA) and R. Cavichioli (UFPR). 518 519 520 References 521 522 Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on 523 Automatic Control 19(6):716-723. 524 525 Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics 526 and parallel computing. Nature methods, 9(8): 772-772. 527 528 Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. 529 Evolution 39:783—791. https://doi.org/10.2307/2408678 530 531 Flint OS, Jr., Bueno-Soria J. 1998. Studies of Neotropical caddisflies LVI: descriptions of five 532 new species of the genus Metrichia Ross (Trichoptera: Hydroptilidae) from Pakitza, Peru, with a checklist and bibliography of the described species of the genus. Proceedings of the 533 534 Entomological Society of Washington 100: 489-496. 535 536 Flint OS, Jr., Bueno-Soria J. 1999. Studies of Neotropical caddisflies LVIII: new species of the 537 genus Ochrotrichia Mosely (Trichoptera: Hydroptilidae) from Peru. Proceedings of the 538 Entomological Society of Washington 101: 729-736. 539 540 Flint OS, Jr., Reyes L. 1991. Studies of Neotropical caddisflies, XLVI: the Trichoptera of the 541 Río Moche Basin, Department of La Libertad, Peru. Proceedings of the Biological Society of 542 Washington 104: 474-492. 543 544 Flint OS, Jr. 1975. Studies of Neotropical caddisflies, XX: Trichoptera collected by the Hamburg 545 South-Peruvian Expedition. Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg 4: 565-573. 546 547 548 Flint OS, Jr. 1980. VI. Trichoptera. In: Roback SW (Ed) The Results of the Catherwood 549 Foundation Bolivian-Peruvian Altiplano Expedition Part I Aquatic Insects except Diptera. 550 Proceedings of the Academy of Natural Sciences, Philadelphia, 132:213-217. 551 Flint OS, Jr. 1981. Studies of Neotropical caddisflies, XXVIII: The Trichoptera of the Río Limón 552 553 Basin, Venezuela. Smithsonian Contributions to Zoology 330: 1–61.

https://doi.org/10.5479/si.00810282.330

554 555 Formatted: Font: Italic

Formatted: Portuguese (Brazil)

Formatted: Font: Italic

556 Flint OS, Jr. 1996. The Trichoptera collected on the expeditions to Parque Manu, Madre de Dios, Peru. In: Wilson DE, Sandoval A (Eds) Manu, the biodiversity of southeastern Peru. 557 558 Smithsonian Institution, Washington, D.C., 369-430. 559 Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of 560 mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Molecular 561 Marine Biology and Biotechnology 3:294-299. 562 563 564 Harris SC, Davenport LJ. 1992. New species of microcaddisflies from the Amazon region, with especial reference to northeastern Peru (Trichoptera: Hydroptilidae). Proceedings of the 565 566 Entomological Society of Washington 94:454-470. 567 568 Harris SC, Davenport LJ. 1999. New species of Hydroptilidae (Trichoptera) from the Amazon 569 region of northeastern Peru. Proceedings of the Entomological Society of Washington 101:-26-570 38. 571 572 Harris SC, Holzenthal RW. 1994. Hydroptilidae (Trichoptera) of Costa Rica and the Neotropics: 573 Systematics of the genus Byrsopteryx Flint (Stactobiini). Journal of the New York Entomological Formatted: Font: Italic 574 Society 102:-154-192. 575 576 Holzenthal RW, Calor AR. 2017. Catalog of the Neotropical Trichoptera (Caddisflies). Zookeys, 577 654:-1-566. https://doi.org/10.3897/zookeys.654.9516 578 579 Holzenthal RW, Harris SC. 1991. The larva of Byrsopteryx mirifica Flint, with an assessment of Formatted: Font: Italic 580 the phylogenetic placement of the genus within the Leuchotrichiini (Trichoptera: Hydroptilidae). In: Tomaszewski C (Ed) Proceedings of the 6th International Symposium on Trichoptera. Adam 581 582 Mickiewicz University Press, Poznan, Poland, 403-407. 583 584 Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions 585 through comparative studies nucleotides sequences. Journal of Molecular Evolution 16:111-120 586 https://doi.org/10.1007/BF01731581. 587 588 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary 589 Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35(6): 1547-1549. https://doi.org/10.1093/molbev/msy096 590 591 592 Marshall JE. 1979. A review of the genera of the Hydroptilidae (Trichoptera). Bulletin of the British Museum (Natural History) Entomology series 39:135–239. 593

594

596 597	Trichoptera. Insects, 10, 125. https://doi.org/10.3390/insects10050125
598	Ríos-Touma B, Holzenthal RW, Huisman J, Thomson R, Rázuri-Gonzales E. 2017. Diversity
599	and distribution of the Caddisflies (Insecta: Trichoptera) of Ecuador. PeerJ 5: e2851.
600	https://doi.org/10.7717/peerj.2851
601	
602	Santos APM, Nessimian JL. 2010. Description of a new species of <i>Byrsopteryx</i> (Trichoptera:
603	Hydroptilidae) from Rio de Janeiro State, Brazil, including its immature stages. Zootaxa 2668:
604	44–54.
605	
606	Santos APM, Nessimian JL, Takiya DM. 2016. Revised classification and evolution of
607	leucotrichiine microcaddisflies (Trichoptera: Hydroptilidae) based on morphological and
608	molecular data. Systematic Entomology 41:-458-480. https://doi.org/10.1111/syen.12168
609	
610	Santos APM, Dumas LL, Henriques-Oliveira AL, Souza WRM, Camargos LM, Calor AR, Pes
611	AM. 2020. Taxonomic Catalog of the Brazilian Fauna: order Trichoptera (Insecta), diversity and
612	distribution. Zoology 37: e46392. https://doi.org/10.3897/zoologia.37.e46392
613	
614	Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting and
615	phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase
616	chain reaction primers. Annals of the Entomological Society of America 87:651–701.
617	https://doi.org/10.1093/aesa/87.6.651.
618	
619	Vásquez-Ramos JM, Osorio-Ramírez DP, Caro-Caro CI. 2020. First record of the larvae
620	Byrsopteryx Flint, 1981 (Trichoptera: Hydroptilidae) in Colombia. Revista de la Academia
621	Colombiana de Ciencias Exactas, Físicas y Naturales 44(171):-482-492.
622	https://doi.org/10.18257/raccefyn.1025
623	

Morse JC, Frandsen PB, Graf W, Thomas JA. 2019. Diversity and ecosystem services of

595

624

Formatted: Font: Italic

Figure 1. Collecting localities of specimens of new *Byrsopteryx* species described here. (A) Tributary of Río Araza, Cusco, Peru. (B) Pennsylvania trap being set up by APMS near Puente Saucipata, close to a tributary of Río Araza, Cusco, Peru. (C) Tributary of Río Araza, near Puente La Cigarra, Cusco, Peru. (D) Stream near Quincemil, Cusco, Peru. Figure 2. Maximum likelihood (-lnL = 3322.784548) tree of COI sequences of *Byrsopteryx* analyzed under GTR+G+I. Numbers above branches are bootstrap percentages. Details of specimen vouchers are in Table 1. Figure 3. Byrsopteryx inti sp. nov., adult. (A) Holotype male (pinned), lateral habitus. (B) Live adult on a rocky surface. Figure 4. Byrsopteryx inti sp. nov., male wings (paratype). (A) Forewing. (B) Hind wing. Figure 5. Byrsopteryx inti sp. nov., male genitalia (holotype). (A) Ventral view. (B) Sternum VIII, subgenital plate, and inferior appendages, caudal view. (C) Dorsal view. (D) Lateral view. (E) Phallus, dorsal view. (F) Phallus, lateral view. Figure 6. Byrsopteryx mamaocllo sp. nov., adult. (A) Holotype male (pinned), dorsal habitus. (B) Live adult in a small pit over rocky surface. Figure 7. Byrsopteryx mamaocllo sp. nov., male wings (paratype). (A) Forewing. (B) Hind wing. Figure 8. Byrsopteryx mamaocllo sp. nov., male genitalia (holotype). (A) Ventral view. (B) Posteroventral processes of segment VIII, caudal view. (C) Dorsal view. (D) lateral view. (E) Phallus, dorsal view. (F) Phallus, lateral view. Figure 9. Byrsopteryx mamaocllo sp. nov., female genitalia. (A) Segments VII, VIII, IX, and X, ventral view. (B) Vaginal apparatus, ventral view. Figure 10. Byrsopteryx mamaocllo sp. nov., larva. (A) Lateral habitus with case. (B) Lateral habitus without case. (C) Dorsal habitus. (D) Operculum, dorsocaudal view. Figure 11. Byrsopteryx mancocapac sp. nov., adult. (A) Paratype male (pinned), dorsal habitus. (B) Live adult on a rocky surface. Figure 12. Byrsopteryx mancocapac sp. nov., male wings. (A) Forewing. (B) Hind wing.

Figure captions

665 666 667	Figure 13. <i>Byrsopteryx mancocapac</i> sp. nov. , male genitalia (holotype). (A) Ventral view. (B) Dorsal view. (C) Lateral view. (D) Phallus, dorsal view. (E) Phallus, lateral view.
668	Figure 14. Byrsopteryx mancocapac sp. nov., larva. (A) Lateral habitus with case. (B) Lateral
669	habitus without case. (C) Dorsal habitus. (D) Operculum, dorsocaudal view.
670	
671	Table 1. Species of <i>Byrsopteryx</i> and other Leucotrichiinae with COI sequences used in this
672	study, with respective information of voucher specimen and GenBank accession numbers.
673	
674	Supplementary File 1. NEXUS matrix of COI sequences of <i>Byrsopteryx</i> and <i>Celaenotrichia</i> .
675	
676	Supplementary Table 1. K2P distances among 20 COI sequences of nine <i>Byrsopteryx</i> species
677	sampled.