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Intraspecific trait variation (ITV) enables plants to respond to global changes. However,
causes for ITV, especially from biotic components such as herbivory, are not well
understood. We explored whether small vertebrate herbivores (hares and geese) impact
ITV of a dominant clonal grass (Elytrigia atherica) in local communities. Moreover, we
looked at the relative importance of their direct (e.g. selective grazing) and indirect effects
(altering genotypic richness/diversity and abiotic environment) on ITV. We used exclosures
at two successional stages in a Dutch saltmarsh, where the early stage had higher grazing
pressure than the intermediate one . We measured key functional traits of E. atherica
including height, aboveground biomass, flowering (flower or not), specific leaf area, and
leaf dry matter content in the local communities (1 m ×1m plots) inside and outside the
exclosures. We also determined genotypic richness and diversity using molecular markers.
We further measured abiotic variations in topography and clay thickness (a proxy for soil
total nitrogen). Structural equation models revealed that small herbivores significantly
promoted ITV in height and flowering at the early stage, while they marginally promoted
ITV in height at the intermediate stage. Moreover, the direct effects of herbivores played a
major role in promoting ITV. Small herbivores decreased genotypic diversity at the
intermediate stage, but genotypic richness and diversity did not impact ITV. Small
herbivores did not alter topographic variation and variation in clay thickness, but these
variations increased ITV in all traits at the early stage. Small herbivores may not only
impact trait means as studies have shown but also ITV in plants.
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10 Abstract 

11 Intraspecific trait variation (ITV) enables plants to respond to global changes. However, causes 

12 for ITV, especially from biotic components such as herbivory, are not well understood. We 

13 explored whether small vertebrate herbivores (hares and geese) impact ITV of a dominant clonal 

14 grass (Elytrigia atherica) in local communities. Moreover, we looked at the relative importance 

15 of their direct (e.g. selective grazing) and indirect effects (altering genotypic richness/diversity 

16 and abiotic environment) on ITV. We used exclosures at two successional stages in a Dutch 

17 saltmarsh, where the early stage had higher grazing pressure than the intermediate one. We 

18 measured key functional traits of E. atherica including height, aboveground biomass, flowering 

19 (flower or not), specific leaf area, and leaf dry matter content in the local communities (1 m ×1m 

20 plots) inside and outside the exclosures. We also determined genotypic richness and diversity 

21 using molecular markers. We further measured abiotic variations in topography and clay 

22 thickness (a proxy for soil total nitrogen). Structural equation models revealed that small 

23 herbivores significantly promoted ITV in height and flowering at the early stage, while they 

24 marginally promoted ITV in height at the intermediate stage. Moreover, the direct effects of 

25 herbivores played a major role in promoting ITV. Small herbivores decreased genotypic 

26 diversity at the intermediate stage, but genotypic richness and diversity did not impact ITV. 

27 Small herbivores did not alter topographic variation and variation in clay thickness, but these 

28 variations increased ITV in all traits at the early stage. Small herbivores may not only impact 

29 trait means in plants as studies have shown but also their ITV. 

30  Keywords: trait variation; plant-herbivore interaction; grazing; abiotic; genetic diversity; 

31 saltmarsh
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32 Introduction 

33 Studies show that intraspecific trait variation (i.e. variability in traits of conspecific individuals; 

34 hereafter ITV) can enable plant species to respond to global changes (Westerband, Funk & 

35 Barton, 2021), impact community composition and structure (Whitlock, Grime & Burke, 2010), 

36 and govern ecosystem processes (Boege & Dirzo, 2004; Crutsinger et al., 2006; Crutsinger, 

37 Souza & Sanders, 2008; Lecerf & Chauvet, 2008). The importance of  ITV has been increasingly 

38 realized over the years (Violle et al., 2012; Siefert et al., 2015; Funk et al., 2017; Westneat et al., 

39 2019; Westerband, Funk & Barton, 2021), therefore, exploring the causes for ITV is of prime 

40 importance, particularly under the current rapid global changes (Westerband, Funk & Barton, 

41 2021). Several components including genotypic richness/diversity and phenotypic plasticity 

42 triggered by biotic and abiotic environments can drive ITV (Valladares, Gianoli & Gomez, 

43 2007). However, biotic components, particularly herbivory, received much less attention than 

44 genotypic richness/diversity and abiotic environments (Valladares, Gianoli & Gomez, 2007).

45

46 Whilst herbivores are one of the major drivers for plant trait differentiation globally (Díaz et al., 

47 2007; He & Silliman, 2016), the majority of the studies that document the effects of herbivores 

48 on plant traits focus on trait means without considering ITV (e.g. Bullock et al., 2001; Louault et 

49 al., 2005; Kahmen & Poschlod, 2008). Limited studies suggest that herbivores may also impact 

50 ITV (e.g. Jessen et al., 2020). However, these studies mainly focus on large herbivores. Large 

51 and small herbivores are relative. Here we refer to small herbivores as vertebrate herbivores with 

52 body mass range from 1 to 10 kg such as hares and geese. Small herbivores sometimes can have 

53 stronger impacts on plant communities than large ones especially when their abundance is high 
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54 (Olofsson et al., 2004). Additionally, small herbivores are usually more selective with forage 

55 plants (Olff & Ritchie, 1998). Therefore, small herbivores may also impact ITV, however, we 

56 currently lack empirical evidence. 

57

58 Small herbivores may impact ITV via multiple non-exclusive processes. First, small herbivores 

59 can promote ITV through selective grazing. Studies show that large herbivores generally 

60 consume tall plants, thus promoting short plants (Díaz et al., 2007; Evju et al., 2009). This is 

61 probably because short plants, which are usually young, are generally more nutritious (e.g. 

62 higher protein and lower lignin and cellulose) (Augustine & McNaughton, 1998). Similarly, 

63 small herbivores are more likely to consume young (short) plants over old (tall) ones, but some 

64 young (short) plants may escape from grazing via association with unpalatable species (Van Der 

65 Wal et al., 2000; Kuijper & Bakker, 2008). Thus, small herbivores may promote variation in 

66 plant height. Second, small herbivores may impact ITV indirectly through altering genotypic 

67 richness and diversity. Increased genotypic richness and diversity can increase ITV (Evans et al., 

68 2016). Studies looking at the effects of large herbivores on genotypic diversity show that large 

69 herbivores can increase genotypic diversity by promoting seed transportation (Rico & Wagner, 

70 2016) or decrease it by promoting clonal growth (Kleijn & Steinger, 2002). Small herbivores can 

71 have similar effects to large ones on many processes such as seed dispersal (Bakker & Olff, 

72 2003). Therefore, small herbivores can either increase or decrease genotypic richness and 

73 diversity. Third, small herbivores may promote ITV indirectly through altering abiotic 

74 heterogeneity (e.g. topographic variation and variation in soil nutrients) via grazing the 

75 vegetation at particular spatial scales, trampling, and localized deposition of droppings (Adler, 

76 Raff & Lauenroth, 2001). Abiotic heterogeneity usually promotes ITV (Westerband, Funk & 
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77 Barton, 2021). However, whether small herbivores impact ITV via these processes and the 

78 relative importance of them in shaping ITV remains underexplored. 

79

80 In the eastern part of the saltmarsh of the island of Schiermonnikoog, hares and geese are the 

81 abundant herbivores while large herbivores are absent (Kuijper & Bakker, 2005; Schrama et al., 

82 2015; Chen et al., 2019). A well-calibrated successional gradient is present here (Olff et al., 

83 1997). Hares and geese are more abundant at early successional stages but their abundance 

84 decreases at intermediate and late successional stages due to less preferred late successional 

85 plants such as Elytrigia atherica (synonym Elymus athericus) increase in dominance (Kuijper & 

86 Bakker, 2005; Schrama et al., 2015; Chen et al., 2019). Although adult plants of E. atherica are 

87 less preferred, hares and geese considerably graze on its seedling/young plants (Kuijper, Nijhoff 

88 & Bakker, 2004; Fokkema et al., 2016). However, short seedlings/young plants may escape from 

89 grazing by associating with non-preferred plants such as Artemisia maritima. Elytrigia atherica 

90 mainly reproduces clonally, but sexual reproduction may occur occasionally via windows of 

91 opportunity, thus genotypic richness is high in this grass (Bockelmann et al., 2003; Chen, 2020). 

92 Hares and geese play a less important role than tidal water in seed dispersal (Chang et al., 2005), 

93 therefore, it is unlikely that hares and geese can increase genotypic richness and diversity by 

94 dispersing seeds. Instead, hares and geese may decrease genotypic richness and diversity by 

95 promoting clonal spread of E. atherica (Van Der Graaf, Stahl & Bakker, 2005). Hares and geese 

96 may increase topographic variation via trampling (Wijnen, Wal & Bakker, 1999; Elschot et al., 

97 2015), they may also impact sediment accumulation (measured by clay thickness) by trampling 

98 and altering vegetation structure (Boorman, Garbutt & Barratt, 1998). Clay thickness is highly 

99 correlated with soil total Nitrogen (Olff et al., 1997). Topographic variation and variation in clay 
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100 thickness are important factors for the growth and expansion of E. atherica in this system (Olff 

101 et al., 1997; Nolte et al., 2019). Taken together, hares and geese may increase ITV of E. atherica 

102 through selective grazing and promoting topographic variation and variation in clay thickness but 

103 may decrease ITV by decreasing genotypic richness and diversity. 

104

105 To test these hypotheses, we used long-term (22-year) exclosures at the early and intermediate 

106 successional stages, where abiotic conditions are relatively similar, but grazing pressure differs 

107 markedly (Kuijper & Bakker, 2005; Chen et al., 2019). As ITV is usually strongly driven by 

108 processes operating at small spatial scales (Westerband, Funk & Barton, 2021), we, therefore, 

109 looked at ITV in local communities (1 m ×1m plots). Specifically, we measured key functional 

110 traits of this dominant grass including height, aboveground biomass, flowering (flower or not), 

111 specific leaf area, and leaf dry matter content within local communities inside and outside the 

112 exclosures. Using structural equation models, we test whether hares and geese impact ITV of E. 

113 atherica, and the relative importance of their direct effects (e.g. selective grazing) and indirect 

114 effects (via altering genotypic richness/diversity and abiotic variables) on ITV. We expect that 

115 the effects of hares and geese on ITV would be more apparent at the early successional stage 

116 (relative to the intermediate one) where grazing pressure was higher. 

117

118 Materials and methods

119 Study site 
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120 A natural successional gradient is present in the back-barrier saltmarsh of the island of 

121 Schiermonnikoog (53°30' N, 6°10' E), the Netherlands. Because this island expands eastward, 

122 thus the eastern part of the island is younger relative to the western part (Olff et al., 1997). The 

123 western part of the saltmarsh is enclosed for cattle grazing, while the eastern part of it is grazed 

124 by wild small herbivores such as spring staging geese, year-round present hares and rabbits. 

125 Hares and geese are the most abundant herbivores (Van de Koppel et al., 1996; Van Der Wal, 

126 Kunst & Drent, 1998; Van Der Wal et al., 2000; Kuijper & Bakker, 2005; Schrama et al., 2015). 

127 Rabbits are very rare. Kuijper and Bakker (2005) found that biomass removed by rabbits in 2000 

128 was 6.33% and 0.16% of the total biomass removed by small herbivores at the early and 

129 intermediate stage, respectively. 

130

131 We used long-term hare and goose exclosures that were initiated in 1994 (details in Chen et al., 

132 2019). We selected exclosures located at the early and intermediate successional stages, which 

133 are approximately 2.5 km apart (Fig. 1A). Vegetation succession has undergone around 30 and 

134 60 years at the early and intermediate stage, respectively. Age of the vegetation succession was 

135 counted from the year of vegetation establishment to 2016. The year of vegetation establishment 

136 was determined by checking aerial photographs (Olff et al., 1997). Grazing pressure from hares 

137 and geese was much higher at the early stage than the intermediate stage. Grazing pressure was 

138 calculated using year-round dropping count in 2000 and 2016 (see Table S1 for more details; 

139 Kuijper & Bakker, 2005; Chen et al., 2019; Chen et al., 2019a). 

140
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141 Hare and goose exclosures (one per each stage) were located in a similar elevation (early stage: 

142 1.42 ± 0.004; intermediate stage:1.44 ± 0.004; mean ± 1se; N=24; m+NAP; Normal Amsterdam 

143 Water Level). Exclosures (8 m × 12 m and 6 m × 8 m at the early and intermediate stages) were 

144 made by chicken mesh (mesh width 25 mm) supported by wooden posts every 3.5 m to exclude 

145 hare grazing inside the exclosures. Exclosures were around 1 m in height, ropes were suspended 

146 on top of the wooden posts to stop geese flying into the exclosures. At the beginning of the 

147 exclosure experiment (1995), E. atherica rarely occurred (< 2.5 %; percent cover) inside and 

148 outside the exclosures at these two stages. Vegetation composition differed in the grazed areas 

149 and inside the exclosures in 2016 (Fig.1; also see Table S2 for species composition for the three 

150 most abundant species). Specifically, Artemisia maritima was the most dominant plant in the 

151 grazed area at these two stages, while E. atherica was the most dominant plant inside the 

152 exclosures. 

153

154 Experimental design 

155 We marked an area, ca. 6 m × 8 m, which corresponds to the smaller size of the exclosures (at 

156 the intermediate successional stage), inside and outside the exclosure for both stages in June 

157 2017. The distance between the area and the exclosure measured ca. 80 m. We randomly set up 7 

158 plots (1m × 1m) inside these two grazed areas and exclosures (Fig. 1). The distance between 

159 these plots ranged from 0.5 m to 9 m. We divided each plot into 25 grids (0.2 m × 0.2 m). Within 

160 each grid, we collected one individual stem of E. atherica (with roots), usually in the middle of 

161 the grid (Fig. 1). Elytrigia atherica did not occur everywhere, particularly not in the grazed area, 

162 thus sample size per plot varied from 9 to 25. 
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163

164 Trait measurement 

165 We measured traits for individual stems of E. atherica in the field. We sampled individual stems 

166 without obvious grazing marks. We cut individual stems at the ground level and measured 

167 maximum height (cm) from the base to the highest point. We measured the maximum leaf width 

168 and length of the first fully grown leaf, usually the third leaf from the top. We also recorded 

169 whether individual stems flowered or not. After these measurements, each stem was stored in a 

170 paper bag, sealed, labeled, and then put in a self-sealing plastic bag to reduce water loss in 

171 tissues. At the end of each day, samples were brought to the lab, we measured fresh biomass of 

172 the individual stems and fully-grown leaves. We also measured dried biomass (g) after oven-dry 

173 (70 °C) to constant mass (ca. 3 days). Specific leaf area (mm2 mg-1) was calculated as (leaf width 

174 ×leaf length) / dried leaf biomass. Leaf dry matter content (mg g-1) was calculated as dried leaf 

175 biomass / fresh leaf biomass. Note that leaf dry matter content was only measured in 3, 5, 4, and 

176 4 plots in the grazed and ungrazed treatment at the early and intermediate stage, respectively. 

177 This is because we needed to bring all samples and measure the fresh weight of each leaf sample 

178 and the whole plants in the field station. We also need to do this quickly, otherwise, water will be 

179 lost in the plant tissues, which may bias estimation of fresh weight. Due to lack of manpower, we 

180 measured fresh leaf weight for around half of the randomly selected plots. Also, specific leaf 

181 area and leaf dry matter content was not measured in the standard way (Pérez-Harguindeguy et 

182 al., 2016), and caution should be taken when comparing our data with other studies. We 

183 measured leaf width and length because they are easier to measure in the field. A similar method 

184 was also used in a previous study in this system (Veeneklaas et al., 2011). Because we measured 
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185 leaf width and leaf length for all plots in this way, thus our results are not very likely to be biased 

186 by the method used here. 

187

188 Genotyping and genotype richness and diversity 

189 We used oven-dried leaf samples (ca. 2 mg per individual stem) for DNA extraction. We first 

190 shredded leaf samples into smaller pieces using tissuelyser. We then extracted DNA from each 

191 leaf sample using the CTAB method (Doyle & Doyle, 1987) and stored DNA samples at -20 °C 

192 before PCR. We amplified DNA using PCR with fluorescence-labeled primers. We used five 

193 microsatellite markers (ECGA89, WMS6, WMS44, WMS2, and ECGA89) originally designed 

194 for the other Poaceae species, Elymus caninus (Sun, Salomon & Bothmer, 1998) and Triticum 

195 aestivum (Röder et al., 1998). These five markers were used for genotyping E. atherica in this 

196 system (Bockelmann et al., 2003; Chen 2020). The PCR products from primer ECGA89, WMS6, 

197 and WMS44 were pooled together, while the PCR products from WMS2 and ECGA89 were 

198 pooled together. Additionally, 1 µL rROX was added in each sample as the internal size standard 

199 (Gene ScanTM–350 ROXTM, Applied Biosystem). We visualized the pooled PCR products 

200 using the 3730 DNA analyzer and scored the microsatellite peak patterns (height > 100) 

201 manually using GeneMapper. In total, we successfully genotyped 579 individual stems of E. 

202 atherica, but 2 were excluded for further analyses as some trait data measured in the field for 

203 these samples were missing. 

204

205 Abiotic variables 

PeerJ reviewing PDF | (2021:06:62112:1:1:NEW 11 Aug 2021)

Manuscript to be reviewed



206 We measured clay thickness and topographic variation for each plot (3 replicates). We measured 

207 clay thickness using a 2 cm Ø soil corer with tick marks as a proxy for soil total nitrogen (Olff et 

208 al., 1997). Previous studies show that clay thickness is strongly positively correlated with soil 

209 total nitrogen in this system (e.g. Olff et al., 1997), and is used as a proxy of soil fertility (e.g. 

210 Schrama et al., 2017). We measured topography using Trimble R8 (precision for elevation ca. 1 

211 cm). 

212

213 Data analysis

214

215 Calculating trait means, ITV, topographic variation, and variation in clay thickness 

216 We calculated means for each trait by averaging trait values over 9 -25 individual stems in each 

217 plot. We calculated ITV in each trait each plot as the standard deviation /mean. Topographic 

218 variation and variation in clay thickness were calculated as standard deviation /mean (over 3 

219 samples) of elevation and clay thickness, respectively. 

220

221 Calculating genotypic richness, genotypic diversity, and genetic differentiation

222 To calculate genotype richness and diversity per plot, we first calculated pairwise genetic 

223 distance using Dice dissimilarity from the R package ade4 (Dray & Dufour, 2015) based on the 

224 presence/absence matrix of 42 allele bands from those five markers. We then assigned genotypes 

225 based on dice dissimilarity, using the function “assignClones” from the R package polysat 

226 (Lindsay, Clark & Clark, 2018). We calculated genotypic richness as the number of unique 

227 genotypes detected divided by the number of individual stems genotyped for each plot. 

228 Genotypic diversity — taking into account the abundance of different genotypes—was 
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229 calculated using the function “genotypeDiversity” with the index of “Shannon” from the package 

230 polysat (Lindsay, Clark & Clark, 2018). Because small herbivores may select for some particular 

231 genotypes that are more resistant or tolerant to herbivore grazing (Kotanen & Bergelson, 2000), 

232 which may also impact traits. We explored genetic differentiation using principal coordinates 

233 analysis (PCoA) from the R package ade4 (Dray & Dufour, 2015). We looked at genetic 

234 differentiation at the treatment level, that is, grazed and ungrazed across plots at each stage, 

235 result can be found in Fig. S1. 

236

237 Effects of small herbivores on trait means and ITV 

238 Although our focus is on ITV, to compare whether the effects of small herbivores on ITV are 

239 stronger than trait means, we also looked at the effects of small herbivores on trait means. We 

240 use analysis of variance, function “lm”, to look at the effects of small herbivores on means and 

241 ITV of each trait at the early and intermediate successional stage, separately. We checked 

242 residuals for each model, in all cases, models fitted the data reasonably well. 

243

244 Direct and indirect effects of small herbivores on ITV

245 We estimated the direct, indirect effects through altering genotypic richness and diversity, 

246 indirect effects through altering abiotic variables, and total effects (sum of direct and indirect 

247 effects) of small herbivores on ITV. We estimated these effects in each trait at each successional 

248 stage based on the standardized path coefficients using structural equation models from the R 

249 package “lavaan” (Rosseel, 2012). Grazing (0: ungrazed, 1: grazed), genotypic richness, 

250 genotypic diversity, topographic variation, and variation in clay thickness were included in the 

251 models. Note that genotypic diversity was not included for ITV at the early stage, as it was 
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252 significantly correlated with genotypic richness (variance inflation factor > 4). See online 

253 supporting text for an example of a structural equation model for ITV in height at the 

254 intermediate stage and calculation of the direct and indirect effects. Note that leaf dry matter 

255 content was not evaluated in structural equation models due to limited sample size. Effects are 

256 significant when p≤0.05, while marginally significant when p>0.05 and p<0.1. Data analysis was 

257 performed in R3.5.3 (R Core Team 2020).

258

259 Results

260 Effects of small herbivores on trait means and ITV 

261 At the early successional stage, small herbivores significantly decreased means in height, 

262 aboveground biomass, and flowering of E. atherica, but had no effects on means in specific leaf 

263 area and leaf dry matter content. Also, small herbivores significantly increased ITV in flowering 

264 and marginally increased ITV in height, but had no effects on ITV in other traits. At the 

265 intermediate successional stage, small herbivores significantly decreased means in all traits 

266 except for leaf dry matter content. However, small herbivores had no effects on ITV in all traits 

267 (Fig. 2; see Table S3 for test statistics).

268

269 Direct and indirect effects of small herbivores on ITV

270 The structural equation model reveals that overall (summing up the direct and indirect effects), 

271 small herbivores tended to promoted ITV in height and flowering, but not in other traits at the 

272 early successional stage. Overall, small herbivores tended to promoted ITV in height, but not in 

273 other traits at the intermediate stage. Moreover, these positive overall effects of small herbivores 

274 on ITV in height and flowering were mainly attributable to their direct effects. Although the 
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275 overall effects of small herbivores on ITV in aboveground biomass and specific leaf area were 

276 not significant, small herbivores also directly significantly impacted ITV in these two traits at the 

277 early successional stage (Fig 3; see Table 1 for standardized path coefficient estimated from 

278 SEM for the direct, indirect, and total effects of small herbivores on ITV). 

279

280 At the early stage, small herbivores did not have significant effects on genotypic richness and 

281 diversity, but genotypic richness decreased ITV in flowering. At the intermediate stage, small 

282 herbivores did not have significant effects on genotypic richness, but significantly reduced 

283 genotypic diversity. However, genotypic richness and diversity did not impact ITV in any traits 

284 (Fig. 3). 

285

286 Small herbivores did not impact topographic variation and variation in clay thickness at both 

287 stages. However, these variations significantly increased ITV in all traits at the early stage except 

288 that the effects of topographic variation on ITV in flowering were not significant, their effects 

289 were less apparent at the intermediate stage (Fig. 3). 

290  

291 Discussion

292

293 In this study, using long-term exclosures, in combination with field observations and genetic 

294 analyses, we explored ITV of a dominant clonal grass (Elytrigia atherica) and the direct and 

295 indirect effects of small herbivores on ITV. We found that, at the early successional stage, small 

296 herbivores promoted ITV in height and flowering of this grass. At the intermediate stage, small 

297 herbivores marginally promoted ITV in height. Moreover, small herbivores promoted ITV 
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298 mainly through direct effects (e.g. selective grazing) but not through altering genotypic 

299 richness/diversity or topographic variation and variation in clay thickness. 

300

301 Effects of small herbivores on trait means and ITV 

302 Our results suggest that small herbivores can impact both means and variations in functional 

303 traits of E. atherica, but their effects differed in different traits. At the early stage, we found that 

304 small herbivores strongly impacted means in three traits measured (height, aboveground 

305 biomass, and flowering) and they strongly promoted ITV in two traits (height and flowering). At 

306 the intermediate stage, small herbivores impacted means in four traits (height, aboveground 

307 biomass, flowering, and specific leaf area) and they marginally promoted ITV in one trait 

308 (height; Fig. 2). This suggests that trait means and variations may be driven by different 

309 processes. Moreover, we only observed ITV in height and flowering may be because these two 

310 traits have higher plasticity than other traits, and traits with a higher level of plasticity also show 

311 higher ITV (Givnish, 2002). Further, the effects of small herbivores on trait means (relative to 

312 ITV) were less dependent on grazing pressure. This may be due to that the preferred plant, F. 

313 rubra, was more abundant in the grazed area at the early successional stage (ca. 3 times relative 

314 to that of the intermediate successional stage). Thus, small herbivores (although more abundant) 

315 may graze more on F. rubra rather than E. atherica. At the intermediate stage, the abundance of 

316 F. rubra deceased, while the abundance of E. atherica increased in the grazed area (ca. 5 times 

317 relative to that of the early successional stage), thus small herbivores (less abundant) may also 

318 substantially grazed on less preferred E. atherica. Therefore, overall, the effects of small 

319 herbivores on trait means were similar at these two stages. Meanwhile, non-preferred species (A. 
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320 maritima) was more abundant in the grazed area at the early successional stage (ca. 2 times 

321 relative to that of the intermediate successional stage; see Table S2 for more detailed percent 

322 cover of these species), which may facilitate young/short E. atherica escape from herbivore 

323 grazing. Therefore, ITV was more apparent at the early successional stage than the intermediate 

324 one. Previous studies in this system have shown that hares and geese are the important drivers 

325 for plant community composition and structure along this successional gradient (Olff et al., 

326 1997; Kuijper & Bakker, 2005; Chen et al., 2019). Here, extending the current knowledge, we 

327 show that small herbivores may also impact trait means and variations, which in turn may impact 

328 community composition and structure (Whitlock, Grime & Burke, 2010). 

329

330 Direct and indirect effects of small herbivores on ITV 

331 As we hypothesized, the direct effects of small herbivores through selective grazing increased 

332 ITV. This is not only true for height and flowering but also for aboveground biomass and 

333 specific leaf area, despite the overall effects of small herbivores on aboveground biomass and 

334 specific leaf area were not significant. As explained in the previous paragraph, the direct effects 

335 of small herbivores may be mediated by community composition especially the proportion of 

336 preferred and non-preferred plants. Herz et al. (2017) found that local neighborhood diversity 

337 can explain a large amount of ITV in German meadows and pastures, possibly through increased 

338 plant-plant interactions (e.g. competition). In this study, plant diversity was higher in the grazed 

339 than the ungrazed plots at both successional stages after 22-year grazing (Table S2). Thus, higher 

340 plant diversity may also contribute to increased ITV in height under grazing at both successional 

341 stages. Future studies/experiments looking at the effects of herbivores on ITV in plant 
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342 communities with the same composition are needed to fully separate the effects of selective 

343 grazing from the effects of neighboring plants. 

344

345 We found that small herbivores did not impact genotype richness and diversity of E. atherica at 

346 the early successional stage but decreased genotypic diversity at the intermediate stage. A 

347 previous study in the west part of this saltmarsh found that cattle grazing does not impact 

348 genotype richness and diversity of this grass, but cattle grazing alters its morphological traits in 

349 the field such as decreasing height and leaf width (Veeneklaas et al., 2011). Here, we found that 

350 genotypic richness and diversity generally had no significant effects on ITV. Possibly because 

351 microsatellite markers are selectively neutral, thus they do not control gene expression for the 

352 traits measured here. A low correlation between variation in morphological traits and DNA 

353 markers was also reported before (Kolliker et al., 1998). Additionally, we found genetic 

354 differentiation of E. atherica in the grazed and ungrazed areas at the early successional stage, but 

355 not at the intermediate successional stage (Fig. S1), however, more data (presumably from more 

356 exclosures) are needed to consolidate this result. Thus, the observed trait changes (at both 

357 successional stages) may not be associated with genetic changes in E. atherica. Taken together, 

358 plasticity induced by herbivore grazing may play a major role in trait changes (both in means and 

359 variations). 

360

361  In contrast, we found no effects of small herbivores on topographic variation and variation in 

362 clay thickness within plots. These abiotic variations may be primarily induced by flooding and 

363 inundation, which may overrule the effects of small herbivores in salt marshes. However, 
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364 variations in these two abiotic variables had substantial positive impacts on ITV particularly at 

365 the early stage. Abiotic environment may be more heterogenous at the early stage because this 

366 stage has more frequent sediment deposition than the intermediate stage (Schrama, Berg & Olff, 

367 2012). A previous study conducted in the western part of this saltmarsh also found that 

368 topographic variation at the small spatial scales (0.1 m2 and 10 m2) is positively correlated with 

369 species richness and cattle grazing additionally increased species richness (Ruifrok et al., 2014). 

370 Thus, abiotic variations, even at very small spatial scales, may play an important role in 

371 promoting ITV and altering other plant community properties. 

372

373 Long-term exclosures

374 Although we used 22-year old herbivore exclosures, our data cannot answer whether duration of 

375 herbivore grazing impacts ITV, as we only collected data for one year. To our knowledge, no 

376 studies have compared the effects of short- and long-term grazing on ITV. Didiano et al. (2014) 

377 found that tolerance to rabbit grazing decreased as the age of the exclosures increased in F. 

378 rubra, the most abundant plant in Silwood Park, England. Therefore, grazing duration may also 

379 impact ITV. 

380

381 Conclusion

382 Our results yield substantial insight into (1) small herbivores may not only impact means but also 

383 ITV in some key functional traits of a dominant grass (E.atherica); (2) small herbivores 

384 impacted ITV mainly through plasticity induced by selective grazing but not through altering 
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385 genotypic richness/diversity and abiotic variations. However, topographic variation and variation 

386 in clay thickness may contribute to ITV. Small herbivore populations are changing rapidly due to 

387 human actions. For instance, populations of European brown hares have declined dramatically 

388 due to land-use changes (Smith, Jennings & Harris, 2005), while populations of geese are rapidly 

389 increasing globally (Menu, Gauthier & Reed, 2002). These changes in small herbivore 

390 populations could thus impact their effects on ITV, which may have consequences for saltmarsh 

391 plants to respond to global changes. 
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Figure 1
Sampling location and scheme

Location for the 22-year exclosures at the early and intermediate successional stage in the
saltmarsh of the island of Schiermonnikoog. Pictures of the exclosures at the early and
intermediate successional stages are shown. Sampling plots (1× 1 m) within an exclosure
and sampling scheme for individuals of Elytrigia atherica within a 1× 1 m plot are shown. We
followed the same sampling scheme for each plot. Elytrigia atherica did not always occur
within each grid, thus sample size varied for each plot. Sampling plots and scheme were
similar outside the exclosures (in the grazed area) at both successional stages. Number of
hares and geese indicate the abundance of small herbivores such that the early successional
stage had higher grazing pressure (indicated by two hares and two geese) relative to the
intermediate stage (indicated by one hare and one goose). Note, only the map of the
saltmarsh, but not exclosures and sampling plots, is projected according to its actual size
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Figure 2
Means and variations in functional traits of individual stems of Elytrigia atherica in the
grazed and ungrazed plots at the early and intermediate stages.

Traits include height (cm), aboveground biomass (g), flower frequency, and specific leaf area

(cm2 g-1), leaf dry matter content (g g-1). Dots are the means, error bars show 1 se. Asterisks
indicate significant levels: * P<0.1; ** P<0.05; *** P<0.001. See Table S3 for test statistics.
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Figure 3
Intraspecific trait variation (ITV) of the dominant grass Elytrigia atherica and the direct
and indirect effects of small herbivores on ITV in local communities at the early (A-D)
and intermediate stage (E-G).

The direct effects, indirect effects through genotypes, indirect effects through abiotic
variations, and total effects of small herbivores on ITV in each trait are summarized in Table

1. Model fit the data well (for all models at the early successional stage: χ2 = 4.409, df=3,

N=14, p>0.05; for all models at the intermediate stage: χ2 = 6.559, df=6, N=14, p>0.05).
Variance explained for clay thickness (variation), topographic variation, and genotypic
richness for models at the early successional stage are 0.024, 0.008, and 0.056, respectively.
Variance explained for clay thickness (variation), topographic variation, genotypic richness,
and genotype diversity for models at the intermediate successional stage are 0.079, 0.045,
0.016, and 0.289, respectively. Number of hares and geese indicate the abundance of small
herbivores such that the early successional stage had higher grazing pressure (indicated by
two hares and two geese) relative to the intermediate stage (indicated by one hare and one
goose). Boxes are measured variables. Arrows denote unidirectional relationships among
variables. Blue arrows are significant positive relationships, red arrows are significant
negative relationships, and grey arrows show non-significant relationships. The width of the
arrows indicates the strength of the pathways. The values on the arrows denote standardized
path coefficients. Asterisks indicate significant paths: * P<0.1; ** P<0.05; *** P<0.001.
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Table 1(on next page)

Direct and indirect effects of hares and geese on intraspecific trait variation (ITV) of
Elytrigia atherica at the early and intermediate successional stages.

See online supporting text for an example of how these data were calculated and how
significance was determined using lavaan SEM. Asterisks indicate significant effects: * P<0.1;
** P<0.05; *** P<0.001.
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1

Successional 

stages
Traits

Direct 

effects 

Indirect 

effects 

through 

genotypes

Indirect effects 

through abiotic 

variations

Total 

effects

Height  0.608*** -0.021 -0.117 0.47**

Biomass 0.295** 0.032 -0.116 0.211

Specific leaf area 0.321**     0.06 -0.119 0.262
Early

Flowering   0.799*** -0.063 -0.042     0.694***

Height  0.577** 0.045 -0.169    0.454*

Biomass     0.332 0.022 -0.055 0.299

Specific leaf area -0.212 0.092 -0.003 -0.122
Intermediate

Flowering 0.363 -0.068 0.044  0.339

2
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