Identification of evolutionary relationships and DNA markers in the medicinally important 1 2 genus Fritillaria based on chloroplast genomics Tian Zhang¹, Sipei Huang¹, Simin Song¹, Meng Zou¹, Tiechui Yang², Weiwei Wang¹, Jiayu Zhou^{1,*}, 3 Hai Liao^{1,*} 4 ¹School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China 5 6 ²Qinghai lvkang Biological Development Co., Ltd., Xining, Qinghai, China 7 Authors' email address: 8 Tian Zhang: 1215695297@qq.com; Sipei Huang: 691786509@qq.com; Simin Song: 9 1158216140@qq.com; Meng Zou: 815112542@qq.com; Tiechui Yang: 298237664@qq.com; Weiwei 1028694049@qq.com; Jiayu Zhou: spinezhou@home.swjtu.edu.cn; Hai Liao: 10 ddliaohai@home.swjtu.edu.cn. 11 12 13 * For Correspondence 14 15 *Corresponding authors' information Jiayu Zhou: spinezhou@home.swjtu.edu.cn; 16 Hai Liao: ddliaohai@home.swjtu.edu.cn 17

18 19

Abstract: Genus Fritillaria has attracted attention because of its medicinal and ornamental values. At least three reasons, including the accurate discrimination between various Fritillaria species, protection and sustainable development of rare Fritillaria resources as well as understanding of relationship of some perplexing species, have prompted phylogenetic analyses and development of molecular markers for Fritillaria species. Here we generated complete chloroplast (CP) genomes for F. unibracteata, F. przewalskii, F. delavayi and F. sinica through Illumina sequencing, followed by de novo assembly. The lengths of the genomes ranged from 151,076 in F. unibracteata) to 152,043 in F. przewalskii. Those CP genomes displayed a typical quadripartite structure, all including a pair of inverted repeats (26,078 to 26,355 bp) separated by the large single-copy (81,383 to 81,804 bp) and small single-copy (17,537 to 17,569 bp) regions. Fritillaria, przewalskii, F. delavayi and F. sinica equivalently encodes 133 unique genes consisting of 38 transfer RNA genes, 8 ribosomal RNA genes and 87 protein coding genes, whereas F. unibracteata contained 132 unique genes due to absence of the rps16 gene. Subsequently, comparative analysis of the complete CP genomes revealed that ycf1, trnL, trnF, ndhD, trnN-trnR, trnE-trnT, trnN, psbM-trnD, atpI and rps19 to be useful as molecular markers in taxonomic studies, due to their inter-species variation, Based on the comprehensive CP genome data collected from 53 species in Fritillaria and Lilium genera, a phylogenomic study was carried out with three Cardiocrinum species and five Amana species as outgroups. Fritillaria genus and Lilium genus showed the closest relationship with a high support value, and the interspecific resolution within subgenus Fritillaria were much better than those of the phylogenetic trees in terms of the separate regions. The geographical distribution pattern of the 11 medicinal species appeared to map on the phylogenetic relationship based on CP genomes. Furthermore, phylogenetic analysis based on CP genome was a promising method to select potential novel medicinal resources to substitute current medicinal species that are on the verge of extinction. More importantly, the species-specific molecular identification for F. taipaiensis, F. unibracteata and F. cirrhosa, were preliminarily developed, respectively.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45 46 47

48

49 50 **Abbreviations:** CP, chloroplast; IR, inverted repeat; ITS, internal transcribed spacer; LSC, large single copy; SSC, small single copy; SSR, simple sequence repeats

Deleted: genus

Deleted: to the necessary

Deleted: i

Deleted: of

Deleted: obtained

Deleted: the

Deleted: of

Deleted: F.

Deleted: lack

Deleted: might be used

Deleted: y

Deleted: due to their significant difference

Deleted: that were

Deleted: 3

Deleted: species in

Deleted: genus

Deleted: 5 species in

Deleted: genus

Commented [MM1]: Doesn't make much sense. Can

remove

Commented [MM2]: This sentence doesn't make sense to

me. Please amend.

Deleted: were

Commented [MM3]: I am not sure what is being said here.

Introduction

70

71

72 73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

The genus Fritillaria (Liliaceae), consisting of 140 known species, is widely distributed in Europe, Asia and North America (Huang et al., 2018; Rix et al., 2001). Based on the Flora of China, twenty-two species are distributed throughout most provinces in China, among which are four diversity hotspots (Xinjiang plain, East China plain, Hengduan Mountains and Northeast plain). Fritillaria species have attracted much attention because they are used in traditional Chinese medicine and sometimes as ornamental plants. Chinese Pharmacopeia (2020) reports dried bulbs from 11 species used in traditional Chinese medicine, which were divided into five main concoctions, including Chuan-Bei-mu (bulbs of the complex group of F. cirrhosa), Yi-Bei-mu (bulbs of F. palilidiflora and F. walujewii), Zhe-Bei-mu (bulbs of F. thunbergii), Ping-Bei-mu (bulbs of F. ussuriensis) and Hubei-Bei-mu (bulbs of F. hupehensis). Although the bulb of each original species has its own unique efficacy and bioactive compounds and should be used separately for given purposes in traditional prescription, various Fritillaria species were still used indiscriminately in clinical prescription due to their similar morphology and names. Especially, the morphological traits of the group that includes F. cirrhosa, including F. cirrhosa, F. unibracteata, F. przewalskii, F. delavayi, F. taipaiensis and F. wabuensis, were extremely complicated because of several highly variable characters including stem length, petal color, capsule winged or not, leaf curling; and scale number (Luo et al., 1996). Therefore, it was vital to carry out taxonomic identification of various Fritillaria species.

At present, DNA-based classification is applied in angiosperm phylogeny because of their reliability (Yang et al., 2016). Accurate identification (eg. using DNA markers) has been necessary to discriminate between the Fritillaria species and its adulterants. Secondly, since the bulbs of some Fritillaria species showed great economic value in Asian countries (Yeum et al., 2007) and have long been used in traditional Chinese medicine, and due to this, wild Fritillaria populations decreased sharply because of long-term excessive harvesting. To date, four species of Chuan-Bei-mu and eight species in Xinjiang plain have been classified as rare resources based on the list of rare endangered higher plants of China (Li et al., 2018). DNA markers have been helpful in understanding accurately genetic diversity and structure of Fritillaria population, and thus provided scientific approach for conservation requirement. Thirdly, a better understanding of the relationships within the genus could be of great significance for the medicinal use of Fritillaria. Some of the phylogenetically closest species might be analyzed for their potential medicinal values, and be used as substitutes to relieve survival pressure of species that are currently rare. Finally, the phylogenetic positions of some of the medicinal species of Fritillaria, such as F. pallidiflora, F. wabuensis and F. davidii, remain elusive. Fritillaria, pallidiflora was always considered a member of subgenus Fritillaria by Rix (2001), whereas Rønsted et al (2005) linked it to subgenus Petillium based on the molecular and Deleted: are constituted.

Deleted: mostly

Deleted: as medicinal materials

Deleted: partly

Deleted: used

Deleted: Totally, it was reported by the

Deleted: medicines

Deleted: complex
Deleted: of

Deleted: extremely important

Deleted: y

Deleted: n

Deleted: Nowadays

Deleted: occurred and has been

Deleted: group

Deleted: and readable data

Deleted: Basically, a

Deleted: was

Deleted: among

Deleted: original

Deleted: the

Deleted: due to
Deleted: was
Deleted: to
Deleted:

Deleted: were

Deleted: in

Deleted: ed

Deleted: .

morphological analyses. F. wabuensis was discovered and nominated as a new species in Fritillaria (Tang & Yue, 1983), but later it was classified as variant of F. crassicaulis (Luo et al., 1996) and F. unibracteata (Liu et al., 2009), respectively. Therefore, well resolved molecular phylogenies of Fritillaria, especially the medicinal species, were necessary.

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158159

160

161

162

163

164

165

166

167

168

169

170

Currently, the genus Fritillaria is divided into eight subgenera, including, Liliorhiza (including species mainly in North America), Japonica (including species mainly in Japan), Fritillaria (the biggest subgenus), Rhinopetalum, Petilium, and the monotypic Davidii (including only F. davidii), Theresia (only F. persica) and Korolkowia (only F. sewerezowi), by Rix (2001). At present, despite the frequent usage of nuclear DNA internal transcribed spacer (ITS) and several plastid genome regions (trnL-trnF, matK, rbcL and rpl16) in the classification of this genus, previous studies have found that these markers merely provided weak phylogenetic signal. In detail, Rønsted et al (2005), who primarily established the current understanding of evolutionary relationships within Fritillaria, investigated the phylogenetic position of 37 Fritillaria species using matK, rpl16 intron and ITS. Consequently, Fritillaria was shown to be of two clades, in which one clade mainly included species from the North American subgenus Liliorhiza and the other clade comprised of species from the seven remaining subgenera. In common with the result of Rønsted et al (2005), Khourang et al (2014) revealed that the subgenus Fritillaria was sister to subgenus Rhinopetalum on the basis of the phylogenetic tree of nine Iranian species using the ITS and trnL-trnF regions. However, Day et al (2014) supported that the largest subgenus (subgenus Fritillaria) appeared to be polyphyletic and formed two clades with matK and rbcL sequences, in which one clade comprised taxa occurring mainly in Europe, the Middle East, Japan and North Africa, and the other clade comprised taxa distributing in China and Central Asia. In our previous research, various Fritillaria species from China were classified as North-China group and South-China group based on nrITS2 sequences, but 57.1 % species were not effectively resolved (Zheng et al., 2019). Recently, Li et al (2014) presented high-quality chloroplast genome using single molecule real-time sequencing, and suggested that rps19 gene varied greatest among various species. However, the noncoding regions showed higher variability and were potentially effective molecular markers. Therefore, it was proposed that genomics based on the entire chloroplast genome sequences might help identify molecular markers with higher resolution (Xue et al., 2019).

The chloroplast (CP) genome has been extensively used for understanding phylogenetic relationships and discovering more effective molecular markers, some of which, such as *trnH-psbA*, *matK* and *rpl16*, have been used as universal plant DNA barcodes (*Bansala et al.*, 2018; *Vinnersten & Bremer*, 2001). To date, the availability of 23 *Fritillaria* CP genomes in GenBank that can be used to enhance, our understanding of the phylogenetic relationships and to identify, molecular markers. Although previous reports (*Bi et al.*, 2018; *Chen et al.*, 2019; *Chen et al.*, 2020; *Huang et al.*, 2020; *Park et al.*, 2017) performed comparative analyses with *Fritillaria* CP genomes available on GenBank,

Commented [MM4]: When a genus name is used after a period, you need to use the full genus name (*Fritillaria*). Please amend as needed everywhere.

Deleted: comparison

Deleted: firstly

Deleted: genus

Deleted: and

Deleted: more resolved

Deleted: phylogenetic studies

Deleted: those

Deleted: to carry out for advanced understanding of relationships within this genus.

Deleted: was

Deleted: genus formed

Deleted: extent of

Deleted: during evolution

Deleted: postulated to search

Deleted: candidate

Deleted: e

Deleted: provide more sufficient phylogenetic signals and

Deleted: were

Deleted: d

Deleted: ication

Deleted: of

species-specific identification has not been reported and the phylogenetic place of some ambiguous species remained elusive. At the initial stage of our study, the CP genomes of three important medicinal species (*F. unibracteata*, *F. przewalskii* and *F. delavayi*) and *F. sinica* have not been reported. The increasing CP genomes might not only provide a better phylogenetic analysis of this genus, but also promisingly develop species-specific identification method. Therefore, the CP genomes of these *Fritillaria* species were obtained using the Illumina platform in the present study. The objectives of this study included (1) analyzing the global structural patterns of the four CP genomes and comparing them with the available 23 CP genomes of *Fritillaria*; (2) assessing the phylogenetic relationships of the 11 medicinal species used in traditional Chinese medicine, by which to understand the phylogenetic position of some ambiguous species and find potential medicinal plants; and (3) obtaining candidate DNA markers (repeat sequences, SSRs, divergent regions and indels), and preliminarily developing species-specific identification of medicinal *Fritillaria* species in Chinese medicine market. To the best of our knowledge, we are the first to develop species-specific molecular identification of *Fritillaria* species.

Materials and methods

Plant material

The fresh leaves of *F. unibracteata*, *F. przewalskii*, *F. delavayi* and *F. sinica* were collected from the Huzhu County (36°50′15″N, 101°57′06″E), Xining city, Qinghai Province, respectively. The Huzhu County is located in north Hengduan Mountains and east of the Qinghai-Tibetan Plateau. All samples were immediately frozen in liquid nitrogen and stored at -80 °C until DNA extraction.

Chloroplast genome sequencing and assembly

Total genomic DNA was isolated from 100 mg of fresh leaves using a modified CTAB method. The DNA concentration (>50 ng μ L⁻¹) was measured using a NanoDrop spectrophotometer. The isolated DNA was fragmented into small pieces using sonication. After end reparation and A-tailing, the short DNA fragments were ligated with the Illumina paired-end adaptors. Based on gel electrophoresis, the suitable fragments were purified and selected as templates for next-step PCR amplification, so as to create the final DNA library. The quality and quantity of the DNA library were measured using the Agilent 2100 Bioanalyzer. Finally, the library was sequenced from both the 5' and 3' ends using Illumina NovaSeq6000 PE150 Sequencing platform (Illumina, CA, USA). By use of NGSQCToolkit v2.3.3, the raw reads were filtered to remove the linker sequence and low-quality reads defined as having more than 10% bases with Q-value <20, and thus high-quality clean reads were obtained. The clean reads were then assembled using SPAdes (*Bankevich et al.*, 2012) 3.10.1 (http://cab.spbu.ru/software/spades/) software with CP genome of *F. cirrhosa* as reference (NCBI accession number NC 024728.1). Finally, LSC/IR and SSC/IR junctions were further verified by

Sanger sequencing.

227228229

230

231

232

233

234

235

236

237

238

239

240

Genome annotation and sequence alignment

In order to predict putative gene function, the CDS, rRNA and tRNA genes were aligned using blast v2.2.25 (https://blast.ncbi.nlm.nih.gov/Blast.cgi), HMMER v3.1b2 (http://www.hmmer.org/) and aragorn v1.2.38 (http://130.235.244.92/ARAGORN/), respectively, with *E*-value of 10⁻⁵. The OGDRAW (https://chlorobox.mpimp-golm.mpg.de/OGDraw.html) helped to make the chloroplast genome maps of *F. unibracteata*, *F. przewalskii*, *F. delavayi*, and *F. sinica*.

The vmatch v2.3.0 (http://www.vmatch.de/) could identify their scattered repetitive sequences (Askitis & Sinha, 2010). MISA v1.0 (MIcroSAtellite identification tool, http://pgrc.ipk-gatersleben.de/misa/misa.html) helped to analyze CPSSR. The mafft v7.310 was used to perform and indel identification. (Katoh & Standley, 2013). After using the mafft to align the chloroplast genome sequences, BioEdit software was used to adjust the sequences manually (Gupta et al., 2014). DanSP v6.0 was used to perform sliding window analysis (step size =200 bp and window length=600 bp) for nucleotide variability (Pi) in the whole chloroplast genome (Rozas et al., 2017).

241242243

244

245

246

247

248

249

250

251

252

253

254

255

256

257258

Phylogenetic analysis

The phylogenetic analysis was firstly performed based on matK, psb4-trnH and rpl16, respectively, by use of Neighbor Joining and Maximum Likelihood methods. Then, the chloroplast genomes in the phylogenetic analysis included the 27 species of Fritillaria, 26 species of Lilium, 3 species of Cardiocrinum and 5 species of Amana. The chloroplast genome evolutionary tree was constructed by BLAST2OGMSA script (https://github.com/fenghen360/BLAST2OGMSA) (Bi, 2018) and MEGA-X software (Kumar et al., 2018). Firstly, multi-sequence alignment was conducted using BLAST tool of NCBI (Johnson et al., 2008) and then, the initial alignment result was extracted by BLAST2OGMSA script to obtain homologous blocks. It was reported that BLAST2OGMSA relied on ProgressiveMauve, a kind of anchored alignment algorithm, to determine where locally collinear blocks (LCBs) represented the landmarks among organelle genomes (such as chloroplast and mitochondrial genomes). The co-exist LCBs among all organelle genomes were extracted and prepared for the further phylogenetic tree construction. In this study, the conserved CDS genes, functional non-coding regions, and rRNA genes as well were combined by BLAST2OGMSA. Finally, the alignment data from BLAST2OGMSA was imported into MEGA-X software to construct the phylogenetic tree using the Neighbor-Joining method and the Maximum likelihood method respectively.

259260261

262

Species-specific identification of Fritillaria species

After careful alignment on the CP genomes, three candidate indel markers for species-specific

test for *F. taipaiensis*, *F. unibracteata* and *F. cirrhosa* were verified preliminarily, respectively, using 11 species documented in the Chinese Pharmacopeia 2020 and 3 other species that were also frequently used in Chinese medicine market. Firstly, a unique indel with 137 bp deletion within intergenic space region, *accD-psal*, of *F. taipaiensis* CP genome, made it a suitable target for developing species-specific test for *F. taipaiensis*. The test for *F. taipaiensis* was performed by routine PCR using 5'-GCG AAC GAG TAT TTA GTT CAT C -3' as former primer and 5'-AGG GTT CTT TCA CTC CTT TCT -3' as reverse primer. The routine PCR were performed under the following conditions (Table S1). All samples were performed in triplicate.

Similarly, two indels with 47 bp insertion and 6 bp deletion were also found within trnG-GCC-trnR-UCU and intron of atpF of F. unibracteata and F. cirrhosa CP genome respectively, were thus selected for development of real time PCR based marker. The species-specific tests for F. unibracteata and F. cirrhosa were performed by Taqman MGB real time PCR, respectively. The former primer (5'-GCT ACC CGC TTA ATA CAT AC-3'), reverse primer (5'-CCG GAA CAG ATC GAA CAG -3') and the probe (5'-FAM-CCA TTG TCT AAT GGA AAA GA-MGB-3') were used for identification of F. unibracteata. The former primer (5'-GCT ACC CGC TTA ATA CAT AC-3'), reverse primer (5'-CCG GAA CAG ATC GAA CAG -3') and the probe (5'-FAM-CCA TTG TCT AAT GGA AAA GA-MGB-3') were used for species-specific identification of F. cirrhosa. The TaqMan MGB real-time PCR was performed using 2×T5 Fast qPCR Mix (Qingke, China) with LightCycler 96 real-time fluorescence PCR instrument system (Roche) under the following conditions (Table S1). All samples were performed in triplicate.

Results

2.77

Genome sequencing, assembly, and genome features

Based on a stringent quality control, a total of 23,755,399 to 26,831,529 paired-end reads were obtained, generating 7,126,619,700 to 8,049,458,700 clean bases data, from the four *Fritillaria* species. The resultant clean paired-end reads were then employed to assemble the chloroplast genome using CP genome of *F. cirrhosa* as the reference. Totally, 471,385 to 652,632 mapping reads yielded average coverage of 934X to 1292X for each species, generating four full-length CP genomes that ranged from 151,076 in *F. unibracteata* to 152,043 in *F. przewalskii*. The CP genome contained identical structure including two IR regions (26,078 to 26,355 bp each), which were separated by one LSC region (81,383 to 81,804 bp) and one SSC region (17,537 to 17,569 bp) (Fig 1 and Table S2).

A total of 133 genes were annotated, including 87 protein-coding genes (PCGs), 38 tRNA and 8 rRNA genes. The global gene order and content were identical in the four species, except *F. unibracteata* that was lack of *rps16* gene. 21 genes were duplicated in the CP genome, including 8 tRNA genes, 4 rRNA genes and 9 PCGs. There were 13 genes containing intron, among which *clpP* and *ycf3* had two introns, whereas the other 13 genes had one intron. 8, 1, 4 and 2 introns were located

in the LSC, SSC, IRa and IRb region, respectively (Table 1 and Table S3). Table S3 listed the 15 intron-containing genes in the chloroplast genome of *F. unibracteata*, and those of *F. przewalskii*, *F. delavayi*, and *F. sinica* were included in Table S4, S5 and S6, respectively.

299

300

301 302

303

304 305

306

307308

309

310

311

312

313

314

315

316

317

318 319

320321

322

327 328

330

331

Four Fritillaria species had high sequence similarity (>90% identity). IR regions showed a lower level of sequence divergence than LSC and SSC regions. Contraction and expansion of IR regions, especially the boundary region, are important aspects of chloroplast genomes, which are the main reason of length variation in these genomes (Abdullah et al., 2020). These 12 species have the same gene content and array in IR region, which is expanded in rps19 and ycf1 genes. The rps19 gene in the 12 Fritillaria species crossed the LSC/IRb boundary and showed the same length of 279 bp which was similar to that of Lilium superbum, except that F. cirrhosa had rps19 gene of 285 bp. In the LSC region, the length of rps19 genes ranged from 250 to 268 bp, whereas that of rps19 genes in the IRb region varied from 11 to 35 bp. Besides, the rps19 genes lost their protein-coding function due to incomplete gene duplication. The similar event was also observed in the ycfl genes at the IRb/SSC border. The ycfl genes were largely located in the IRb and extended 16 to 32 bp into the SSC region, whereas the ycfl gene in F. taipaiensis was fully located in the IRb region, 58 bp from the IRb/SSC boundary. In the SSC/IRa boundary of 12 species of Fritillaria subgenus, ycfl was a key gene and almost equally distributed (Fig 2). Ycfl has a SSC region of 4320 bp in F. unibracteata and F. przewalskii, but 4314 bp in F. delavayi, F. sinica, F. cirrhosa and F. taipaiensis, and also has an IRa region of 1230 bp in all species. By comparing the LSC/IRb, SSC/IRa and IRa/LSC regions, it was found that there were obvious differences in IRb/SSC regions between the 12 Fritillaria species. The ycfl genes in F. taipaiensis and F. cirrhosa did not cross the IRb/SSC boundary, whereas those in other Fritillaria species extended 16 to 32 bp into the SSC region, which had a 16 to 32 bp overlap with ndhF gene.

Table 1

323

324

Fig. 1

325

Fig. 2

329

Repeat sequence, simple sequence repeats (SSRs) and divergent regions

The length of the repeat sequence distributed mainly from 15 to 20 bp and rarely from 21 to 38

bp among four *Fritillaria* species (Table S7). The repeating sequences were divided into forward repeating and palindrome sequences (including reverse and complementary sequences). The number of repeating sequences from 15 to 20 bp of *F. unibracteata* and *F. przewalskii* were more than 487, while those of *F. delavayi* and *F. sinica* were less than 350, respectively (Fig S1). The number of repeat sequences in *F. przewalskii*, *F. unibracteata*, *F. sinica* and *F. delavayi* were 1,200, 976, 656 and 425, respectively. Although repeat sequences from 21 to 38 bp were rare, several promising molecular markers were found. For instance, *F. unibracteata* had three forward repeating in repeat sequence at length of 23, 30 and 47 bp, respectively. *F. delavayi* also contained a palindrome in repeat sequence at length of 54 bp, and *F. przewalskii* contains two forward repeating sequences and a palindrome in repeat sequence at length of 23 bp.

We also found 77, 76, 75 and 72SSRs of at least 10 bp in *F. przewalskii*, *F. sinica*, *F. unibracteata* and *F. delavayi*, respectively (Table S7, Fig 3). These SSRs were mainly located in the LSC region, followed by 50 SSRs in IR region, and a few SSRs in the SSC region. The single- and three-nucleotide SSRs were the majority detected in these *Fritillaria* species, the double-and four-nucleotide SSRs were the minority detected and a few were five-nucleotide. Single- together with three-nucleotide repeats in *F. unibracteata*, *F. przewalskii*, *F. delavayi* and *F. sinica* accounted for 81.33%, 83.12%, 79.17%, and 81.58% of SSRs, respectively. The single-nucleotide SSR with eight to nine repeated units were the most abundant and accounted for 53.91% (Fig 3). The high variation of SSRs might provide abundant information for molecular marker studies and plant breeding.

Fig. 3

Using slide window analysis, 18 regions were eventually extracted to calculate the nucleotide variability with Pi value ranging from 0.0104 (rpl12) to 0.0159 (ycf1). 10 most divergent regions were identified and thus might be utilized as potential molecular markers for future phylogenetic analysis and species identification in genus Fritillaria. These regions included ycf1, trnL, trnF, ndhD, trnN-trnR, trnE-trnT, trnN, psbM-trnD, atpl and rps19 (Fig S2). Due to its highest divergence, ycf1 was used to construct phylogenetic tree in the following section.

Phylogenetic tree on the basis of CP genome

Prior to the phylogenetic analysis based on CP genomes, we attempted to construct phylogenetic trees based on three common DNA barcodes from CP genomes, including matK, psbA-trnH and rpl16. Also, the ycf1 was used to construct phylogenetic tree. As a result, matK, psbA-trnH and rpl16 obtained weakly supported trees, whereas phylogenetic tree based on ycf1 was moderately supported as more than 50% and 60% branches got bootstrap of more than 90 BP using Neighbor joining (NJ)

(Fig S3) and Maximum Likelihood (ML) (Fig S4), respectively.

367

368

369370

371

372373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388 389

390

391392

393 394

395396

397

398399

400

In addition, in comparison with four partial regions, the whole CP genomes obtained highly reliable phylogenetic tree. The CP genome matrix included the 27 species of Fritillaria genus and 26 of Lilium genus, with 3 of Cardiocrinum genus and 5 of Amana genus as outgroups. One average, (152,099) bp of the CP genome were aligned. The result of ML tree was similar to that of NJ tree (Fig S5). In the ML tree (Fig 4), the ingroup corresponding to Fritillaria and Lilium was strongly supported (100 BP), and sister to Cardiocrinum. In this analysis, Lilium was monophyletic (100 BP) and was sister to Fritillaria genus. Furthermore, Lilium was nested with Fritillaria with moderate bootstrap support (75 BP) than that (53 BP) of result of Day et al. Fritillaria, as the largest subgenus, was paraphyletic and majority of which fall in one strong supported Eurasain clade (A) except F. maximowiczii (subgenus Liliorhiza). Within the clade A, F. davidii appeared as successive sister taxa to the remaining Eurasian species (100 BP), which split into two well-supported clades. Clade A1 grouped with the monotypic subgenus Rhinopetalum (F. karelinii) as sister to two species from subgenus Fritillaria (F. ussuriensia and F. meleagroides), which occurred in North region of China. The sister clade (A2) was composed of the remaining 22 species that could be classified into two subclades (100 BP). Subclade B1 contained subgenus Theresia (F. persica) and subgenus Petilium (F. eduardii), which occur in the Middle East and Central Asia, while subclade B2 comprising subgenus Fritillaria includes 15 species from South China and five species (F. tortifolia, F. verticillata, F. yuminensis, F. pallidiflora, and F. walujewii) from Xinjiang plain (Fig 5). The 11 most valuable species used in traditional Chinese medicine were not included in monophyletic group, as F. ussuriensis was separated from the other 11 species. As a whole, the phylogenetic tree based on CP genome was highly supported, in which 91% (53 out of 58) branches obtained bootstrap values of more than 90 BP.

Fig. 4

Fig. 5

Preliminary species-specific test for F. taipaiensis, F. unibracteata and F. cirrhosa

As shown in Fig S6A, after routine PCR and electrophoresis, *F. taipaiensis* revealed a unique DNA band at length of 302 bp with limit of detection at 0.239 ng/μL (Lane 4), whereas the other *Fritillaria* species showed DNA band at length of 439 bp. As shown in Fig S6B, only *F. unibraceata* showed positive result and other *Fritillaria* species showed negative results, confirming an analysis specificity of 100%. Furthermore, the reactivity was detected at the limit of 0.1543ng/μL. Similarly, *F.*

cirrhosa showed unique positive result in Fig S6C with the limit of detection of 0.0145ng/μL.

Discussion

The overall structure of CP genome

With the development of *De novo* (Illumina) sequencing technology, the CP genome assembly has become cost-affordable and easier compared with previous Sanger method. Moreover, *De novo* sequencing technology has been widely used in transcriptome assembly in order to identify the biosynthetic and regulatory genes in traditional Chinese medicine, such as *Ligusticum chuanxiong* (*Song et al.*, *2015*) and *Cassia obtusifolia* (*Deng et al.*, *2018*). In this research, four new CP genomes of *Fritillaria* were obtained using *De novo* sequencing technology. The size in this research (from 151,076 to 152,043 bp) was in accordance with those of reported CP genomes, such as *F. ussuriensis* (151,524 bp), *F. taipaiensis* (151,693 bp), *F. cirrhosa* (151,991 bp), and etc. The four CP genomes contained similar genome structure, gene content and gene order that were typical of land plants. Compared with other three species, the number of *tRNA* and *rRNA* genes were identical, but the number of protein coding genes ranged from 77 to 78 due to the absence of *rps16* gene in *F. unibracteata*. The absence of *rps16* gene has also been observed in *Brassicaceae*, *Fabaceae* and *Populus* species (*Jin et al.*, *2019*). The functional loss of *rps16* gene from the CP genome could be compensated by the mitochondrial and (or) nuclear-encoded *rps16* that could target chloroplast as well as mitochondria (*Ueda et al.*, *2008*).

The highly conserved genomic structure and gene order as well as no rearrangement of the Fritillaria CP genomes has been observed. The 26 kb of IRs in the Fritillaria species was within the size range of most angiosperm CP genome (20 to 30 kb). The IR/LSC boundaries in the Fritillaria and Lilium (Lilium superbum) CP genomes expanded into the rps19 gene, which might be a characteristic CP genome structure of Fritillaria genus and its relative genus. Similar expansion was also observed in other taxa from family Liliaceae, including Lilium (Kim & Lee., 2004), Fritillaria (Li et al., 2014), and Cardiocrinum (Liu et al., 2018). Li et al (2017) reported that the common location of IR/LSC junctions in rps19 seemed to be an ancestral symplesiomorphy of Liliaceae. Here, the similar feature was also found that the whole rps19 gene was contained inside the IR in Smilax china, Oncidium gower and Allium chinense, while in Hordeum vulgare, rps19 did not extend into the IR (Fig 2). The similar IRb/LSC boundaries among Fritillaria, Lilium and Cardiocrinum implicated that these genera were closely related, which was coincided with the phylogenetic result based on CP genomes (Fig 4).

A careful comparison between repeat sequence and SSR regions revealed the important differences between various *Fritillaria* species leading to establish specific markers for molecular identification. In this study, a large number of repeat sequences, mainly ranging from 15 to 20 bp, were detected in the chloroplast genomes of four *Fritillaria* species, consistent with the results of

studies on the chloroplast genomes of Cannabaceae (Zhang et al., 2018). SSRs have been used for the study of population genetics because of their high variability (Asaf et al., 2016). In this study, the high ratio of SSRs in LSC region was also observed in F. sichuanica (Chen et al., 2019). In the CP genomes of F. unibracteata, F. przewalskii, F. delavayi and F. sinica, the content of A/T repeats was far greater than that of G/C repeats, similar to the results of Xue et al (2019) and other studies (Melotto-Passarin et al., 2011). Although several variable CP DNA markers, for instance matK, rpl16, atpB and rbcL, have been used in phylogenetic studies of Fritillaria, they showed small divergence (Pi value of 0.00717, 0.00571, 0.00391 and 0.00505, respectively) among 12 Fritillaria species. Based on the result of sliding window analysis, the 10 most divergent regions were identified with Pi value ranging from 0.0116 to 0.0159. These divergent regions included ycf1, trnL, trnF, ndhD, trnN, atpl and rps19 in the coding region, and trnN-trnR, trnE-trnT and psbM-trnD in intergenic region. In respect to three common DNA barcodes, ycf1 got more reliable phylogenetic tree and thus confirmed that divergent region was potential molecular markers for future phylogenetic analysis. The highly variable trnE-trnT and gene ycf1 have also been found by Li et al (2018), and gene ycf1 has been proposed as the most promising plastid DNA barcode of land plants (Dong et al., 2015).

The phylogenetic analysis of medicinal genus Fritillaria

As compared to separate regions, the whole CP genome showed higher resolution than the former since no less than 91% branches with bootstrap value of 90 BP in Fig. 4. This result was consistent with the previous report (*Ronsted et al.*, 2005) that increasing additional gene regions would help to improve the resolution. As suggested by *Kress et al* (2005) and *Ng et al* (2017), the whole CP genome was promising to act as super DNA barcode to resolve various *Fritillaria* species efficiently. Furthermore, our findings indicated that *Fritillaria* and *Lilium* were evidently sisters, the closest relative being *Cardiocrinum* in a monophyletic genus (100 BP), similar with the result of *Chen et al* (2019). Such phylogenetic tree based on whole CP genome in this study showed similar topology with previous study (*Rønsted et al.*, 2005), but with higher resolution. Specially, genus *Fritillaria* was indicated as paraphyletic with higher bootstrap (100 BP) compared to 54 BP and 53 BP in the findings of *Rønsted et al* (2005) and *Day et al* (2014), respectively.

The subgenus Fritillaria also appeared to be a paraphyletic group, similar to the results of Day et al (2014). One important medicinal Fritillaria specie, F. ussuriensis, clustered with F. meleagroides and formed sister clade to F. karelinii of subgenus Rhinopetalum, similar to the result of Huang et al (2020), Khourang et al (2014) and Li et al (2018). F. ussuriensis and F. meleagroides were frequently considered as members of the large subgenus Fritillaria (Rix 2001). However, the two species do have some similarities with F. karalinii as both of them have small mastoid on filament, which was different from other species in Xinjiang plain with no mastoid. Similar conflict between molecules and morphology was also observed in other taxa (Anand et al., 2016). Meanwhile, such mastoid on

filament was proposed to be a potential primitive feature, and our results partly supported this hypothesis because *F. karelinii* and *F. meleagroides* diverged early from other medicinal species from Xinjiang, such as *F. pallidiflora* and *F. walujewii*. Subgenus *Theresia* (*F. persica*) and *Petilium* (*F. eduardii*) had close relationship and formed monophyletic subclade B1, which was similar to the result of *Day et al* (2014) and *Li et al* (2018).

As shown in Fig 4 and Fig 5, 5 species from Xinjiang plain were included in a strongly supported subclade C1 (Fig 4), which was sister to subclade C2 containing the other 15 species from outside Xinjiang plain. This signified that the Xingjiang species had a close genetic relationship. All the four species that were distributed in east China plain, including *F. monantha*, *F. anhuiensis*, *F. thunbergii* and *F. hupehensis*, were included in a supported subclade (100 BP). The rest 11 species, including the complex group of *F. cirrhosa*, in another subclade were distributed in Hengduan Mountains (100 BP). The 11 important medicinal *Fritillaria* species were widely distributed in four hotspots, Xinjiang plain, northeastern China plain, east China plain and Hengduan Mountains. The former two regions constituted hotspots in North China, while the latter two regions constituted hotspots in South China. Interestingly, the eight species in the upper location of the clade originated from Xinjiang plain and northeastern China plain (*F. ussuriensis*), whereas the 12 species in the lower location distributed in East China and Hengduan Mountains region. Consequently, the geographical distribution pattern of the 11 medicinal species appeared to map on the phylogenetic tree, especially by plastid data (*Rønsted et al.*, 2005). The similar result was also reported by *Li et al* (2018), and thus the investigation on the correlation between distribution pattern and phylogenetic relationship was needed in the future.

Early in 1987, *F. unibracteata*, *F. cirrhosa*, *F. prezewalskii* and *F. delavayi* were recorded as national third-class endangered medicinal plants of China (*Konchar et al.*, 2011). That the most important medicinal species showed close relationship to widely cultivated members of subgenus *Fritillaria*, raised the possibility that the rare species were replaced by those widely cultivated species. Recent analyses have demonstrated that *F. crassicaulis*, showing closest relationship with *F. cirrhosa*, has been widely used as the substitution of *F. cirrhosa* by people of Naxi nationality and Tibetan since Ming/Qing Dynasty (*Tang & Xue*, 1992). These findings highlighted those phylogenetic trees based on CP genomes were promising method to select potential novel medicinal species. In the future, those showing close relationship to the important species in traditional Chinese medicine, such as *F. sichuanica*, *F. dajinensis*, *F. yuzhongensis*, *F. sinica* and *F. crassicaulis*, might be investigated whether these bulbs contain the same bioactive compounds found in the complex of *F. cirrhosa*.

The phylogenetic placement and species-specific identification of some Fritillaria species

The non-monophyletic trait of subgenus *Fritillaria* indicated the incongruence in classification among some species, similar as the reports by *Rønsted et al* (2005) and *Day et al* (2014). Although *F. ussurinensis* was regarded as a member of subgenus *Fritillaria*, that its splitting from other members

of subgenus Fritillaria has also been observed by Chen et al (2019) and Huang et al (2020). There were several reports of natural interspecific hybrids (e.g. F. ussurinensis (Ruan et al., 2004) and F. eduardii (Wietsma et al., 2011)), which might promote the molecular phylogenetic non-monphyly (Funk & Omland, 2003). Sencondly, F. davidii had rice-shaped bulbils, resembling the morphological character of subgenus Liliorhiza, and used to be grouped in subgenus Liliorhiza. But based on our results, it was distantly related to genus Liliorhiza and was thus placed in subgenus Davidii as described by Rix (2001). It was suggested that rice-shaped bulbils have independently evolved in F. davidii and subgenus Liliorhiza due to geographic separation, followed by a loss in some species in Eurasian clade during evolution (Rønsted et al., 2005). Thirdly, Rønsted et al (2005) found that F. pallidiflora was resolved solely within the Korolkowia/Petilium/Theresia clade by combined plasmid rpl16 and matK sequences. Our new results demonstrated that F. pallidiflora was clustered within subgenus Fritillaria and more closely related to Petilium/Theresia. The conflict in F. pallidiflora was likely to be solved by using whole CP genome instead of separate regions. In addition, based on the CP genome, F. unibraceata was sister to F. wabuensis with divergence of 0.003, which was more than that between F. sichuanica and F. dajinensis (0.002). If F. sichuanica and F. dajinensis were given at rank of specie, based on the CP genome it was preferable to follow Tang & Yue (1983) and rank F. wabuiensis as specie instead of rank of variant. However, this result was merely based on CP genome, the accurate placement of F. wabuensis kept further evaluation by nuclear genome comparison although it was extremely difficult to obtain.

Considering the incongruence between morphology and molecular phylogeny, the species-specific identification of *Fritillaria* species was highlighted. In this study, the repeated sequence, SSR, divergent region and indel analyses were performed, respectively, to identify candidate species-specific markers. As a result, three indels for *F. taipaiensis*, *F. unibracteata* and *F. przewalskii* were selected, respectively, due to uniqueness, fragment length and convenient design of primers. Further routine and real-time PCR obtained characteristic amplification using 14 *Fritillaria* species, including 11 most important medicinal species, as verifying materials. In previous researches, the indel-based methods have also been applied for plant identification with high reliability and convenience (*Hong et al.*, 2017; *Kim et al.*, 2018). Taking into account the limited individual samples we collected in this study, the results from our approach are very promising. In the future, the developing method is required to be investigated on multiple individuals.

Conclusion

The four CP genome of species from subgenus *Fritillaria* provided support for taxonomic clarification, phylogenetic relationship and development of DNA markers. The phylogenetic tree based on the whole CP genome was reliable since 91% branches obtained bootstrap of more than 90 BP, the result of which supported for the monophyly of genus *Lilium*, *Amana* and *Cardiocrinum*,

except that the largest genus *Fritillaria* was paraphyletic. The 11 members of subgenus *Fritillaria* that were used in traditional Chinese medicine were split into two clusters since *F. ussuriensis* was clustered with *F. meleagroides* and *F. karelinii*. In addition, the phylogenetic tree appeared to reflect a geographic distribution pattern of *Fritillaria* subgenus, and also highlighted the importance of CP genome in the evolutional analysis. The most important medicinal species, especially *F. cirrhosa* complex, were found to be close to species that were in widespread cultivation for medicinal and ornamental purposes. Excitingly, those closely related species from subgenus *Fritillaria* might be promising alternatives to balance the improving market and rare resources. Finally, the preliminary test among medicinal species in Chinese medicine market suggested the development of species-specific identification on the basis of CP genome was a promising approach, and in the future in depth investigation on multiple individuals is needed.

554555556

557

544

545

546547

548

549550

551

552

553

Availability of data and materials

- The chloroplast genomes generated during the current study were deposited in NCBI with accession
- number of MW849272 (F. unibraceata), MW849274 (F. przewalskii), MW849275 (F. delavayi) and
- 559 MW849273 (F. sinica), respectively. All the raw Illumina data of F. unibracteata, F. przewalskii, F.
- 560 delavayi and F. sinica have been deposited in the Sequence Read Archive (SRA) of the NCBI under
- 561 accession numbers of SRR14454932, SRR14455034, SRR14454929 and SRR14455331, respectively.

562563

References

- 564 Abdullah, Henriquez CL, Mehmood F, Carlsen MM, Islam M, Waheed MT, Poczai P, Croat TB,
- Ahmed I. 2020. Complete chloroplast genomes of Anthurium huixtlense and Pothos scandens
- 566 (Pothoideae, Araceae): unique inverted repeat expansion and contraction affect rate of evolution.
- 567 J Mol Evol 88(7): 562-574. DOI 10.1007/s00239-020-09958-w
- 568 Anand KK, Jena SN, Chaudhary LB, Singh M. 2016. Conflict between morphological and
- 569 molecular data: a case study of Ficus krishnae (Moraceae). Phytotaxa 247: 143-147. DOI
- 570 https://doi.org/10.11646/phytotaxa.247.2.7.
- 571 Angen Ø, Johannesen TB, Petersen RF, Uldum SA, Schnee C. 2021. Development of a
- 572 species-specific real-time PCR test for Chlamydia psittaci and its employment in the
- 573 investigation of zoonotic transmission from racing pigeons in Denmark. Diagn Microbiol Infect
- 574 Dis 100(2): 115341. DOI 10.1016/j.diagmicrobio.2021.115341.
- 575 Asaf S, Khan AL, Khan AR, Waqas M, Kang SM, Khan MA, Lee SM, Lee IJ. 2016. Complete
- 576 chloroplast genome of Nicotiana otophora and its comparison with related species. Front Plant
- 577 Sci 7: 843. DOI: 10.3389/fpls.2016.00843.
- 578 Askitis N, Sinha R. 2010. RepMaestro: scalable repeat detection on disk-based genome sequences.
- *Bioinformatics* **26(19):** 2368-74. DOI: 10.1093/bioinformatics/btq433.

- 580 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko
- 581 SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA,
- 582 **Pevzner PA. 2012.** SPAdes: a new genome assembly algorithm and its applications to single-cell
- 583 sequencing. *J Comput Biol* **19(5):** 455-77. DOI 10.1089/cmb.2012.0021.
- 584 Bansal S, Thakur S, Mangal M, Mangal AK, Gupta RK. 2018. DNA barcoding for specific and
- sensitive detection of Cuminum cyminum adulteration in Bunium. Phytomedicine 50(15):
- 586 178-183. DOI 10.1016/j.phymed.2018.04.023.
- 587 Bi GQ. 2018. BLAST2OGMSA. Available at https://github.com/fenghen360/BLAST2OGMSA.
- 588 Bi Y, Zhang MF, Xue J, Dong R, Du YP, Zhang XH. 2018. Chloroplast genomic resources for
- phylogeny and DNA barcoding: a case study on Fritillaria. Sci Rep 8: 1184. DOI:
- 590 10.1038/s41598-018-19591-9.
- 591 Chen Q, Wu XB, Zhang DQ. 2019. Phylogenetic analysis of Fritillaria cirrhosa D. Don and its
- 592 closely related species based on complete chloroplast genomes. Peer J 7: e7480. DOI:
- 593 10.7717/peerj.7480.
- 594 Chen Q, Wu XB, Zhang DQ. 2020. Comparison of the abilities of universal, super, and specific
- 595 DNA barcodes to discriminate among the original species of *Fritillariae cirrhosae* bulbus and its
- 596 adulterants. *PLoS One* **15(2):** e0229181. DOT: 10.1371/journal.pone.0229181.
- 597 Day PD, Berger M, Hill L, Fay MF, Leitch AR, Leitch IJ, Kelly LJ. 2014. Evolutionary
- 598 relationships in the medicinally important genus Fritillaria L. (Liliaceae). Mol Phylogenet Evol
- **80:** 11-19. DOI 10.1016/j.ympev.2014.07.024.
- 600 Deng Y, Zheng H, Yan Z, Liao D, Li C, Zhou J, Liao H. 2018. Full-length transcriptome survey
- and expression analysis of Cassia obtusifolia to discover putative genes related to
- 602 aurantio-obtusin biosynthesis, seed formation and development, and stress response. Int J Mol Sci
- 603 **19:** 2476. DOI 10.3390/ijms19092476.
- 604 Dong W, Xu C, Li C, Sun J, Zuo Y, Shi S, Cheng T, Guo J, Zhou S. 2015. Yefl, the most
- promising plastid DNA barcode of land plants. Sci Rep 5: 8348. DOI 10.1038/srep08348.
- 606 Funk DJ, Omland KE. 2003. Species-level paraphyly and polyphyly: frequency, causes and
- 607 consequences with insights from animal mitochondrial DNA. Ann Rev Ecol Evol Syst 34:
- 608 397-423.
- 609 Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, Rolain JM.
- **2014.** ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial
- genomes. *Antimicrob Agents Chemother* **58(1)**: 212-20. DOI 10.1128/AAC.01310-13.
- 612 Hong SY, Cheon KS, Yoo KO, Lee HO, Cho KS, Suh JT, Kim SJ, Nam JH, Sohn HB, Kim YH.
- **2017.** Complete chloroplast genome sequences and comparative analysis of *Chenopodium quinoa*
- and C. album. Front Plant Sci 8: 1696. DOI 10.3389/fpls.2017.01696.
- Huang J, Yang LQ, Yu Y, Liu YM, Xie DF, Li J, He XJ, Zhou SD. 2018. Molecular phylogenetics

- and historical biogeography of the tribe Lilieae (Liliaceae): Bi-directional dispersal between
- biodiversity hotspots in Eurasia. *Ann Bot* 122: 1245-1262. DOI 10.1093/aob/mcy138.
- 618 Huang J, Yu Y, Liu YM, Xie DF, He XJ, Zhou SD. 2020. Comparative chloroplast genomics of
- 619 Fritillaria (Liliaceae), inferences for phylogenetic relationships between Fritillaria and Lilium
- and plastome evolution. *Plants (Basel)* **9(2):** 133. DOI 10.3390/plants9020133.
- 621 Jin DP, Choi IS, Choi BH. 2019. Plastid genome evolution in tribe Desmodieae (Fabaceae:
- 622 Papilionoideae). PLoS One 14(6): e0218743. DOI 10.1371/journal.pone.0218743.
- 623 Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. 2008. NCBI
- BLAST: a better web interface. *Nucleic Acids Res* **36:** W5-9. DOI: 10.1093/nar/gkn201.
- Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
 improvements in performance and usability. Mol Biol Evol 30(4): 772-80. DOI
- 627 10.1093/molbev/mst010.
- 628 Khourang M, Babaei A, Sefidkon F, Naghavi MR, Asgari D, Potter D. 2014. Phylogenetic
- 629 relationship in Fritillaria spp. of Iran inferred from ribosomal ITS and chloroplast trnL-trnF
- 630 sequence data. *Biochem Syst Ecol* **57**: 451-457. DOI 10.1016/j.bse.2014.10.001.
- 631 Kim KJ, Lee HL. 2004. Complete chloroplast genome sequences from Korean ginseng (Panax
- 632 schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA
- 633 Res 11: 247-261. DOI 10.1093/dnares/11.4.247.
- 634 Kim Y, Choi H, Shin J, Jo A, Lee KE, Cho SS, Hwang YP, Choi C. 2018. Molecular
- discrimination of Cynanchum wilfordii and Cynanchum auriculatum by inDel markers of
- 636 chloroplast DNA. *Molecules* **23(6):** 1337. DOI 10.3390/molecules23061337.
- 637 Konchar K, Li XL, Yang YP, Emshwiller E. 2011. Phytochemical variation in Fritillaria cirrhosa
- D. Don (Chuan Bei Mu) in relation to plant reproductive stage and timing of harvest. *Econ Bot*
- 639 65: 283-294. DOI 10.1007/s12231-011-9170-3.
- 640 Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. 2005. Use of DNA barcodes to
- identify flowering plants. P Natl Acad Sci USA 102: 8369-8374. DOI 10.1073/pnas.0503123102.
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics
- analysis across computing platforms. Mol Biol Evol 35(6): 1547-1549. DOI
- 644 10.1093/molbev/msy096.
- 645 Li P, Lu RS, Xu WQ, Ohi-Toma T, Cai MQ, Qiu YX, Cameron KM, Fu CX. 2017. Comparative
- genomics and phylogenomics of east Asian Tulips (Amana, Liliaceae). Front Plant Sci 8:
- 647 451-463. DOI 10.3389/fpls.2017.00451.
- 648 Li Q, Li Y, Song J, Xu H, Xu J, Zhu Y, Li X, Gao H, Dong L, Qian J, Sun C, Chen S. 2014...
- 649 High-accuracy de novo assembly and SNP detection of chloroplast genomes using a SMRT
- circular consensus sequencing strategy. New Phytol 204(4): 1041-9. DOI 10.1111/nph.12966.
- 651 Li Y, Zhang Z, Yang J, Lv G. 2018. Complete chloroplast genome of seven Fritillaria species,

- variable DNA markers identification and phylogenetic relationships within the genus. *PLoS One*
- 653 **13(3):** e0194613. DOI 10.1371/journal.pone.0194613.
- 654 Liu HY, Yu Y, Deng YQ, Li J, Huang ZX, Zhou SD. 2018. The chloroplast genome of Lilium
- 655 henrici: genome structure and comparative analysis. Molecules 23(6): 1276. DOI
- 656 10.3390/molecules23061276.
- 657 Liu ZD, Wang S, Chen SC. 2009. A taxonomic note of Fritillaria wabuensis (Liliaceae). Acta
- 658 Botanica Yunnanica (in Chinese) 31(2): 145.
- 659 Luo YB, Chen XQ. 1996. A revision of Fritillaria L. (Liliaceae) in the Hengduan Mountains and
- adjacent regions, China (II). Acta Phytotaxonomica Sinica (in Chinese) 34(5): 547-553.
- 661 Melotto-Passarin DM, Tambarussi EV, Dressano K, De Martin VF, Carrer H. 2011.
- 662 Characterization of chloroplast DNA microsatellites from Saccharum spp and related species.
- Genet Mol Res 10: 2024-2033. DOI 10.4238/vol10-3gmr1019.
- 664 Ng PK, Lin SM, Lim PE, Liu LC, Chen CM, Pai TW. 2017. Complete chloroplast genome of
- 665 Gracilaria firma (Gracilariaceae, Rhodophyta), with discussion on the use of chloroplast
- phylogenomics in the subclass Rhodymeniophycidae. BMC Genomics 18(1): 40. DOI
- 667 10.1186/s12864-016-3453-0.
- 668 Park I, Kim WJ, Yeo SM, Choi G, Kang YM, Piao R, Moon BC. 2017. The complete chloroplast
- genome sequences of Fritillaria ussuriensis Maxim. and Fritillaria cirrhosa D. Don, and
- 670 comparative analysis with other Fritillaria species. Molecules, 22(6): 982. DOI
- 671 10.3390/molecules22060982.
- 672 Rix EM. 2001. Fritillaria: A revised classification together with an updated list of species. Publication
- of the Fritillaria Group of the Alpine Garden Society UK.
- 674 Rønsted N, Law S, Thornton H, Fay MF, Chase MW. 2005. Molecular phylogenetic evidence for
- the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of
- 676 Fritillaria. Mol Phylogenet Evol 35(3): 509-27. DOI 10.1016/j.ympev.2004.12.023.
- 677 Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE,
- **Sánchez-Gracia** A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets.
- 679 *Mol Biol Evol* **34(12):** 3299-3302. DOI 10.1093/molbev/msx248.
- 680 Ruan HL, Zhang YH, Pan XC, Dong T, Wu JZ. 2004. Studies on the chemical constituents from
- 681 culbs of hybridized Bulbus Fritillariae ussuriensis. Zhongguo Zhong Yao Za Zhi (in Chinese)
- 682 **29(4):** 331-334.
- 683 Song T, Liu ZB, Li JJ, Zhu QK, Tan R, Chen JS, Zhou YU, Liao H. 2015. Comparative
- transcriptome of rhizome and leaf in Ligusticum Chuanxiong. Plant Syst Evol 301: 2073-2085.
- 685 Tang SY, Yue SJ. 1983. Three new species of Fritillaria Linn. Acta Academiae Medicinae Sichuan
- 686 (in Chinese) 14(4): 327-334.
- 687 Tang SY, Yue SJ. 1992. Fritillaria genus, Flora of Sichuan. Publication of Sichuan Ethnic

689 Ueda M, Nishikawa T, Fujimoto M, Takanashi H, Arimura S, Tsutsumi N, Kadowaki K. 2008. Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting 690 signal. Mol Biol Evol 25(8): 1566-75. DOI 10.1093/molbev/msn102. 691 692 Vinnersten A, Bremer K. 2001. Age and biogeography of major clades in Liliales. Am J Bot 88(9): 693 694 Wietsma WA, van den Berg RG, van Scheepen J, Wieringa JJ 2011. The nomenclatural history of 695 Fritillaria eduardii and the correct names of its varieties. TAXON 60(6): 1754-1759. DOI 10.1002/tax.606018. 696 697 Xue S, Shi T, Luo W, Ni X, Iqbal S, Ni Z, Huang X, Yao D, Shen Z, Gao Z. 2019. Comparative 698 analysis of the complete chloroplast genome among Prunus mume, P. armeniaca, and P. salicina. 699 Hortic Res-England 6: 89. DOI 10.1038/s41438-019-0171-1. 700 Yang Y, Zhou T, Duan D, Yang J, Feng L, Zhao G. 2016. Comparative analysis of the complete 701 chloroplast genomes of five Quercus species. Front Plant Sci 7: 959. DOI 702 10.3389/fpls.2016.00959. 703 Yeum HS, Lee YC, Kim SH, Roh SS, Lee JC, Seo YB. 2007. Fritillaria cirrhosa, Anemarrhena 704 asphodeloides, Lee-Mo-Tang and cyclosporine a inhibit ovalbumin-induced eosinophil 705 accumulation and Th2-mediated bronchial hyperresponsiveness in a murine model of asthma. 706 Basic Clin Pharmacol Toxicol 100(3): 205-13. DOI 10.1111/j.1742-7843.2007.00043.x. Zhang HL, Jin JJ, Moore MJ, Yi TS, Li DZ. 2018. Plastome characteristics of Cannabaceae. Plant 707 Divers 40(3): 127-137. DOI 10.1016/j.pld.2018.04.003. 708 709 Zheng H, Deng KY, Chen AQ, Fu SB, Zhou D, Wang WW, Ni DM, Ren YY, Zhou JY, Liao H. 710 2019. Molecular identification and genetic relationship of Fritillaria cirrhosa and related species 711 based on DNA barcode. Acta Pharmaceutica Sinica (in Chinese) 54(12): 2326-2334.

688

712

Publishing House 7: 55-82.