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In the North Patagonian fjord region, the cold-water coral (CWC) Desmophyllum dianthus
occurs in high densities, in spite of low pH and aragonite saturation. These conditions may
enhance the energy demand of the corals, which is so far unknown. In a laboratory
experiment, we investigated the carbon and nitrogen (C, N) budget of D. dianthus from
Comau Fjord under three feeding treatments: (1) live fjord zooplankton (>100 um), (2) live
fjord zooplankton plus krill, and (3) four-day food deprivation. In closed incubations, C and
N budgets were derived from the difference between C and N uptake during feeding and
subsequent C and N loss through respiration, ammonium excretion, release of particulate
organic carbon and nitrogen (POC, PON). Feeding on zooplankton plus krill significantly
increased coral respiration (35 %), excretion (131 %), and POC release (67 %) compared to
feeding on zooplankton only. Nevertheless, the higher C and N losses were
overcompensated by the threefold higher C and N uptake from krill (plus zooplankton),
indicating a high assimilation and growth efficiency for the krill diet. In contrast, short food
deprivation caused a substantial reduction in respiration (59 %), excretion (54 %), release
of POC (73 %) and PON (87 %) compared to feeding on zooplankton, suggesting a high
potential to acclimatize to food scarcity (e.g. in winter). To balance their relatively high C
and N losses, the corals have to consume 4 % of their tissue-C and -N every day,
equivalent to almost 800 zooplankton individuals. The capture of a single krill, however,
provides enough C and N to compensate daily C and N losses and grow tissue reserves,
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suggesting that krill plays an important nutritional role for the fjord corals. Efficient krill
and zooplankton capture, as well as dietary and metabolic flexibility, may enable D.
dianthus to thrive under adverse environmental conditions in its fjord habitat; however, it
is not known how combined anthropogenic warming, acidification and eutrophication
jeopardize the energy balance of this important habitat-building species.
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Abstract

In the North Patagonian fjord region, the cold-water coral (CWC) Desmophyllum dianthus
occurs in high densities, in spite of low pH and aragonite saturation. These conditions may
enhance the energy demand of the corals, which is so far unknown. In a laboratory experiment,
we investigated the carbon and nitrogen (C, N) budget of D. dianthus from Comau Fjord under
three feeding treatments: (1) live fjord zooplankton (>100 um), (2) live fjord zooplankton plus
krill, and (3) four-day food deprivation. In closed incubations, C and N budgets were derived
from the difference between C and N uptake during feeding and subsequent C and N loss
through respiration, ammonium excretion, release of particulate organic carbon and nitrogen
(POC, PON). Feeding on zooplankton plus krill significantly increased coral respiration (35 %),
excretion (131 %), and POC release (67 %) compared to feeding on zooplankton only.
Nevertheless, the higher C and N losses were overcompensated by the threefold higher C and N
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uptake from krill (plus zooplankton), indicating a high assimilation and growth efficiency for the
krill diet. In contrast, short food deprivation caused a substantial reduction in respiration (59 %),
excretion (54 %), release of POC (73 %) and PON (87 %) compared to feeding on zooplankton,
suggesting a high potential to acclimatize to food scarcity (e.g. in winter). To balance their
relatively high C and N losses, the corals have to consume 4 % of their tissue-C and -N every
day, equivalent to almost 800 zooplankton individuals. The capture of a single krill, however,
provides enough C and N to compensate daily C and N losses and grow tissue reserves,
suggesting that krill plays an important nutritional role for the fjord corals. Efficient krill and
zooplankton capture, as well as dietary and metabolic flexibility, may enable D. dianthus to
thrive under adverse environmental conditions in its fjord habitat; however, it is not known how
combined anthropogenic warming, acidification and eutrophication jeopardize the energy
balance of this important habitat-building species.

Introduction

Cold-water coral (CWC) reefs and assemblages range amongst the most diverse and productive
deep-sea ecosystems, but may be found in shallower waters in temperate fjords (Freiwald et al.,
2004). On the steep, partly overhanging walls of the North Patagonian Comau Fjord (Los Lagos
Region, Chile; Fig. 1), the cosmopolitan, solitary CWC Desmophyllum dianthus (Scleractinia)
forms vast banks between 20 and 280 m depth (Forsterra & Haussermann, 2003; Fillinger &
Richter, 2013; Forsterra et al., 2016), in spite of low pH and aragonite undersaturation (Fillinger
& Richter, 2013; Jantzen et al., 2013a). The low pH in the North Patagonian fjord region may
relate to the high organic matter concentration from high productivity (Montero et al., 2011) and
terrestrial run-off (Forsterra & Haussermann 2003, Jantzen et al. 2013a). To maintain
calcification under these conditions, the corals may up-regulate their internal pH (Trotter et al.,
2011; Anagnostou et al., 2012; McCulloch et al., 2012). This is an energy-costly process
requiring a corresponding energy supply (Gattuso, Allemand & Frankignoulle, 1999; Cohen &
Holcomb, 2009). Also, terrestrial run-off (Forsterra & Héussermann 2003, Jantzen et al. 2013a)
may increase the concentration of suspended particles, creating energetic costs of cleaning and
mucus production to protect the sensitive coral tissue from smothering (Larsson & Purser, 2011;
Larsson et al., 2013; Zetsche et al., 2016). The sheltered occurrence of D. dianthus in Comau
Fjord, in an upside-down position under overhangs, has been interpreted as avoidance to
sedimentation (Forsterra & Héussermann, 2003).

The natural conditions of low pH and relatively high turbidity in the fjord region are exacerbated
by climate change and intense salmon aquaculture (Buschmann et al., 2009; Mayr et al., 2014;
Iriarte, 2018). It is therefore important to (1) know the energetic costs involved in coping with
present and future fjord environments and (2) estimate the resilience to disturbance affecting the
energy budget, growth and reproduction of these ecosystem engineers (Melzner et al., 2009;
Findlay et al., 2011; Vidal-Dupiol et al., 2013).
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The energy budget of the fjord corals, i.e. their food supply against energetic costs, is presently
unknown. The carbon and nitrogen isotopic composition of D. dianthus from Comau Fjord
indicates consumption of zooplankton (Mayr et al., 2011). With its large polyps (up to 6 cm in
diameter, Forsterra & Héussermann 2003), D. dianthus is able to capture large zooplankton such
as copepods and euphausiids (krill) (Sokol, 2012; Hofer et al., 2018). To fuel its respiratory
carbon demand, D. dianthus from the Mediterranean deep sea requires the equivalent of three
adult brine shrimps (Artemia salina) per day (Naumann et al., 2011). However, 4. salina does
not occur in the coral habitat and feeding on natural prey may entail a different carbon budget
(Mgller & Riisgédrd, 2007). In the North Patagonian fjord region, the zooplankton abundance
shows a pronounced seasonality, with a maximum following the spring phytoplankton bloom
and a minimum in Austral winter (Iriarte et al., 2007; Gonzélez et al., 2010). In experiments,
increased availability of zooplankton food enhanced the skeletal growth of the fjord corals
(Martinez-Dios et al., 2020), but it is unknown whether food is currently limiting coral growth in
the fjord region.

Here, we investigate the carbon and nitrogen (C and N) budget and natural zooplankton demand
of D. dianthus from Comau Fjord, Chile. The C and N budget of a consumer is the difference
between C and N uptake and C and N loss (Fig. 2). CWCs release the indigestible parts of their
food and coral mucus (Wild et al., 2008) as particulate and dissolved organic matter (POM,
DOM), measurable as particulate and dissolved organic carbon and nitrogen (POC, PON; DOC,
DON). CWC metabolism involves oxygen consumption and carbon dioxide production through
respiration, as well as ammonium production via excretion (Khripounoff et al., 2014; Maier et
al., 2019). The remaining, non-released C and N is available for growth of somatic and
reproductive tissue and therefore termed ‘scope for growth’ (Warren & Davis 1967). We
determined the C and N budget (uptake versus loss) of the fjord corals under three different
feeding treatments, simulating the varying zooplankton availability in the fjord region (Iriarte et
al., 2007; Gonzélez et al., 2010): (1) live fjord zooplankton, (2) live fjord zooplankton plus krill,
and (3) short-term food deprivation. From these budgets, we estimated the minimum C, N and
zooplankton demand of D. dianthus in the North Patagonian fjord region and evaluated the scope
for growth of this important foundation species.

Materials & Methods

Coral sampling and maintenance

Thirteen similar-sized D. dianthus specimens (calyx height: 3.4 + 0.4 cm, calyx length:

1.4 £0.2 cm, calyx width: 2 + 0.4 cm, Fig. 3a) were collected live from 20 m water depth in
Comau Fjord (Cross Huinay, Liliguapi, Fig. 1) in January 2012. The collection of D. dianthus for
scientific purposes was approved by the Chilean Ministry of Economy, Development & Tourism,
sub-secretariat of fisheries and farming (ref. 1742). The corals were chiseled off the substrate by
SCUBA divers and immediately placed into water-tight, sealed plastic containers, ensuring no
contact with either the brackish surface water layer or air during transport to the laboratory.
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Desmophyllum dianthus from the shallow parts of Comau Fjord typically has live tissue only on
the apical end of the corallum (skeleton), while the basal end is bare and inhabited by diverse
organisms (Forsterra & Héaussermann, 2003). To remove those organisms, the bare corallum was
carefully cut off with a submerged diamond blade (3.2 mm thick), connected to an electric
grinder (Jantzen et al. 2013b). The fracture zone was sealed with cyano-acrylate gel (super flex
glue gel) and glued to a polyethylene screw (Jantzen et al., 2013b). For maintenance before and
during the experiment, the corals were fixed in their natural ‘upside-down’ growth position in 28
L-maintenance tanks (Fig. 3a, maximum seven corals per tank) with a flow-through of 1C i11-
filtered fjord water, continuously pumped from 25 m depth off Huinay (flow: 0.07 L min‘!;
temperature: 11.9 °C; salinity: 31.6; particulate organic matter concentration: 12.8 + 4.2 umol
POC L-!; 1.4 + 1.2 pmol PON L-!). Corals were fed for two hours per day with live, freshly-
collected fjord zooplankton (for collection, see next section) at a concentration of 571 + 203
zooplankton individuals L', equivalent to 85 & 30 umol C L' and 16 + 6 umol N L-!. During
feeding, water exchange was interrupted. Before the start of the feeding treatments, all corals
were weighed in seawater of ambient temperature and salinity (density 1.026 g cm™) with an
analytical balance equipped with an underfloor weighing basket (Sartorius CPA225DOCE).
Polyp dry mass was derived from buoyant weight according to Davies (1989), using a species-
specific aragonite density of 2.835 g cm (Naumann et al., 2011). Corals were given a recovery
and acclimatization time of one week from collection to the start of the experiment.

Zooplankton and krill sampling

For the feeding treatments, live fjord zooplankton was collected ca. 1 km off Huinay Scientific
Field Station (Fig. 1) in the afternoon, by a single vertical haul from 20 m water depth with a

100 um-Nansen net (diameter 0.7 m). The zooplankton sample was split with a Motodo plankton
sample splitter into equal 1/8 portions, which were split again with measurement cylinders into
ten equal portions (1/80 of the original sample). Live zooplankton was used in the experiment
(see next section).

Krill (Euphausia vallentini, adult and pre-adult stages) was collected at night in Comau Fjord
between 20 and 80 m water depth, in a 45-min horizontal trawl at 2 knots with a ring trawl net
(0.5 m diameter, 500 um mesh size). Krill was drained on paper tissue, individuals were
measured (cephalo-thoracic length, ca. 7 cm), weighed (wet mass) and stored frozen (-13°C)
until the experiment. Six individuals were dried (40 °C, three days) and weighed again (dry
mass, 3.3 = 1.5 mg).

Experimental design and set-up

Corals were split into two batches of six and seven corals, respectively. All corals (n=13) were
initially fed with zooplankton (treatment ‘zooplankton’). Subsequently, coral batch I was fed
with zooplankton plus one krill individual and on the next day remained unfed (treatment
‘zooplankton+krill’). Coral batch II was food-deprived for four days (treatment “‘unfed’). The C
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and N uptake of the corals was determined during feeding (as described in Section ‘Feeding’).
After each feeding treatment, the C and N losses of the corals were measured in 9-11 h
incubations (see Section ‘Incubations’). In the treatments ‘zooplankton’ and ‘zooplankton+krill’,
incubations were started 1-3 h after feeding (incubations called ‘zoopl’, ‘krill.d1°); in the
‘zooplankton+krill’ treatment, corals were incubated a second time 24 h after feeding (‘krill.d2”).
In the “unfed’ treatment, corals were incubated after four days of food deprivation.

Feeding and incubations were carried out at 11°C (representing in situ temperature) in 0.5 L-
SCHOTT-DURAN® bottles (total volume: 0.8 L; in the following referred to as ‘SCHOTT
bottles’), filled with 10 um-filtered fjord water from 25 m depth off Huinay (Fig. 3b, c). One
coral per bottle was fixed in its natural ‘upside-down’ position in the custom-built bottle lid
(Jantzen et al., 2013b). A magnetic stirring bar at the bottle floor created a circular flow of ~1 cm
s'!, which kept live zooplankton in suspension without bending the coral tentacles (Sokol, 2012).
A detailed account of the feeding treatments and closed-cell incubations is provided in the
following two sections.

Feeding

For the feeding treatment ‘zooplankton’, the corals were provided with live fjord zooplankton at
a concentration of 1025 + 332 zooplankters L' (164 + 36 pumol C L', 30 £ 7 umol N L") for 2 h
(Fig. 3a). This feeding regime served to simulate a pulse of high zooplankton availability, which
may occur when a zooplankton swarm with high individual densities (Ambler, 2002) is advected
by local currents (3-11 cm s!, Jantzen et al. 2013b). Zooplankton swarms are common in fjord
boundaries (Hirche, Laudien & Buchholz, 2016). Longer feeding times were avoided to prevent
hypoxia in the closed chambers (Hofer et al., 2018; S Maier, 2012, unpublished data).

The ‘zooplankton’ treatment was carried out in subsequent subsets, each with three to four corals
and triplicate seawater controls without corals, which served to determine zooplankton loss from
internal zooplankton predation and handling. To start the feeding (at t;), one aliquot of live
zooplankton food (1/80 haul in 50 mL filtered seawater) was added to each of the experimental
bottles. Five additional aliquots were analyzed for the number of zooplankton individuals (n=2)
and for the concentration of POC and PON (n=3), to estimate the amount of food added to the
experimental bottles. During feeding, polyp activity was closely monitored, to ensure that all
corals had their tentacles expanded. To end the feeding, the corals were removed from the bottles
and returned to the maintenance tanks. End (t;) water samples for number of zooplankton
individuals (350-490 mL), POC and PON (290-370 mL) were taken from each bottle after
thorough mixing.

Zooplankton samples were concentrated over a 55 pm-mesh and fixed in 4%-borax-buffered
formaldehyde. POC and PON samples were collected on pre-combusted (24 h, 500 °C), pre-
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weighed 0.7 pm- glass-fiber filters (GF/F) by vacuum filtration. Filters were frozen (-13 °C) and
dried to constant mass at 40 °C.

For the feeding treatment ‘zooplankton-+krill’, corals of batch I were first fed with live fjord
zooplankton, as described above, and received one thawed, pre-measured krill via tweezers 3.5 h
later (Fig. 3). All replicates of the ‘zooplankton+krill’ treatment were fed in one subset.

For the feeding treatment ‘unfed’, corals of batch II were kept in their maintenance tank in
10 um-filtered fjord water, without zooplankton food, for four days. The ‘unfed’ treatment was
carried out in two subsets, with three and four corals, respectively.

Incubations

After each feeding treatment, the corals were incubated for 9-11 h in closed SCHOTT bottles
with 10 um-filtered fjord water (Fig. 3c). Triplicate seawater controls per treatment subset

(3-7 corals, see ‘Feeding’) served to measure planktonic oxygen (O,), C and N fluxes. At the
start of the incubation (ty), the O, concentration was measured with an optode (HQ40d; Hach,
USA) in a separate SCHOTT bottle B,. Start (t,) water samples were taken by syringe from B,
for analysis of dissolved inorganic nitrogen (DIN, i.e. ammonium, nitrate, nitrite; 100 mL), DOC
and DON (20 mL, in triplicates). The remaining water in B, (300-600 mL) was used for POC
and PON analysis. During the incubation, coral polyps remained protruded with extended
tentacles. The O, concentration remained above 80 % of the t,-concentration, a conservative
threshold to avoid effects of low-oxygen concentration on coral physiology (Dodds et al., 2007).
At the end of the incubation (t;), the corals were removed and returned to their maintenance
tanks. In each bottle, the t;- O, concentration was first measured, before taking t;-water samples
as described above for the ty-sampling.

DIN samples were filtered through GF/F-filters into glass vials and fixed with a concentrated
mercury chloride solution (0.105 g L!) to prevent microbial activity. Samples for DOC and
DON were filtered through GF/F-filters into glass vials (filters and vials pre-combusted, 450 °C,
12 h), acidified to pH2 with 32% hydrochloric acid to avoid microbial activity and stored dark at
4 °C. Sample processing for POC and PON was described in the previous section (‘Feeding’).

Coral dry mass and tissue sampling

At the end of the experiment, the coral tissue was removed from the skeleton with an airbrush
filled with 0.7 um-filtered seawater and homogenized with an ultra turrax (Jantzen et al., 2013c).
The volume of the tissue-seawater suspension was measured. Subsamples of the tissue-seawater
suspension (1 mL, n=6 aliquots per coral) were collected on pre-combusted (500 °C, 24 h), pre-
weighed GF/F-filters and dried up to constant mass at 40 °C. Coral samples were transported to
Germany under CITES permit E-00427/12.
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Sample analyses
Zooplankton samples were enumerated in a Bogorov chamber under a stereo microscope. Only
undamaged, non-gelatinous zooplankters were counted.

Samples of coral tissue, krill, POC and PON were weighed (for dry mass) and subsequently
analyzed for organic carbon (OC) and organic nitrogen (ON) content on an elemental analyzer
(EuroEA3000, EuroVector) with acetanilide calibration. To measure the OC content of coral
tissue (tissue-C), subsamples on GF/F filters (n=3 per coral) were vapor-acidified with 12 N-
hydrochloric acid prior to analysis, to remove remainders of skeletal inorganic carbon (Hedges &
Stern, 1984). The ON content of coral tissue (tissue-N) was measured on separate subsamples
(n=3) without acidification. The total tissue-OC and -ON content of each coral was calculated by
multiplying the OC and ON content measured in the subsamples (1 mL) with the volume of the
tissue-seawater suspension (see previous section).

Krill and GF/F filters with zooplankton (see ‘Feeding’) and POM (released by the corals, see
‘Incubations’) were not acidified, as previous tests revealed negligible amounts of inorganic

carbon. POC concentration was determined as

umol C POC content GF/F filter
Poc [ = :

PON concentration was calculated accordingly. For krill, we determined the relation between
wet mass and C content (C content [umol C krill''] = 3.9 - wet mass [mg] + 48.3; R> = 0.86) and

the relation between wet mass and N content (N content [pmol N krill-']= 0.9 - wet mass [mg] +
11.4;R>=0.87).

filtered volume ’

Ammonium (NH4"), nitrate and nitrite concentration was analyzed spectrophotometrically at the
ICBM-Terramare Wilhelmshaven according to Grasshoff et al. (1983). DOC and total dissolved
nitrogen (TDN) concentration was measured via high-temperature catalytic oxidation (HTCO,
Sugimura & Suzuki 1988) on a Shimadzu TOC-VcpH analyzer, equipped with a Total Nitrogen
Measuring Unit (TNM-1), with L-arginine calibration. The datasets of DOC and TDN
concentrations contained a few extreme values, possibly due to sample contamination during
handling and processing. Therefore, outliers of DOC and TDN concentration were identified as
values < Q1 —IQR-1.5 and values > Q3 + IQR" 1.5, where Q1 was the first quartile of the data
subset, Q3 the third quartile, and IQR the interquartile range between Q1 and Q3; data subsets
were t;-values of coral incubations, t;-values of control incubations, and tg-values of coral and
control incubations together. Outliers were excluded and the remaining to- and t;-values of each
incubation (samples taken in triplicate) were averaged. DON concentration was obtained as
DON = TDN - DIN, with DIN = ammonium + nitrate + nitrite.

Carbon and nitrogen budget

For each feeding treatment, the C and N budgets of the corals were determined; for the treatment
‘zooplankton+krill’, two C and N budgets were determined per coral, one directly after feeding
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279 and one 24 h later. All fluxes (C, N, O,) were calculated from the difference between a
280 measurement at t (start of the feeding or incubation) and a second measurement at t; (end of the
281 feeding or incubation) in coral (‘coral’) and seawater-control (‘control’) trials. The C uptake of
282  the corals from zooplankton (treatments ‘zooplankton’, ‘zooplankton-+krill’, in pmol C) was
283 determined as

- [pocl,, [POC]

[Poc], . - [Poc],
0, coral coral 0, control 1, control.

284  C uptake = —— ) Vo teorans

tco‘rul tcantrol

285 where [POC] is the POC concentration, t is the feeding time and V is the water volume of the
286 coral incubation (SCHOTT bottle volume — coral volume). The N uptake of the corals from

287 zooplankton was determined accordingly. In treatment ‘zooplankton+krill’, total C or N uptake is
288 the sum of zooplankton-C or -N uptake and the C or N content of the krill individual provided to
289 the respective coral; the C and N content of the krill individual was estimated from its wet mass
290 (see previous section). In treatment ‘unfed’, a zero C and N uptake was assumed. In all feeding
291 treatments, the C and N uptake was treated as daily rates (i.e. pmol C and N d!), because the

292  corals were fed once per day only. In treatment ‘zooplankton’, we additionally determined the
293 zooplankton capture of the corals, as

ZOOPZ[O, coral N ZOOpltl, coral ZOOpltO, control - ZOOpltl, control.
294  Zooplankton capture = — - r— ) Ve teoran
295 where zoopl is the number of zooplankton individuals.
296
297  Coral respiration rates (in pmol O, h'!) were derived as
298 Respiration(0,) = O mmi O - P Cmmzl o, mnml) vV,

coral control

299 where [O,] is the O, concentration. The C respiration rate was derived from the O, respiration
300 rate, assuming a respiratory coefficient O,:C = 1 (Glud, Eyre & Patten, 2008). Rates of NH,*
301 excretion and release of POC, PON, DOC, DON (in umol C or N h-!) were obtained as

X - X X - X
[ ]tl, coral [ ]tO, coral [ ]tl, control tO, control.

302 Cor Nrelease = - ) -V,

tcnral tcontrol

303 where [x] is the concentration of the respective substance. Rates of respiration, ammonium

304 excretion, release of POC, PON, DOC and DON were extrapolated to 24 h and standardized to
305 coral tissue organic carbon content (tissue-C) as approximation of coral biomass. To facilitate
306 comparability with other studies, we additionally provide C and N fluxes standardized to polyp
307 dry mass (determined via buoyant weight) and skeletal dry mass (polyp dry mass — tissue dry
308 mass) in Supplemental Table 1.1.

309 The daily C and N budget of the corals (Fig. 2) was derived as

310 SfG.= Cuptake - C respiration - POC release,

311 and

312 SfGy= Nuptake - NH," excretion - PON release,

313  both in umol C (mmol tissue-C d!). The term ‘scope for growth’ (SfG, Warren and Davis 1967)
314  denotes the net C or N gains of the corals, which remain from food uptake after subtraction of all
315 Cand N losses. SfG > 0 indicates a C or N surplus, which can be invested in biomass growth
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(somatic and/or reproductive), while SfG < 0 indicates a C or N deficit. It should be noted that
DOC and DON release were excluded from the C and N budgets, due to the high variability in
DOC and DON fluxes (see below).

Statistical analysis

Graphical and statistical analysis was performed with R (R Core Team, 2017). Values in text are
given as mean + standard deviation. Firstly, we tested whether the feeding treatments had an
effect on the C and N fluxes, i.e. on the total C and N uptake and rates of C respiration, NH,*
excretion, and release of POC, PON, DOC, DON. For each flux, linear mixed effect (LME)
models were fitted, separately for coral batch I and II, with the function Imer (R package
ImerTest, Kuznetsova et al. 2017). The LME models accounted for the repeated measurements
on the individual corals of the two batches, using coral individuals as random effect and feeding
treatment as fixed effect (i.e. flux ~ treatment + (1|coral_individual)). In batch I, C and N fluxes
after feeding on zooplankton (‘zoopl’) were compared with C and N fluxes directly after feeding
on zooplankton-+krill (‘krill.d1”); and C and N fluxes directly after feeding on zooplankton+krill
(‘krill.d1”) were compared with C and N fluxes 24 h later (‘krill.d2”). In batch II, C and N fluxes
after feeding on zooplankton (‘zoopl’) were compared with C and N fluxes after four days of
food deprivation (‘unfed’). Detailed results of the LME models are available as Supplementary
Table 1.9.

Secondly, we analyzed the dependence of SfG¢ and SfGy on the respective C and N uptake by
linear regression, for all feeding treatments combined (function Im, package stats, R Core Team
2017). The C uptake at SfG¢ = 0 (x-axis intercept) was interpreted as minimum C demand of the
corals, the N uptake at SfGy = 0 as their minimum N demand.

Results

Uptake of carbon and nitrogen

When fed with zooplankton (treatment ‘zooplankton’), D. dianthus captured 156 +

74 zooplankton individuals polyp™ h'!. Given the 2 h-feeding time per day, the total zooplankton
capture was 312 + 148 zooplankton individuals d-!, resulting in a C uptake of 18.8 + 11.5 umol C
(mmol tissue-C)!' d-! (Fig. 4a) and a N uptake of 4 + 2.3 umol N (mmol tissue-C)! d'! (Fig. 4b).
One krill in addition to zooplankton increased the C and N uptake of the corals (of batch I) by a
factor of three (67.9 = 6.7 umol C (mmol tissue-C)-! d-'; 15.8 = 1.8 umol N (mmol tissue-C)!
d).

Respiration and ammonium excretion
Increasing meal size increased the respiration and ammonium excretion rate of D. dianthus
(Fig. 4c, d). Directly after feeding on zooplankton, D. dianthus respired on average 27.5 +
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5.8 umol O, (mmol tissue-C)! d! and excreted 3.2 + 1.3 umol NH,* (mmol tissue-C)! d-!.
When the corals received krill in addition to zooplankton, they showed an on average 35 %
higher respiration rate than when they were fed with zooplankton only (Fig. 4c, ‘krill.d1’, versus
‘zoopl’, blue circles). At the same time, their ammonium excretion rate doubled (Fig. 4d). One
day after feeding on krill plus zooplankton, the corals showed a lower rate of respiration and
ammonium excretion again (Fig. 4c, d, ‘krill.d2”). Four days of food-deprivation reduced the
respiration rate of the corals by 29 % and their ammonium excretion rate by 54 %, relative to
their metabolic activity after feeding on zooplankton (Fig. 4c, d, “‘unfed’ versus ‘zoopl’, red
circles).

Organic matter release

Desmophyllum dianthus showed a clear release of POC and PON in all feeding treatments

(Fig. 4e, f). Directly after feeding on zooplankton, corals released 8.2 + 6 umol POC (mmol
tissue-C)"! d'! and 1.7 £ 0.7 pumol PON (mmol tissue-C)! d'! (Fig. 4e, f, ‘zooplankton’). Feeding
on krill in addition to zooplankton increased POC release by 67 % and PON release by 39 %
compared to feeding on zooplankton only (Fig. 4e, f, ‘krill.d1’ versus ‘zoopl’, blue circles). One
day after feeding on krill plus zooplankton (‘krill.d2”), POC and PON release rates were low
(1.8 £ 1.0 pmol POC (mmol tissue-C)! d-!, 0.6 + 0.3 pmol PON (mmol tissue-C)!' d!). Four
days of food-deprivation reduced POC and PON release by 73 % and 87 % relative to the POC
and PON release after feeding on zooplankton (Fig. 4e, f, “‘unfed’ versus ‘zoopl’, red circles).

DOC and DON fluxes ranged around zero with a high variability (Fig. 4g, h). Feeding treatments
had no detectable effect. DOC and DON fluxes were likewise high and variable in the seawater
control incubations (Supplemental Table 1.7).

Carbon and nitrogen budget

Corals fed with zooplankton plus krill showed a positive scope for growth for C and N (SfGc,
StGy) directly after feeding (‘krill.d1’, Fig. 5a, b), meaning that their C and N uptake
outweighed the combined losses via respiration, excretion, POC and PON release. Feeding on
zooplankton alone did, in most cases, not provide D. dianthus with enough C and N for a
positive SfG (Fig. 5a, b). Linear regression revealed that D. dianthus in the experiment had a
minimum C demand of 37.05 pmol C (mmol tissue-C)! d-! or 98.85 umol C polyp! d'! to fully
balance its C losses (i.e. SfG¢ = 0). This corresponds to a daily consumption of 3.7 % of its total
tissue-C content and ca. 760 zooplankters per polyp (0.13 umol C (zooplankton individual)!,
Supplemental Table 1.3) or less than one krill per polyp (129 umol C krill-!, Supplemental Table
1.1). Accordingly, the minimum N demand of D. dianthus was 5.38 pmol N (mmol tissue-C)! d-
I, which is 3.7 % of their tissue-N (tissue-C:tissue-N = 6.9). Please note that DOC and DON
release were not considered in the shown C and N budgets, since DOC and DON fluxes were
highly variable and ranged around zero (see above). Therefore, it cannot be ruled out that the C
and N demand of D. dianthus is higher (or lower) than indicated here.
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Discussion

In this study, we report C and N budgets of the CWC D. dianthus, an important matrix species of
CWC banks in the fjords of the Los Lagos Region, under three different experimental feeding
regimes (fed with live fjord zooplankton, fed with zooplankton plus krill, four-day food-
deprived). We first discuss the metabolic flexibility (metabolic rate, organic matter release) of
the corals in response to varying food availability. Then, we evaluate how and if the corals can
sustain their C and N demand, today during different seasons and in the future.

Metabolic rate

The CWC D. dianthus shows a high metabolic flexibility in response to varying food
availability, indicated by increased respiration and ammonium excretion with increasing meal
size (from four-day unfed, over zooplankton, to zooplankton plus krill, Fig. 4c, d). The 1.5-fold
higher respiration rate after ingesting a large food ration (zooplankton plus krill) as compared to
one day later likely reflects the ‘specific dynamic action of food’ (SDA, Rubner 1902). The SDA
describes the increased metabolic rate of animals after feeding, owing to the energetic expenses
of food capture and digestion (McCue, 2006; Secor, 2008). The SDA typically increases with
meal size, but also varies with meal type (Secor, 2008; present study). Accordingly, krill
supplied the corals with four times more C compared to zooplankton, but only increased the
respiration by a factor of 1.4, probably due to higher energetic costs to capture and process many
live, small zooplankters compared to one large, dead krill. Energy costs to process live krill
might be higher than for dead krill; however, we assume that the difference is minor, because in
feeding trials with live krill (S Maier, C Jantzen, J Laudien and C Richter, 2012, unpublished
data), the corals immobilized their prey within a fraction of a second.

Desmophyllum dianthus responds to short-term food deprivation with a reduction of metabolic
rates, likely to conserve energy (Naumann et al. 2011, present study). Corals from Comau Fjord
lowered their respiration by 40 % after four days of food deprivation (present study),
conspecifics from the Mediterranean deep-sea by 20 % after one week and by 50 % after three
weeks of food deprivation (Naumann et al., 2011). This fast, strong reduction of metabolic
activity stands in contrast to the closely related CWC Lophelia pertusa, which reduced oxygen
consumption only after several months of food deprivation (Larsson, Lundédlv & van Oevelen,
2013; Maier et al., 2019). Overall, in the present study, the respiration rate of D. dianthus was
around 2.5 times lower (14 = 5 umol O, (g skeletal dry mass)! d'') compared to the respiration
rate of Mediterranean D. dianthus (35 + 8 umol O, (g skeletal dry mass)™! d-!; Naumann et al.
2011), in spite of a comparable feeding history (4rtemia salina, krill, >24 h after feeding) and
temperature (12 °C).

The metabolic flexibility of D. dianthus could allow colonization of different habitats, from
shallow areas of fjords with a high variability of food, temperature, salinity and pH, to the
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environmentally more stable, deep CWC habitats (Freiwald et al., 2004). Global warming
increases the metabolic rate of CWCs (Dodds et al., 2007; Gori et al., 2016; Dorey et al., 2020),
which could cause severe energetical constraints for this species.

Organic matter release

Cold- and warm-water corals release organic matter (POM, DOM), as feces egested from their
gastrovascular cavity (Yonge, 1930) and as coral mucus (Brown & Bythell, 2005; Naumann et
al., 2011). The high POC and PON release by D. dianthus directly after feeding (Fig. 4e, f)
suggests that fecal material accounts for most of its POM release. The CWC species engulfs its
prey whole; hence, sloppy feeding sensu Banse (1992), i.e. the loss of organic matter in front of
the mouth, can be ruled out. Krill is assimilated at a higher efficiency compared to zooplankton
(CN assimilation:CN uptake), due to the lower fecal loss in relation to the high C and N uptake.

Four-day-starved corals continue to release smaller amounts of POM, likely as mucoid material.
Coral mucus consists of glycoproteins (Bythell & Wild, 2011) and serves as protection against
sediment smothering, biofouling and as feeding aid (Brown & Bythell, 2005). Wild et al. (2008)
reported that mucus of the CWC L. pertusa rapidly dissolved in seawater, hence, the DOC
release of this CWC species was >30 times higher than its POC release. This high DOC:POC
ratio was not confirmed for D. dianthus (present study); instead, rates of DOC release/uptake
were highly variable (Fig. 4g).

Unfed D. dianthus from Comau Fjord released on average four times more total organic carbon
(7.1 umol TOC (g skeletal dry mass)-! d-'; POC plus DOC) than its Mediterranean conspecifics
(1.9 umol TOC (g skeletal dry mass)-! d-!, Naumann et al., 2011). Higher mucus production in
the shallow areas of the fjords may serve as protection against higher particle loads (Larsson et
al., 2013; Zetsche et al., 2016). In the Comau Fjord, the chlorophyll-a concentration (up to

>40 mg m, Richter et al. unpubl.), and hence turbidity, is orders of magnitude higher than in the
deep parts of the oligotrophic Mediterranean (<2 mg m-3; Lo Iacono et al. 2019).

Due to relatively high mucus and fecal loss, the TOC release already contributes 30-60 % to the
total C loss of the fjord corals (respiration plus organic matter release). Anthropogenically
increased sedimentation, e.g., from the extensive salmon farming in the Chilean fjords
(Haussermann et al., 2013; Forsterra, Haussermann & Laudien, 2016), could further increase
mucus production and related energy expenditure.

On the steep, partly overhanging fjord walls, D. dianthus often co-occurs with other suspension
feeders, such as the bivalve Acesta patagonica and the sponge Mycale thielei (Forsterra et al.,
2005). Like D. dianthus, these genera produce large amounts of detrital and/or fecal material
(Maier et al., 2020b). The organic matter ‘waste’ of the suspension feeding community may
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serve as food for detritivores living underneath the vertical or overhanging walls, ensuring a
close material recycling, as suggested for L. pertusa reefs (Rix et al., 2016; Maier et al., 2020b).

Carbon and nitrogen budget

The CWC D. dianthus in Comau Fjord is characterized by a high C and N demand. To account
for their costs of respiration, ammonium excretion and POM release, the corals require 4 % of
their tissue-C and -N per day; to grow somatic and reproductive tissue, they need additional
resources. Conspecifics from the Mediterranean showed an even higher C demand, due to their
higher respiration rate (Naumann et al., 2011). In comparison, L. pertusa from a Norwegian fjord
has a 10-times lower C demand, due to the lower respiration under the colder conditions (8 °C)
and a lower POC release (Maier et al., 2019). Nevertheless, the comparatively high skeletal
growth rate of D. dianthus from Comau Fjord (Jantzen et al., 2013a,b) could indicate that the
fjord corals are not food-limited.

To balance C and N losses, a medium-sized D. dianthus polyp in Comau Fjord has to capture
almost 800 zooplankton individuals (>100 um) per day. As a voracious zooplankton predator,
D. dianthus is capable to exploit high concentrations of zooplankton (Héfer et al., 2018), which
may occur in swarms at densities of >1000 zooplankters L-! (Ambler, 2002). Zooplankton
aggregation was observed at pycnoclines (Tiselius, Nielsen & Nielsen, 1994), near
oceanographic fronts, and in the vicinity of abrupt topography like seamounts or coral reefs
(Genin et al., 1994). These aggregations form because zooplankton actively maintains its depth
by swimming against vertical currents (Genin et al., 2005). A surprising finding in our
experiments was that simulated zooplankton swarms of >1000 individuals L-!, leading to the
capture of >300 zooplankton individuals, were insufficient to balance the daily C and N losses of
the fjord corals.

This suggests that krill, or other larger prey, play a crucial role for the nutrition of D. dianthus in
Comau Fjord. The capture of one krill alone boosts the energy reserves of the corals (Fig. 5), due
to its 1,000 times higher C content compared to small zooplankton, the higher assimilation
efficiency and lower metabolic costs involved in food processing (i.e. higher growth efficiency).
Diver observations at 20 m depth (J Laudien, T Heran, 2017, 2021, unpublished data) and
remotely-operated-vehicle footage between 160 and 200 m depth (Fig. 6; V Haussermann,

G Forsterra, C Richter, 2012, unpublished data) revealed dense krill swarms directly next to the
corals. Likewise, the recurrence of blue whales in Comau Fjord (Forsterra & Héussermann,
2012) indicates krill aggregations, which are known to attract the large mammals in the region
(Buchan & Quifiones, 2016). In feeding experiments, D. dianthus captured live krill at a similar
rate (18 % h') as small zooplankton (Hofer et al., 2018); in situ, krill capture remains to be
quantified.
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A maximized energy intake is crucial considering the pronounced seasonality in North Patagonia
(Pickard, 1971). The C and N budget of D. dianthus was assessed in austral summer, when high
abundances of zooplankton and krill follow the spring phytoplankton bloom (Iriarte et al., 2007;
Gonzalez et al., 2010) and create feast conditions. The CWCs might invest the excess resources
in tissue reserves such as lipids (Maier et al., 2019) to overcome the less-productive winter
(Iriarte et al., 2007; Gonzalez et al., 2010). In early spring (September), however, Patagonian

D. dianthus also starts to produce gametes, which is an energy-costly process (Feehan, Waller &
Héussermann, 2019). Reduced skeletal growth in summer could therefore indicate an energetic
trade-off between investment in reproductive tissue and growth (Hassenrtick et al., 2013), as
suggested for L. pertusa from a Norwegian fjord (Maier et al., 2020a). In winter, when
zooplankton and krill abundance is reduced, the corals may benefit from their metabolic
flexibility. The fast downregulation of metabolic rate and POM release constrains C and N
losses; therefore, four-day unfed corals had a similar (negative) scope for growth as corals that
received ‘too small’ amounts of zooplankton (Fig. 5). Further, after prolonged (3-week)
zooplankton exclusion, D. dianthus was observed to take up alternative resources, such as DOM
and/or non-zooplankton POM (Naumann et al., 2011). A potential diet shift to more degraded
material in winter was also described for L. pertusa (Maier et al., 2020a). Metabolic and dietary
flexibility enable the corals to survive without particulate food for several months (J Laudien,
2020, unpublished data).

Ex situ experiments, as presented here, allow the measurement of the total C and N fluxes of a
CWC, i.e. its C and N budget. This measurement proves difficult in situ, as it typically requires a
closed-off water volume. Nevertheless, ex situ experiments only provide specific simulations of
the dynamic fjord environment (Gonzalez et al., 2010; Jantzen et al., 2013a; Iriarte, 2018).
Furthermore, it cannot be excluded that ex situ, the corals were exposed to higher stress than in
situ. Stress can enhance the C and N loss of CWCs, e.g. through increased ex situ respiration
(Khripounoff et al., 2014), and stress-induced mucus production (Zetsche et al., 2016). However,
we minimized experimental stress, by maintaining the experimental corals in natural fjord water
to assure suitable water quality, and by minimum, careful handling. Corals did not show visible
signs of stress such as visibly increased mucus release, retracted tentacles or mortality.

Conclusions

The CWC D. dianthus from the fjords of the Los Lagos Region in North Patagonia requires a
substantial supply of pelagic food to balance its daily C and N loss through respiration,
ammonium excretion and POM release, amounting to 4 % of its tissue-C and -N. Experimental
feeding on zooplankton alone was not enough to balance this C and N loss, despite the high
zooplankton food concentration. For a balanced C and N budget, the solitary coral needs to
capture a minimum of 800 zooplankton individuals per polyp and day, or one larger prey item
such as krill. Under experimental food deprivation, the corals swiftly reduced all C and N loss
terms, likely to conserve energy. We argue that the exploitation of zooplankton swarms and/or
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the consumption of krill, combined with a high metabolic flexibility, are important in sustaining
the energetic requirements of D. dianthus in Comau Fjord. The bulk of the population thrives
near or below aragonite saturation in deeper waters (Fillinger & Richter, 2013; Jantzen et al.,
2013a), which may further increase their energy demand (Gattuso, Allemand & Frankignoulle,
1999; Cohen & Holcomb, 2009); hence, our findings from shallow water individuals are likely a
conservative estimate of their energetic requirements.

Climate change, ocean acidification and the intense salmon aquaculture in the Patagonian fjord
region likely impact the energetic balance of D. dianthus. The species appears particularly
sensitive to a combination of stressors, such as high temperatures and acidification (Gori et al.,
2016) or hypoxia and elevated levels of sulfide/methane (Forsterra et al., 2014). Yet, the Comau
Fjord habitat already displays ‘extreme’ conditions, e.g. low aragonite saturation (Fillinger &
Richter, 2013; Jantzen et al., 2013a). To sustain growth under the low aragonite saturation, high
availability of zooplankton food is crucial for the fjord corals (Martinez-Dios et al., 2020). A
disrupted energy balance may have severe consequences for the growth, reproduction and hence
the distribution of this foundation species in the Patagonian fjord region.
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Figure 1

Map of Comau Fjord, North Patagonia, Chile.

Shown are Huinay Scientific Field Station (Huinay) and the sampling sites Liliguapi and Cross

Huinay.
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Figure 2

Conceptual carbon (C) and nitrogen (N) budget of Desmophyllum dianthus.

The corals release parts of the taken-up C and N as organic matter (OM), i.e. particulate and
dissolved organic carbon and nitrogen (POC, PON, DOC, DON), the remainder is assimilated
(‘Assimil."). Parts of the assimilated C and N are lost during metabolism as carbon dioxide
(CO,) and ammonium (NH,"), the remainder is invested in the growth of somatic and

reproductive tissue and is termed scope for growth (SfG). The figure is modified from

Soetaert & van Oevelen (2009) and Warren & Davis (1967).
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Figure 3

Maintenance and experimental set-up.

(A) Maintenance of Desmophyllum dianthus before and during the experiment. (B) Set-up of
the feeding treatments. (C) Incubations following each feeding treatment. (B, C)

Measurements and water samples taken at the beginning (t;) and end (t;) of the

feeding/incubation are shown, i.e. ‘zooplankton’; number of zooplankton individuals; ‘POC,

PON’, ‘O,’, ‘DIN’, ‘DOC, DON’: concentration of particulate organic carbon and nitrogen,
oxygen, dissolved inorganic nitrogen (ammonium, nitrate, nitrite), dissolved organic carbon

and nitrogen.
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Figure 4

Carbon (C) and nitrogen (N) fluxes of Desmophyllum dianthus exposed to different
feeding treatments

Feeding treatments were 'zoopl’, i.e. fed with zooplankton; 'krill.d1', i.e. fed with
zooplankton+krill; ‘krill.d2’, i.e. 24 h after feeding on zooplankton+krill; and 'unfed’, i.e. 4 d-
unfed. (A, B) C and N uptake during feeding; for ‘unfed’ and ‘krill.d2’, nil C and N uptake
assumed. (C-H) C and N loss measured in incubations after feeding: (C) respiration, (D)
ammonium excretion, (E, F) release of particulate organic carbon and nitrogen (POC, PON),
(G, H) release of dissolved organic carbon and nitrogen (DOC, DON). Blue circles: corals of
batch I, red circles: corals of batch Il. Bracket with *: linear mixed effect model found a
significant difference between the indicated fluxes (see Supplemental Table 1.9 for details);

ns: no significant difference.
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Figure 5

Carbon (C) and nitrogen (N) budget of Desmophyllum dianthus, as scope for growth
(5fG), versus C and N uptake.

SfG: remaining C or N from food, after subtraction of C or N losses. SfG can be invested in

tissue growth (Warren and Davies, 1967). (A) SfG. = C uptake - C respiration - POC release;

(B) SfG, = N uptake - NH," release - PON release; DOC and DON release neglected. Circle

colors indicate coral batch and feeding treatment (see legend); for the treatment
zooplankton+krill, two budgets are plotted, i.e. 'krill.d1' directly after feeding, and 'krill.d2'

the day after feeding with CN uptake = 0. Black lines and equations show the results of the

linear regression with adjusted R*; the C or N uptake at which SfG = 0 (arrow) is interpreted

as minimum C or N demand of the corals.
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Figure 6

Dense swarms of krill and chaetognaths directly above Desmophyllum dianthus,
recorded by remotely-operated vehicle at 160 m depth in Comau Fjord.

Arrow indicates one krill individual.
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