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ABSTRACT
Experimental studies to determine the nature of ecological interactions between
invasive and native species are necessary for conserving and restoring native
species in impacted habitats. Theory predicts that species boundaries along
environmental gradients are determined by physical factors in stressful environments
and by competitive ability in benign environments, but little is known about
the mechanisms by which hydrophytes exclude halophytes and the life history
stage at which these mechanisms are able to operate. The ongoing invasion of
the South American Spartina densiflora in European marshes is causing concern
about potential impacts to native plants along the marsh salinity gradient, offering
an opportunity to evaluate the mechanisms by which native hydrophytes may
limit, or even prevent, the expansion of invasive halophytes. Our study compared
S. densiflora seedling establishment with and without competition with Phragmites
australis and Typha domingensis, two hydrophytes differing in clonal architecture. We
hypothesized that seedlings of the stress tolerant S. densiflora would be out-competed
by stands of P. australis and T. domingensis. Growth, survivorship, biomass patterns
and foliar nutrient content were recorded in a common garden experiment to
determine the effect of mature P. australis and T. domingensis on the growth and
colonization of S. densiflora under fresh water conditions where invasion events are
likely to occur. Mature P. australis stands prevented establishment of S. densiflora
seedlings and T. domingensis reduced S. densiflora establishment by 38%. Seedlings
grown with P. australis produced fewer than five short shoots and all plants died after
ca. 2 yrs. Our results showed that direct competition, most likely for subterranean
resources, was responsible for decreased growth rate and survivorship of S. densiflora.
The presence of healthy stands of P. australis, and to some extent T. domingensis,
along river channels and in brackish marshes may prevent the invasion of
S. densiflora by stopping the establishment of its seedlings.
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INTRODUCTION
Competition between native and invasive plant species has been broadly studied in

marshes (Ungar, 1998), however experimental studies to determine the nature of ecological

interactions between invasive and native species are necessary for conserving and

restoring native species in impacted habitats (Parker, Simberloff & Lonsdale, 1999; Byers

& Goldwasser, 2001).

Theory predicts that species boundaries along environmental gradients are determined

by physical factors in stressful environments and by competitive ability in benign

environments (Crain & Bertness, 2006; Maestre et al., 2009; Engels, Rink & Jensen,

2011). Engels & Jensen (2010) showed that such a relationship controls plant zonation

in estuaries. Plants transplanted from low salinity environments (hydrophytes) to salt

marshes performed poorly regardless of whether neighbouring vegetation was present or

not, and conversely, plants growing in high salinities (halophytes) had low biomass and

high mortality rates in the presence of neighbors when transplanted to freshwater marshes.

Without neighbors, biomass of halophytes in freshwater wetlands was similar to or higher

than that in salt marshes. These results showed a shift in the importance of competition

along the estuarine salinity gradient. Still, little is known about competitive outcomes

among native and invasive plants differing in salinity tolerance or the life history stage at

which these mechanisms operate—information central to managing plant invasions in

coastal and estuarine environments.

The South American cordgrass, S. densiflora Brongn. (Poaceae), is a clonal plant

invading estuaries in Europe (Nieva et al., 2001) and North America (Kittelson & Boyd,

1997), but the impacts to these systems and mode of invasion are poorly known. In Europe,

S. densiflora invades a wide range of habitats, including brackish marshes and river banks

(Nieva et al., 2001; Curado et al., 2010) and is interacting with native plants over a strong

salinity gradient that may influence competition among species. The native congener

S. maritima Curtis (Fernald) may be succumbing to S. densiflora invasion at middle marsh

elevations (Castillo et al., 2008; Castillo & Figueroa, 2009), but invasion has not occurred

in intact stands of indigenous freshwater and brackish marsh hydrophytes, such as the

clonal dominant wetland plants Typha domingensis Pers. (southern cattail) and Phragmites

australis (Cav.) Trin. ex Steud. (common reed). Spartina densiflora invades bare sediments

in new areas by seedlings established from numerous seeds dispersed by water (Kittelson

& Boyd, 1997; Nieva et al., 2001). Thus, S. densiflora invasion offers an opportunity to

analyze the mechanisms by which native hydrophytes would limit the expansion of invasive

halophytes in mid to high marsh habitats.

Our study compared invasive S. densiflora seedling establishment with and without

competition with native P. australis and T. domingensis, two hydrophytes with differing

clonal architecture: P. australis has a high stem density with narrow stem diameters and

T. domingensis has a lower stem density, but thicker diameter stems. We hypothesized that

seedlings of the stress tolerant S. densiflora would be out-competed by mature stands

of P. australis and T. domingensis under low salinity conditions following the general

ecological theory that stress tolerant plants have a lower competitive capacity than

Abbas et al. (2015), PeerJ, DOI 10.7717/peerj.1260 2/12

https://peerj.com
http://dx.doi.org/10.7717/peerj.1260


stress-intolerant but fast-growing plants. We compared growth, survivorship, biomass

allocation patterns and foliar nutrient content of S. densiflora seedlings in response to

inter- and intra-specific competition and in the absence of competition to explore the

ability of native P. australis and T. domingensis to prevent S. densiflora invasion under low

salinity conditions and at early life-stages of the invasion process.

MATERIALS AND METHODS
Experimental design
Phragmites australis and Typha domingensis rhizomes and S. densiflora seeds were collected

in Odiel Marshes (Southwest Iberian Peninsula). Phragmites australis and T. domingensis

rhizomes were planted and grown in peat soil in plastic pots (12 cm diameter and 15 cm

height; volume of 2.75 l) until they established mature stands with similar densities to

those found in wetlands in the Southwest Iberian Peninsula. Spartina densiflora seedlings

were obtained for experiments from seeds sown on peat soil in flats in the greenhouse.

Seeds and seedlings were watered regularly to maintain moist soils until transplanted into

treatments.

The common garden experiment was initiated in January 2008 and conducted over

two years in a common garden at the University of Seville, Spain. Four treatments (two

interspecific competition treatments, one intraspecific competition treatment, and one

no competition treatment) were established using transplanted S. densiflora seedlings

of similar size: (1) Five seedlings of S. densiflora transplanted into a pot containing an

established P. australis stand (n = 6 pots); (2) Five seeds of S. densiflora transplanted into

a pot containing an established T. domingensis stand (n = 10 pots); (3) Five seedlings of

S. densiflora transplanted into a pot containing an established S. densiflora stand (n = 5

pots); and (4) one seedling of S. densiflora without intra- and inter-specific competition

(n = 5 pots). S. densiflora seedlings were placed at a depth of 0.5 cm; one at the centre

of the pot and the other four around it spaced 3 cm apart. Shoot density and height,

and above-ground biomass (AGB) and below-ground biomass (BGB) of P. australis and

T. domingensis used in our experiment were within the range of those reported previously

in field studies (Sobrero, Sabbatini & Fernandez, 1997; Sharma et al., 2008; Engloner, 2009).

Initial planting conditions imitated natural conditions during autumn-winter periods

in Southwest Iberian Peninsula when S. densiflora seeds germinate inside native stands

with most of their aerial biomass senesced. Plants were maintained at ambient light and

temperature and watered daily with fresh water, and pots were placed in pools keeping

their base permanently flooded to a height of 3 cm.

Abiotic environment
Light intensity, and soil salinity (measured as electrical conductivity), pH, and redox

potential were measured for each pot to evaluate if biotic interactions among species

changed the abiotic environment. Photosynthetic photon flux density (PPFD) was

recorded with a portable photometer (LI-COR Instruments, Inc., Lincoln, Nebraska,

USA) at ground level during midday outside and within the stands of P. australis and
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T. domingensis during summertime (in July 2008) coinciding with maximum biomass

accumulation. At the end of the experiment, soil samples were collected from each pot,

dried at 60 ◦C for two days, and then sieved through mesh to remove particles greater than

2 mm. Total soluble salt concentration (salinity) was determined by measuring electrical

conductivity (Rhoades, 1996). To determine electrical conductivity, 60 ml of 0.1 M calcium

chloride was added to 20 g of soil (3:1 mixture) and mixed on an orbit shaker for 30 min.

Conductivity was measured at 21.0 ± 0.5 ◦C using a CM35+ meter (Crison Instruments,

Inc., Barcelona, Spain). To determine soil pH, 30 g of soil was mixed with 30 ml deionized

water (1:1 mixture) and mixed on an orbit shaker for 30 min. pH was measured with a

CM35+ meter. Redox potential of the soil between 0–5 cm deep was determined with a

portable meter and electrode system (Crison Instruments, Inc., Barcelona, Spain).

Survivorship, shoot production, height and biomass
The number of live S. densiflora seedlings, and live P. australis, T. domingensis, and

S. densiflora shoots were counted periodically from the beginning of the experiment. Shoot

height of Spartina densiflora seedlings was measured from the base of the shoot to the tip of

the longest leaf (n = 5–10 pots; 5 shoots of different clones, or per pot).

At the end of the experiment (February 2010), AGB and BGB were recorded for every

clone of each species in each treatment (n = 5–10 pots; 5–50 clones per species and

treatment). Stems of all plants were harvested, dried at 80 ◦C for 48 h, and weighed. AGB

was divided into dead and live shoots and leaves, and BGB was divided into rhizomes and

roots. AGB and BGB for P. australis and T. domingensis stands were also recorded at the

beginning of the experiment using extra pots maintained under experimental conditions.

Leaf nitrogen and carbon content
Total leaf carbon (C) and nitrogen (N) content were determined for the three plant species

in July 2008, when Spartina seedlings were large enough to contain enough leaf tissue

for these analyses. Three leaves per clone within each pot, and for each treatment, were

collected and pooled for analysis. The samples were dried in an oven at 80 ◦C for 48 h,

pulverized using a grinder (Cyclotech, Inc., Cypress, California, USA) and filtered using a

screen of 80-µm. Total C and N concentration was determined for undigested samples with

an elemental analyzer (Leco Instruments, Inc., Saint Joseph, Michigan, USA).

Statistical analysis
Analyses were conducted using SPSS release 12.0 (SPSS Inc., Chicago, IL). Data were

tested for normality with the Kolmogorov–Smirnov test and for homogeneity of variance

with the Levene test at P > 0.05. When homogeneity of variance between groups was not

found, data were transformed using the following functions: ln(x), 1/x and
√

x. Analysis

of variance was used to detect differences in the response variables among competition

treatments and Tukey’s Honest Significant Difference (HSD) test was used to detect

differences among treatments only if F-test was significant at P = 0.05. Student’s t-test

for independent samples was applied to compare AGB and BGB between T. domingensis

and P. australis. Deviations were calculated as the standard error of the mean.
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RESULTS
Abiotic environment
Ambient Photosynthetic Photon Flux Density (PPFD) measured outside pots with native

plant stands averaged 1,660 ± 105 µmol photon m−2 s−1 at full sunlight. PPFD measured

within P. australis stands was 55% (928 ± 206 µmol photon m−2 s−1) of full light and was

not significantly different than PPFD within T. domingensis stands, which was 63% of full

light (1,057 ± 151 µmol photon m−2 s−1; t-test, >0.05). Soil electrical conductivity, pH,

and redox potential were not significantly different among treatments (P > 0.05). Mean

soil pH was ca. 6 and conductivity varied between 0.30 and 2.32 mS cm−1. Soil redox

potential was always positive (ca. +130 mV).

Survivorship, shoot production and height
Phragmites australis consistently had a higher shoot density than T. domingensis over the

course of the experiment (Fig. 1). Shoot senescence increased over the winter for both

native species, but was higher for P. australis.

Competition treatments during the first 135 days had no effect on the number of live

seedlings of S. densiflora. But, by the end of the experiment (ca. two years), no S. densiflora

seedlings planted into P. australis stands survived. Seedlings growing within T. domingensis

stands were less impacted, having a survival rate of 62%. In contrast, all seedlings planted

alone or with other Spartina seedlings survived.

Competitive interaction of Spartina seedlings with both native species caused depressed

development, resulting in fewer and short shoots, and lower biomass than in the absence

of competition. Average shoot density of S. densiflora seedlings growing alone was 26 ± 3

shoots clone−1, followed by the S. densiflora monoculture with intra-specific competition

(11 ± 1 shoots clone−1), seedlings growing within T. domingensis (ca. 7 ± 0 shoots

clone−1), and seedlings growing with P. australis(with 2 ± 0 live shoots clone−1 just before

dying) (P < 0.05) (Fig. 1). At the end of the experiment, the shortest S. densiflora seedlings

were those that had died within P. australis stands and averaged 23.0 ± 2.5 cm, followed

by those growing in monoculture (51.3 ± 3.4 cm) and by those growing alone or within

T. domingensis stands (68.8 ± 5.5 cm tall) (P < 0.05) (Fig. 1).

Biomass
Both P. australis and T. domingensis had lower allocation to above-ground than to

below-ground structures, but T. domingensis did have a higher AGB (ca. 2,500 g m−2)

than P. australis (ca. 1,200 g m−2) at the end of the experiment (t-test, P < 0.05). BGB of

T. domingensis and P. australis stands was similar and averaged ca. 14,000 g m−2 for each

species (t-test, P > 0.05) (Fig. 2).

At the end of the experiment, AGB and BGB of Spartina seedlings growing alone were

significantly higher (AGB: 500 ± 66 g m−2; BGB: 1,300 ± 175 g m−2) than for the other

treatments (AGB: ca. 125 g m−2; BGB: ca. 200 g m−2) (AGB: P < 0.05; BGB: P < 0.05).

In addition, S. densiflora seedlings growing in the intraspecific competition treatment had
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Figure 1 Number of live shoots over time. Temporal variation of the number of live shoots (A) for
Phragmites australis, Typha domingensis and (B) S. densiflora, and (C) S. densiflora shoot height (cm)for
four treatments: 5 Spartina seedlings within Phragmites australis or within Typha domingensis, 5 Spartina
seedlings and 1 Spartina seedling.
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Figure 2 Above- and below-ground biomass for Phragmites australis and Typha domingensis stands,
and S. densiflora seedlings in four different competition treatments. Above- (AGB; black bars) and
below-ground (BGB; gray bars) biomass (g m−2) for (A) Phragmites australis and Typha domingensis
stands and (B) for S. densiflora seedlings growing in four different competition treatments Different
letters indicate significant difference among treatments (ANOVA or t-test, P < 0.05).

greater BGB than those growing within T. domingensis stands. S. densiflora seedlings grow-

ing within P. australis had the lowest AGB (40 ± 9 g m−2) and BGB (36 ± 8 g m−2; Fig. 2).

Leaf nitrogen and carbon content
Spartina densiflora had lower leaf N content in all treatments compared with P. australis

or T. domingensis. Leaf N content was lowest for S. densiflora seedlings growing in

monoculture (1.04 ± 0.02% N), 1.11 ± 0.02%, for seedlings growing alone, 1.15 ± 0.03%

for seedlings growing with P. australis, and 1.12 ± 0.03% for seedling growing with
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Figure 3 Nitrogen content and C:N ratio. (A) Nitrogen content (%), and (B) C: N ratio for S. densiflora
in four different competition treatments (see Fig. 1) and for Phragmites australis and Typha domingensis
adult stands. Different letters indicate significant difference among treatments (ANOVA, P < 0.05).

T. domingensis. The P. australis and T. domingensis only treatments had significantly higher

leaf N content (ca. 1.25%) than all treatments with S. densiflora seedlings (P < 0.05; Fig. 3).

As expected, C:N reflected leaf N content among the treatments (Fig. 3).

DISCUSSION
We hypothesized that mature native hydrophytes would be competitively superior under

low salinity conditions and prevent the invasion of S. densiflora. Phragmites australis

did effectively exclude S. densiflora seedlings, but T. domingensis stands were not able to

completely stop establishment and growth. These differences in the survivorship and
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the growth of S. densiflora among treatments were likely related to contrasting biomass

distribution patterns within the stands of the two native hydrophytes and not changes

in the abiotic environment since soil characteristics and PPFD were similar among

treatments. P. australis seemed to prevent the colonization of S. densiflora due to its very

high biomass allocation to belowground structures, similar to that of T. domingensis, but

showed more uniform occupation of the subterranean space than T. domingensis. Phrag-

mites australis has a dense network of shallow rhizomes and roots, with corresponding high

aboveground stem density, as opposed to the deep, sparse root structure of T. domingensis

(JM Castillo, pers. obs., 2007). The more regular and dense occupation of the subterranean

space just below the soil surface by P. australis may have prevented the establishment of

S. densiflora seedlings, presumably by blocking the establishment of the subterranean

rooting system. Empty space in the below-ground neighbourhood is often a key factor for

plant establishment (McConnaugha & Bazzaz, 1991; Casper & Jackson, 1997). Nevertheless,

Minchinton, Sympson & Bertness (2006) found that P. australis also effectively excluded

other plant species by increased shoot and litter production rather than by changing soil

properties or by below-ground competition.

Spartina densiflora did well in the early establishment phase when both native species

were dormant and stem density was low, and although above-ground competition is

negligible at this point (Engloner, 2009), the rapid decrease in growth over the growing

season points to below-ground competition for limited space as the likely mechanism.

Spartina densiflora has ruderal characteristics and readily colonizes bare substrates, but

is less successful in well established plant communities. Castillo et al. (2008) found that

S. densiflora invasion from seeds may be limited in Spanish marshes by inter-specific

subterranean competition with the native S. maritima (Curtis). Similarly, tiller expansion

of S. densiflora in North American marshes was higher in areas without native competitors

(Kittelson & Boyd, 1997). Phragmites australis is a notoriously competitive hydrophyte

in brackish and freshwater systems, and may effectively limit the spread of S. densiflora

where they co-occur. Engels & Jensen (2010) described competitive displacement of

S. anglica C.E. Hubbard by P. australis in North European freshwater marshes, and He et

al. (2009) showed that established P. australis stands inhibited the development of Suaeda

salsa (L) Pallas seedlings in China. The European P. australis lineage has invaded coastal

and freshwater marshes throughout eastern North America (Saltonstall, 2002) where it has

formed extensive monocultures and displaced diverse assemblages of native plants (Marks,

Lapin & Randall, 1994; Tiner, 1997; Chambers, Meyerson & Saltonstall, 1999; Meyerson,

Saltonstall & Windham, 2000), including native populations of Typha spp. (Chun & Choi,

2009), indigenous P. australis (Lambert, Dudley & Saltonstall, 2010), and Spartina spp.

(Saltonstall, 2002; Robertson & Weis, 2005; Kimball & Able, 2007).

Nutrient levels and C:N were also generally consistent across treatments so competition

for limiting nutrients did not appear to be a factor. Nitrogen content of seedlings was

actually higher in the inter-specific competition treatments. We do not know from our

study whether P. australis or T. domingensis captured or used nitrogen more efficiently, but

other studies have shown that the growth of P. australis is stimulated by nitrogen which it
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efficiently convert to belowground biomass (Sillman & Bertness, 2004; Lambert, Dudley &

Robbins, 2014). Rickey & Anderson (2004) found that P. australis displaced native Spartina

pectinata Bosc. ex Link. under high nitrogen conditions.

In view of our results, management of invaded and susceptible marshes should focus

on well-conserved communities of native hydrophytes as a way to passively resist invasion

by S. densiflora. In some European marshes, P. australis has shown a general dye-back

(Ostendorp, 1989) which, if it occurred in estuaries invaded by S. densiflora could open

space for further invasion. In addition, planting P. australis in estuaries and river banks in

areas already invaded by or susceptible to invasion by S. densiflora should be considered as

viable option for creating a barrier to cordgrass expansion.
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