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ABSTRACT
Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by
shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previ-
ously, culture-independent 16S rRNA gene based diversity surveys have revealed that
Zodletone spring source sediments harbor a highly diverse microbial community,
with multiple lineages putatively involved in various sulfur-cycling processes. Here,
we conducted a metatranscriptomic survey of microbial populations in Zodletone
spring source sediments to characterize the relative prevalence and importance of
putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the
sulfur cycle, the identity of lineages actively involved in various sulfur cycling pro-
cesses, and the interaction between sulfur cycling and other geochemical processes
at the spring source. Sediment samples at the spring’s source were taken at three dif-
ferent times within a 24-h period for geochemical analyses and RNA sequencing. In
depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling
pathways and taxa involved, including an unexpected potential role of Actinobacteria
in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding
for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and
terminal cytochrome oxidases were encountered, indicating that genes for oxygen
production and aerobic modes of metabolism are actively being transcribed, despite
below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight
transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic
photosynthesis could support aerobic methane and sulfide oxidation in anoxic sed-
iments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles
under conditions similar to those seen during late Archaean and Proterozoic eons.
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INTRODUCTION
The combination of molecular techniques and high-throughput sequencing in microbial

ecology has revolutionized the ability to probe questions regarding microbial community

structure and function (Handelsman, 2004). Metagenomic and metatranscriptomic

approaches have provided valuable insights into the roles of uncultivated lineages within a

microbial community (Pelletier et al., 2008; Liu et al., 2012; Kozubal et al., 2013; Sheik, Jain

& Dick, 2014) as well as in delineating the relative importance and contributions of various

microbial taxa to observed geochemical processes occurring in habitats characterized by

complex biodiversity, such as soil (Urich et al., 2008; Shrestha et al., 2009), surface and

deep ocean water (Poretsky et al., 2005; Frias-Lopez et al., 2008; Poretsky et al., 2009; Baker

et al., 2013), deep ocean hydrothermal vent systems (Xie et al., 2010; Lesniewski et al.,

2012), and hot springs (Liu et al., 2011; Burow et al., 2013). In complex habitats like these,

small-subunit (SSU) rRNA gene-based surveys and metagenomic approaches can lead

to exhaustive lists of taxa detected and speculation of the potential roles of dominant

taxa in metabolic processes. As such, a metatranscriptomic approach better allows for the

determination of microbial populations that are actively involved in processes of interest.

In particular, metatranscriptomics represents an ideal tool to study sulfur cycling

processes and the microbial lineages involved at Zodletone spring, a sulfide and sulfur-rich

spring in southwestern Oklahoma. The spring itself is a sunlight-exposed shallow aquatic

habitat with highly reduced sediments, in which O2 is undetectable (Senko et al., 2004;

Bühring et al., 2011). Because of the lack of detectable O2, it has also been suggested that

photosynthesis by Cyanobacteria in spring’s sediment is anoxygenic (Bühring et al., 2011).

The water overlying the sediments has low O2 concentrations (2–4 µM) (Bühring et al.,

2011), high levels of methane from the subsurface, and high concentrations of sulfur in

various forms (Donovan, Younger & Ditzell, 1988).

Sulfur cycling processes at the site have been described as anaerobic. Anoxygenic sulfide

oxidation appears to be light-driven and anaerobic (Elshahed et al., 2003; Senko et al.,

2004), and indeed, Chromatiales and Chlorbi (the anaerobic purple and green sulfur

bacteria) lineages have been detected among SSU rRNA-based surveys (Elshahed et al.,

2003; Youssef, Couger & Elshahed, 2010); however, it is unknown whether these lineages are

the sole contributors to sulfide and sulfur oxidation or if other lineages, such as Epsilonpro-

teobacteria, which has been detected in the spring (Elshahed et al., 2003; Youssef, Couger &

Elshahed, 2010; Bühring et al., 2011), might also be involved. Similarly, sulfate reduction

also appears to be a dominant process in the anoxic sediments during dark periods

(Elshahed et al., 2003; Senko et al., 2004), but while many anaerobic Deltaproteobacteria

lineages known to be involved in sulfate reduction have been detected (Elshahed et al.,

2003; Youssef, Couger & Elshahed, 2010), it is unclear if other sulfur-reducing processes

(e.g., sulfur reduction, thiosulfate reduction or disproportionation) also occur in situ

and which microbial lineages are involved. Indeed, Zodletone spring sediments harbor

an extremely diverse microbial community (Elshahed et al., 2003; Youssef, Couger &

Elshahed, 2010), but SSU rRNA-based surveys alone cannot tell us specifically which of

the taxonomic lineages detected (especially those with no or few members that have been
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validly described) are actively involved in any of the sulfur cycling processes, or other

photo- and chemotrophic processes, occurring at the site.

Thus, a metatranscriptomic approach, especially if coupled to a detailed geochemical

characterization, could be extremely useful. In this study, we used metatranscriptomics to

examine the roles of various microbial lineages in processes occurring in Zodletone spring

sediments throughout the course of a day, with the goal of identifying microorganisms

involved in general photo- and chemotrophic processes as well as sulfur cycling processes.

The data presented here highlight taxa involved in a complex sulfur cycle and also provide

some unexpected findings regarding the production and utilization of oxygen in the anoxic

sediments at the spring’s source.

MATERIALS AND METHODS
Site description and geochemistry
Zodletone Spring, located in Kiowa County (Oklahoma; Coordinates: 35.002470,

−98.688091), is an anoxic, barite-depositing spring with a highly diverse microbial

community (Elshahed et al., 2003; Elshahed et al., 2004; Youssef, Couger & Elshahed, 2010),

driven largely by sulfur cycling processes (Elshahed et al., 2003; Senko et al., 2004). The

spring source, approximately 1 m2, feeds a small stream (∼20 m), which empties into

nearby Saddle Mountain Creek (Fig. S1). Spring source water is barium- (∼0.3 mM) and

sulfide-rich (8–10 mM), bubbling continuously with methane and short-chain alkanes,

and has a unique chemical composition, largely due to its origin, a mixture of deep

Anadarko basin brine water and shallow groundwater (Donovan, Younger & Ditzell, 1988).

Spring water originates underground and has a constant year-around temperature of

22 ◦C (Younger, 1986; Youssef, Ashlock-Savage & Elshahed, 2012) and also contains sulfate

(∼60 µM), and moderate levels of NaCl (∼0.2 M) (Senko et al., 2004).

The soft, black, biomass-rich sediments at the spring’s source are immobile and

represent a stable environment. Although it was previously reported that spring water is

anoxic (Senko et al., 2004), a more recent study using microsensors found that though

oxygen was not detectable within and directly above (<1 mm) the source sediment,

concentrations increased to 2–4 µM at 2 mm above the source sediment-water interface;

therefore, source sediments and overlying waters can be classified as anoxic and micro-oxic

(<5 µM), respectively (Bühring et al., 2011).

Sampling description
Zodletone source sediment and groundwater were sampled in early November 2009 over

a 24 h period to catch the diurnal fluctuations in sulfur cycling processes previously

observed, i.e., that sulfide oxidation and production appear to occur during sunlit vs.

dark periods, respectively (Elshahed et al., 2003; Senko et al., 2004). Conditions on the day

of sampling were sunny and mild, with air temperatures recorded as follows for each time

of sampling: 24.4 ◦C at 12:15 (daytime; peak sunlight), 22.8 ◦C at 17:15 (early evening;

one half hour before sunset), 15.6 ◦C at 22:15 (night; full darkness), and 15.0 ◦C at 07:30

(early morning; one half hour after sunrise). At each of these time points, source sediment
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(approx. 5 g) was aseptically collected, preserving transcripts by immediate (within five

seconds) on-site immersion of sediment in 9 mL LifeGuardTM Soil Preservation Solution

(MoBio Laboratories, Inc., Carlsbad, CA). Samples were mixed well then frozen by

submersion in an ethanol bath super-cooled with dry ice. Using this procedure, each

sediment sample-LifeGuard mixture was frozen in under one minute. Each sample was

collected from the top layer (5 cm) of sediment from the south-facing corner of the spring

(Fig. S1), directly adjacent to the spring’s source of water (as identified by visible bubbling),

where the sediment has a uniform appearance, characterized as soft, black, with few to no

leaves present. Care was taken to ensure minimal disturbance, and subsequent samples

were obtained, using the same techniques, from the same location and depth immediately

adjacent to the original site sampled. All sediment samples were transported on dry ice to

our laboratory and stored at −80 ◦C for RNA extraction.

Water from the spring’s source was also collected for various geochemical analyses.

For pH and anion analysis, water from the source was collected, filtered through 0.2 um

filter, and frozen immediately using the dry ice/ethanol bath. For sulfide preservation,

water samples (2.5 ml) were collected and directly injected into serum tubes containing

2.5 ml anoxic 10% zinc acetate (N2 headspace). Water samples were transported either

on dry ice (tubes for pH/anion analysis) or on ice (tubes for sulfide analysis) to our

laboratory and stored at −20 ◦C (tubes for pH and anion analyses) or 4 ◦C (tubes for

sulfide measurements). Water samples were collected, transported, and stored in a similar

matter for pH and sulfide analyses again in August 2014.

Analytical methods
From water samples, pH was measured under N2:CO2 (80:20) headspace using a pH

electrode. Anion (chloride, nitrate, nitrite, phosphate, sulfate, sulfite, and thiosulfate)

concentrations were determined by ion chromatography (Dionex, model DX500 fitted

with the AS-4A column; Dionex Corporation, Sunnyvale, CA). To minimize oxidation of

thiosulfate and sulfite, standards and sample dilutions into Dionex vials were prepared

in an anaerobic glove bag (Coy Laboratory Products, Inc., Grass Lake, MI). Sulfide was

measured by the methylene blue assay (Cline, 1969).

RNA extraction, processing, and pyrosequencing
RNase-free materials and reagents were used in all RNA extraction and processing steps.

RNA was extracted from sediment within two months of sampling (RNA PowerSoil®

Total RNA Isolation kit; MoBio). Remaining DNA was then digested (RNase-free DNase-I;

MoBio), and an enzymatic rRNA removal step was performed (mRNA-ONLY Prokaryotic

mRNA Isolation Kit; EPICENTRE Biotechnologies, Madison, WI). Samples were stored

at −80 ◦C until a second rRNA-removal step, based on subtractive hybridization, was

performed (MICROBExpressTM Bacterial mRNA enrichment kit; Ambion, Austin,

TX). Enriched mRNA was amplified via in vitro transcription of synthesized cDNA

(MessageAmpTM II-Bacteria Prokaryotic RNA Amplification Kit; Ambion). We quantified

total RNA (ng/µl) before and after ribodepletion steps. As a control, RNA was also

amplified from the non-ribodepleted RNA (RNA prior to rRNA depletion steps) fraction
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of one sample (12:15 time point) in order to examine the efficiency of rRNA removal, to

examine the microbial community structure of the non-ribodepleted sample, based on

analysis of SSU rRNA gene transcripts present, and to describe the effects of ribo-depletion

on SSU rRNA-based microbial community structure.

Amplified RNA was assessed for quality and quantity by both denaturing gel elec-

trophoresis and spectrophotometric analysis (NanoDrop Products, Wilmington, DE). The

quality of the 17:15 was too poor for sequencing; thus, library preparation and sequencing

via Roche Titanium 454 pyrosequencing was conducted from the remaining three samples

(12:15, 22:15, and 07:30), using the service of a commercial provider (MOgene, LC., St.

Louis, MO).

Sequence handling and analyses
(i) Sequence data handling. Raw sequence data (.fna and .qual files) were uploaded to

MG-RAST (v2) (Meyer et al., 2008) for data handling and functional annotation. From

these total reads datasets, several data subsets were also created. Microbial SSU rRNA data

subsets were created by downloading reads from MG-RAST with significant alignment

(min. alignment length = 50 bp; max. E-value = 1E–30) to sequences from within the

Greengenes (Bacteria) and SILVA SSU (Archaea) databases. Potential mRNA data subsets

from each ribodepleted sample (12:15, 22:15, and 07:30) were created by removing all

sequences with significant similarity (max. E-value = 10E-3) to bacterial, archaeal, or

eukaryotic large and small subunit ribosomal RNA sequences, as identified using the

BLASTN alignment tool against the nt database (Altschul et al., 1997). As well, reads from

potential mRNA data subsets were assembled for more detailed analysis of sulfur and

oxygen cycling genes. To assemble the raw reads, we performed three separate assemblies

using Newbler, the 454 assembly software, on untrimmed reads, reads trimmed at 84, and

reads trimmed at 63 cycles. The three different trimming lengths were used to reduce the

number of artificial contigs produced due to poor qualities at the end of the contigs (Wiley

et al., 2009). The contigs from the three separate assemblies were combined and further

assembled with Phrap (Ewing & Green, 1998). Potential mRNA and assembled datasets

were also uploaded to MG-RAST (v2) for analyses.

(ii) Taxonomic classification of SSU rRNA reads. Taxonomic assignment of each SSU

rRNA read was performed using the on-line Classifier tool available from the Ribosomal

Database Project (Wang et al., 2007). In order to characterize the effect of the rRNA

removal steps on microbial community analysis, microbial community composition

(characterized by the number of taxa detected at the phylum, class, and order levels)

of the 12:15 total RNA control sample was compared to that of its (12:15 time point)

corresponding ribodepleted dataset. Population distribution at each taxonomic level

was also determined using relative frequencies of each taxon, and the two samples were

statistically compared by a chi-square test based on an r × k contingency table.

(iii) Taxonomic assignment of mRNA transcripts. A BLASTX-MEGAN based analysis was

used to assign NCBI taxonomic affiliations to mRNA transcripts. First, sequences from

potential mRNA data subsets were examined using the BLASTX search query against the
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NCBI nr database; results (top 5–10 most closely related hits with a max. E-value cutoff

of 10E-5) were saved and summarized in searchable tab-delimited text files. The BLASTX

results produced were then used by MEGAN, v4 (Huson et al., 2011) to assign a taxonomic

affiliation to each mRNA transcript. Sequences in which top BLASTX hits identified

with different taxonomic lineages (i.e., sequences with similar functions but belonging

to different phyla) typically remained “taxonomically unclassified” by the program, thus

minimizing the chances of false classifications that might occur if only the top BLASTX hit

had been used.

(iv) Functional analyses of mRNA transcripts. Potential mRNA data subsets were ana-

lyzed in MG-RAST, v2, for functional gene annotation and SEED subsystem determination

(Meyer et al., 2008), using the following parameters: minimum alignment length, 34 bp;

maximum E-value, 0.01. A number of rRNA sequences remained in these datasets; thus,

the final number of potential mRNA reads for each dataset was determined by subtracting

the number of sequences with significant alignments (min. alignment length = 50 bp;

max. E-value = 1E–30) to SSU and large subunit (LSU) rRNA databases from the total

number of sequences. Functional gene assignments from each subsystem were downloaded

as sortable, searchable spreadsheets.

Additionally, individual reads and assembled contigs coding for genes putatively

involved in sulfur and oxygen transformations were identified by mining all data files

(MG-RAST annotation spreadsheets, MEGAN files and BLASTX summary files) for

genes identified in MetaCyc pathways (Caspi et al., 2008) or by primary literature as being

involved in metabolisms of interest, and subjected to further in-depth analysis.

Nucleotide sequences accession numbers
Sequences for each of four samples were deposited to GenBank through the sequence

read archive and can be retrieved from the following accession numbers: SRX025760,

SRX025825, SRX025796 [corresponding to ribodepleted 22:15 (night), 07:30 (early

morning), and 12:15 (afternoon) samples, respectively], and SRX331735 (corresponding

to the 12:15 non-ribodepleted RNA control sample). Various datasets are publicly available

in MG-RAST (v3) under the following Sample ID numbers: original RNA datasets

(without rRNA sequences removed) from 22:15 (night), 07:30 (early morning), and 12:15

(afternoon) samples correspond to project IDs 4450335.3, 4450336.3, and 4450338.3,

respectively; potential mRNA datasets (with rRNA sequences removed) from 22:15

(night), 07:30 (early morning), and 12:15 (afternoon) samples correspond to project IDs

4451038.3, 4451039.3, and 4451037.3; assembled mRNA datasets from 22:15 (night), 07:30

(early morning), and 12:15 (afternoon) samples correspond to project IDs 4453253.3,

4453260.3, and 4453251.3; finally, datasets from the non-ribodepleted control RNA sample

(12:15) correspond to Project IDs 4451467.3 (all RNA reads) and 4451718.3 (potential

mRNA dataset).
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RESULTS
Geochemistry of Zodletone spring water
Sulfide measurements from source water samples at the time of sampling (Nov, 2009)

and again in Aug, 2014, indicated a progressive decrease in sulfide values during the day,

followed by increase in sulfide levels overnight (Fig. 1). These results confirm previous

findings from two previous studies that utilized either direct geochemical measurements at

the spring source or laboratory incubations of spring source sediments, and demonstrated

that sulfate production from sulfide is primarily a light-dependent process, whereas

sulfate reduction/sulfidogenesis occurs predominately nocturnally/in dark incubations

(Elshahed et al., 2003; Senko et al., 2004). The results of these studies conducted over more

than a decade, along with the documentation of a similar pattern in this study (Fig. 1),

demonstrate that the observed sulfur cycling dynamics in Zodletone spring source water

is an ecologically relevant and temporally stable process, with sulfur oxidative processes

occurring during the day and reductive processes increasing at night.

Sulfate and sulfite were detected at all time points (average concentrations =

94.5 ± 7.1 µM and 211.2 ± 1.3 µM, respectively) , with little to no difference observed

among the four time points (Fig. 1). Compared to these sulfur oxyanions, higher levels

of thiosulfate (avg = 520.3 ± 78.76 µM) were detected, with some fluctuations observed

(Fig. 1). Chloride was also detected (avg = 186.3 ± 21.4 mM), whereas nitrate, nitrite, and

phosphate were not. Anion data are consistent with previous studies, conducted at Zodle-

tone spring in November 2002 (Senko et al., 2004) and August 2005 (Bühring et al., 2011).

Pyrosequencing dataset information
Pyrosequencing of four samples (ribodepleted 22:15, 07:30, and 12:15 samples, and the

12:15 non-ribodepleted 12: 15 RNA sample) yielded a total of 1,122,073 reads, with

average read lengths ranging between 344–427 nucleotides (Table 1). Ribodepletion steps

resulted in a two- to three-fold enrichment in the percentage of potential protein-coding,

or mRNA reads, which comprised 11.0–17.7% of total RNA reads in the ribodepleted

datasets (Table 1). From potential mRNA subsets, a total of 30,887 reads (22.2–26.6% of

total potential mRNA reads) were functionally annotated by MG-RAST (Table 1). BLASTX

analysis of these datasets, however, resulted in 44.7–48.9% of potential mRNA transcripts

having significant (maximum E value = 1E-5) hits against the nr database (Table 1).

Finally, 10.2–13.4% of the potential mRNA transcripts were taxonomically unclassified

(could not be placed into any domain or phylum with certainty) (Table 1).

Taxonomic classification of SSU rRNA reads and the effect of
rRNA depletion on microbial community structure
Microbial community structure from each SSU rRNA data subset was evaluated by

phylogenetic analysis of SSU rRNA reads. Results from our non-ribodepleted sample

showed a remarkably similar microbial community structure to what has been described

in the past (Elshahed et al., 2003; Elshahed et al., 2004; Youssef, Couger & Elshahed, 2010),

with dominant phyla including Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria,
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Figure 1 Geochemistry of Zodletone spring’s source water. Geochemistry of Zodletone source water
over the time course of the experiment is shown at the top (A). Dashed lines indicate an extrapolation
of the data from the 07:30 (early morning) time point. Dotted vertical lines indicate sunset and sunrise
on day(s) of sampling. Above: triangles and diamonds indicate sulfide concentrations and pH values,
respectively. Below: squares, stars, and circles indicate thiosulfate (S2O2−

3 ), sulfite (SO2−

3 ), and sulfate

(SO2−

4 ) concentrations, respectively. Y-error bars represent the standard deviation of duplicate measure-
ments for sulfate and triplicate measurements for thiosulfate. Sulfite, pH, and sulfide values were based
on single measurements only. Source water was sampled again in August 2014 to measure pH and sulfide
in triplicate and verify patterns of sulfide loss and generation during the day and night, respectively (B).
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Table 1 Total pyrosequencing dataset statistics, including statistics for potential mRNA transcripts data subsets.

Full dataset stats Statistics for subsets of potential mRNA transcripts

Sample/time of day Total no.
of reads

Avg. read
length (bp)

No. of potential
mRNA reads (%
of total)

No. of potential
mRNA reads with
no significant
BLASTX
alignments (%)

No. of potential
mRNA reads
functionally
annotated
into MG-RAST
subsystems (%)

% potential
mRNA reads
taxonomically
unclassifieda

22:15 297,646 427 34,835 (11.7%) 15,935 (45.7%) 7,730 (22.2%) 10.2%

07:30 301,933 412 53,381 (17.7%) 26,079 (48.9%) 14,212 (26.6%) 10.4%

12:15 324,282 402 35,643 (11.0%) 15,938 (44.7%) 8,945 (25.1%) 13.4%

12:15 (total RNA control) 198,212 344 10,035 (5.1%) – – –

Notes.
a Unassigned at the phylum-level and includes the sum of all potential mRNA reads assigned by MEGAN 4.0 as Unassigned Bacteria, Unassigned Archaea, and Unassigned

Cellular Organisms.

Spirochaetes, Euryarchaeota, and Chloroflexi. Candidate divisions (e.g., BRC1, OP11,

OD1, WS3) and several “rare phyla” (i.e., taxa that comprise <0.1% of total microbial

community), defined in a previous study from Zodletone (Youssef, Couger & Elshahed,

2010), were also represented in SSU rRNA subsets (Fig. S2 and Table S2). For example,

although the phylum Planctomycetes had been previously determined to comprise

0.01–0.1% of the microbial community in Zodletone source sediment (Youssef, Couger &

Elshahed, 2010), Planctomycetes- affiliated SSU rRNA sequences comprised 0.563% of the

total SSU rRNA sequences from our non-ribodepleted SSU rRNA dataset and 1.45–2.15%

of sequences from ribodepleted datasets SSU rRNA (Table S2).

The removal of ribosomal RNAs did not appear to reduce the number of taxa detected

at phylum, class, or order levels (Tables S1 and S2). For example, 31 phyla were detected

in both ribodepleted and non-ribodepleted RNA samples from 12:15 (Tables S1 and S2).

However, though similar taxa are detected from non-ribodepleted vs. ribodepleted samples

(Fig. S2), the two microbial community structures, based on rel. frequencies of each taxon,

were significantly different at the phylum, class and order levels (p < 0.001). Thus, as the

ribodepletion steps inherently increase the error associated with comparing the relative

abundance of one taxonomic group to that of others within a sample, ribodepleted datasets

should be limited to only the detection of active microbial taxa in a sample and not to

estimate taxon abundance or to compare microbial community structures of two or more

different samples. Therefore, the results presented hereafter in this manuscript will focus

on mRNA transcripts from our ribodepleted samples.

Taxonomic classification of mRNA transcripts
On average, Proteobacteria-affiliated mRNA transcripts were most abundant (avg.

abundance among the three potential mRNA datasets = 12.47%), followed by those

affiliated with Firmicutes (avg. = 3.65%), Bacteroidetes (avg. = 3.64%), Euryarchaeota

(avg. = 3.29%), Actinobacteria (avg. = 1.70%), and Spirochaetes (avg. = 1.25%) (Fig. 2

and Table S3). A large proportion of the mRNA transcripts were classified as unassigned
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Figure 2 Taxonomic distribution of bacterial and archaeal mRNA transcripts in Zodletone sediment
samples. Values are based on relative abundance of transcripts associated with each phylum, as deter-
mined using MEGAN 4.0, at three different time points: 22:15 (n = 34,835 reads), 07:30 (n = 53,381
reads), and 12:15 (n = 35,643 reads). Pie chart sizes are proportional to the overall relative abundance
of each taxon. Relative abundance values representing the proportion of potential mRNA transcripts
that yielded no significant BLASTX alignments for each time point are not shown. Specific relative
abundance values for mRNA transcripts mapping to different taxa at the phylum-, class-, and order-levels
are reported for each sample in Table S3.
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Bacteria (avg = 9.08%) and unassigned cellular organism (avg. = 2.13%). Thus, there was

a broad agreement in taxonomic assignments gleaned from mRNA datasets (Fig. 2 and

Table S3) compared to the SSU rRNA control dataset described above (Fig. S2 and Table

S2) and with previous SSU rRNA gene-based surveys conducted with Zodletone sediments

(Elshahed et al., 2003; Youssef, Couger & Elshahed, 2010).

With respect to the phototrophic lineages, Cyanobacteria-affiliated mRNA transcripts

were most abundant, especially in the early morning (07:30) sample, comprising

1.26% of total potential mRNA transcripts at that time (Fig. 2 and Table S3). In the

afternoon (12:15), transcripts affiliated with the class Chloroflexi were most abundant,

comprising 0.637% of total potential mRNA transcripts (Table S3). Protein-coding

transcripts mapping to Chlorobi (green sulfur bacteria) were also detected, but were less

abundant (avg abundance = 0.181%) than those mapping to Cyanobacteria or Chloroflexi

(Table S3). Protein-coding transcripts that mapped to the phototrophic purple sulfur

bacteria (Chromatiales) and the purple non-sulfur bacteria (Rhizobiales, Rhodospirillales,

Rhodobacterales, and Rhodocyclales) were also detected among potential mRNA datasets at

all three time points (Table S3).

With respect to lineages typically composed of aerobic chemotrophs, mRNA transcripts

mapping to the predominantly aerobic chemoheterotrophic lineages Actinobacteria and

Halobacteria were more highly transcribed at 12:15 (comprising 2.77 and 0.497% of

total potential mRNA transcripts, respectively) compared to the other two time points

(Fig. 2 and Table S3). Similarly, mRNA transcripts assigned to lineages containing aerobic

sulfide/sulfur-oxidizing chemolithotrophs, such as the Sulfurovum group within the

order Campylobacterales in the class Epsilonproteobacteria (Inagaki et al., 2004), and the

order Thiotrichales within the Gammaproteobacteria (Garrity, Bell & Lilburn, 2005), were

also detected at their highest relative abundance values at 12:15 (Fig. 2 and Table S3).

Protein-coding transcripts mapping to aerobic type I methanotrophs, i.e., Methylococcales

within the Gammaproteobaceria (Bowman, 2005), however, were approximately 5-fold

more abundant at night (22:15) compared to 07:30 and 12:15 datasets (Table S3).

Protein-coding transcripts assigned to taxa typically composed of anaerobic

chemotrophs, including the Bacteroidetes, Spirochaetes, Fibrobacteres, Deltaproteobacteria,

and Methanomicrobia, were more highly represented in the early morning (07:30) dataset

compared to the other two time points (Fig. 2 and Table S3). Protein-coding transcripts

assigned to classes Clostridia and Bacilli within Firmicutes were most abundant at 12:15

(Fig. 2 and Table S3).

Functional distribution of mRNA transcripts
Based on MG-RAST analysis, carbohydrate metabolism and protein metabolism were

among most abundant subsystem categories detected (Fig. 3A). Specifically, xylose

utilization was the most abundant among metabolic subsystems detected (Fig. 3B);

utilization of xylose and other simple sugars (e.g., arabinose, maltose, and ribose) were

more abundant at 07:30 and 12:15 than at 22:15 (Fig. 3B).
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Figure 3 Functional classification and distribution of mRNA transcripts from Zodletone sediment samples. The heatmap (A) shows a
functional-based clustering of samples based on transcript annotations into MG-Rast (v2) subsystem categories. The bar graph (B) shows the
most abundant metabolic subsystems identified from Zodletone source metatranscriptomes at night (blue bars), in the early morning (green bars),
and in the afternoon (pink bars).

Subsystems related to photosynthesis, i.e., Photosystems II and I, and light-harvesting

protein complexes known as phycobilisomes (De Mot et al., 1999), were most highly

transcribed in the early morning (07:30) (Figs. 3A and 3B), consistent with the abundance

of Cyanobacteria-affiliated mRNA transcripts at that time (Fig. 2 and Table S3).

Transcripts coding for the copper-containing particulate methane monooxygenase, one

of the two major enzymes involved in methane oxidation (Nguyen et al., 1998; Schwarz,

2001), were highly abundant at 22:15 (Fig. 4), consistent with the high relative abundance

of Methylococcales-affiliated mRNA transcripts also observed at this time (Table S3).

Methanogenesis transcripts, one the other hand, were more highly abundant in the early

morning (07:30) sample (Fig. 3B), which is consistent with the higher relative abundance
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Figure 4 Relative abundance and taxonomic composition of mRNA transcripts involved in O2 production and utilization. Rel. abundance values
shown are the % of potential mRNA transcripts from each sample, 22:15 (top of ea. box). 07:30 (middle), and 12:15 (bottom). The color scale ranks
each gene from least abundant (green) to most abundant (red).

of Methanomicrobia-affiliated mRNA transcripts also detected at that time (Table S3).

Genes for hydrogenases (Semrau et al., 1995) and cellulosomes, which compartmentalize

cellulose degradation in anaerobes (Vignais & Billoud, 2007), were also most abundant at

07:30 (Fig. 3B).

Bacterial proteasomes, which compartmentalize protein degradation enzymes and

processes inside a bacterial cell (Westley & Green, 1959), along with protein degradation

subsystems were detected at a higher abundance at 12:15 compared to the other two

time points (Fig. 3B). Genes for fermentation pathways (butyrate and lactate) and sulfur

oxidation, also appeared to be more highly transcribed at 12:15 compared to the other two

timepoints (Fig. 3B).
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Diversity and abundance of S cycling transcripts
(i) Oxidation of sulfur compounds. Consistent with sulfide loss occurring during the day

(Fig. 1), transcripts coding for sulfide oxidation were more abundant (0.034% of potential

mRNA reads, respectively) at 12:15 (Fig. 5) compared to other time periods. Surprisingly,

many transcripts coding for sulfide oxidation (flavocytochrome c sulfide dehydrogenase)

mapped to the phylum Actinobacteria (Fig. 5). A drop in thiosulfate was also observed

during the day (Fig. 1); likewise, thiosulfate oxidation transcripts belonging to the Sox

system were also observed at their highest abundance (0.056% of potential mRNA reads)

at 12:15 (Fig. 5). A closer look at Sox genes transcribed at 12:15 showed that the all mapped

to Gammaproteobacteria (Fig. 5); specifically, mRNA transcripts assigned as Thiotrichales,

which includes chemolithotrophic sulfur-oxidizing bacteria (Garrity, Bell & Lilburn, 2005),

comprised 65.0% of these, and those assigned as Chromatiales, which are the anoxygenic

sulfide-oxidizing phototrophs known as the purple sulfur bacteria (Imhoff, 2005),

comprised 25.0%. Gene transcripts involved in sulfur/polysulfide-oxidation processes

were also more abundant at 12:15 (0.022% of potential mRNA reads) than at other time

points; the vast majority of these genes expressed at all time points (91.7%) remained

taxonomically unclassified (Fig. 5). Chlorobi (green sulfur bacteria)-affiliated transcripts

only comprised a small number of sulfide and polysulfide oxidizing transcripts (Fig. 5).

(ii) Reduction of sulfur compounds. Consistent with patterns of sulfide production

occurring overnight (Fig. 1), transcripts coding for many genes involved in pathways

involving the reduction of sulfur compounds were most abundant at night (22:15)

and in the early morning (07:30) (Fig. 5). Deltaproteobacteria- and Firmicutes-affiliated

transcripts comprised a large proportion of dissimilatory sulfate-reduction genes, which

were most highly transcribed at night (0.034% of potential mRNA reads) compared to

other time points. Deltaproteobacteria-affilated transcripts also comprised a large majority

of genes transcribed for sulfur compound reduction, which were most highly transcribed

at 07:30 (0.019% of potential mRNA reads) (Fig. 5). Transcripts coding for tetrathionate

reduction were also detected at their highest levels at 07:30 (0.015% of potential mRNA

reads); of these, many also mapped to the Deltaproteobacteria (Fig. 5). Interestingly,

the majority of transcripts involved in dissimilatory sulfate reduction and tetrathionate

reduction detected at 12:15 were taxonomically unassigned compared to those detected

either at 22:15 or 07:30 (Table 2 and Fig. 5).

(iii) Thiosulfate disproportionation. Transcripts for rhodanese, a thiosulfate sulfur-

transferase that reacts thiosulfate with cyanide producing thiocyanate (Westley & Green,

1959; Pagani et al., 1991; Bordo et al., 2000), were most abundant at 12:15 (0.045% of

potential mRNA reads) (Fig. 5). Rhodanese transcripts detected at this time mapped to

Actinobacteria and Cyanobacteria, whereas those detected at 22:15 and 07:30 were pre-

dominantly affiliated with Deltaproteobacteria (Fig. 5). Rhodanese-like sulfurtransferases,

which may be involved in thiosulfate disproportionation among other possible types of

sulfur metabolism (Cipollone, Ascenzi & Visca, 2007) were most abundant at 22:15 (0.026%

of potential mRNA reads); a large proportion of these genes remained taxonomically

unclassified (Fig. 5). Thiosulfate reductase, also involved in thiosulfate disproportionation
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Figure 5 Relative abundance and taxonomic composition of sulfur cycling transcripts. Rel. abundance
values shown are the % of total potential mRNA transcripts from each sample, 22:15 (top of ea. box).
07:30 (middle), and 12:15 (bottom). The color scale ranks each gene from least abundant (green) to most
abundant (red). A full list of gene names categorized in each pathway can be found below Table 2.

(Haschke & Campbell, 1971; Aketagawa, Kobayashi & Ishimoto, 1985), was not as abundant

compared to the other two transcripts mentioned above (Fig. 5).

(iv) Organic sulfate metabolism. Organo-sulfatase transcripts (Fig. 5), which code for

enzymes that release sulfate through the breakdown of sulfate ester compounds (Kertesz,

1999), were the most abundant of any S-cycling gene at 12:15 (0.095% of potential mRNA
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Table 2 Distribution of the percentage of transcripts in each S cycling category, or collection of related pathways, that remained unclassified at
the phylum-level.

Sample/time
point

No. S cycling
reads

% of S cycling
reads unclassified

% unclassified (phylum-level) in each S-cycling pathway

Organic S
metabolisma

Inorganic S
assimilationb

Reductionc Oxidationd Disproportionatione Transportf

22:15 94 41.5 45.2 62.5 27.8 27.8 61.5 33.3

07:30 114 31.6 43.8 100.0 26.5 20.8 22.2 18.2

12:15 160 34.4 25.5 75.0 64.3 27.3 23.8 28.6

Average 35.8 38.1 79.2 39.5 25.3 35.9 26.7

StDev 5.1 11.0 19.1 21.5 3.9 22.3 7.7

Notes.
a Organic S metabolisms pathways (and genes) include: alkanesulfonate utilization (alkanesulfonates binding protein); Organosulfatases (sulfatase); Taurine utilization

(Gamma-glutamyl-transpeptidase, Taurine transport protein TauB, Taurine-pyruvate aminotransferase, and Taurine dioxygenase TauD); glutathione utilization (puta-
tive glutathione transporter).

b Inorganic S assimilation pathways (and genes) include: inorganic S assimilation (3’(2’)5’-bisphosphate nucleotidase); sulfate activation to APS (assimilatory-type sulfate
adenylyltransferase); APS activation for sulfonation (APS kinase); assimilatory sulfate reduction (assimilatory-type sulfite reductase).

c Reduction pathways (and genes) include: DMSO degradation (DMSO reductase); dissimilatory sulfate reduction (dissimilatory-type sulfate adenylyltransferase, APS
reductase, dissimilatory sulfite reductase); sulfur reduction I (H2:sulfur or NADH:sulfur oxidoreductase); Sulfur reduction II (polysulfide reductase), and tetrathionate
reduction (tetrathionate reductase).

d Oxidation pathways (and genes) include: sulfide oxidation I (sulfide:quinone oxidoreductase); sulfide oxidation II (flavocytochrome c sulfide dehydrogenase); sulfide
oxidation III (reverse-type sulfite reductase); sulfite oxidation I (sulfite:cytochrome c oxidoreductase); sulfite oxidation II (reverse-type APS reductase), sulfite oxidation
III (sulfite oxidase); possible sulfur/polysulfide oxidation (NADH oxidase/NADH:polysulfide oxidoreductase); thiosulfate/sulfur oxidation/Sox operon (SoxA, SoxB,
SoxC, SoxD, SoxH, SoxX, SoxY).

e Disproportionation pathways (and genes) include: thiosulfate disproportionation I,II, or III (rhodanese-like sulfurtransferase), thiosulfate disproportionation I or II
(thiosulfate reductase); thiosulfate disproportionation II/cyanate pathway (rhodanese, cyanate hydratase).

f Transport genes include: ABC-type nitrate/sulfonate/bicarbonate transporter; sulfate & thiosulfate binding protein CysP; sulfate & thiosulfate import protein CysA;
sulfate & thiosulfate permease protein CysT; sulfate permease; Trk-type sulfate permease; sulfate transporter CysZ.

reads) and were also fairly abundant at the other two time points as well (0.057% and

0.037% of potential mRNA reads at 22:15 and 07:30, respectively) (Fig. 5). A broad

diversity of bacterial phyla, including Lentisphaerae and Firmicutes, transcribed these

genes, but many also remained unclassified (Fig. 5). In fact, a high proportion of genes

transcribed for organic S metabolism (25.5–43.8%) and assimilation of inorganic sulfur

into organic matter (62.5–100%) remained taxonomically unclassified at the phylum- or

domain-level (Table 2 and Fig. 5).

Expression of genes coding for O2 production and utilization
processes in source sediment
Mining our potential mRNA data subsets for reads and assembled contigs involved in

oxygen cycling revealed the diversity of microbes participating in both oxygen production

and utilization in Zodletone source sediment (Fig. 4). Cyanobacteria, which were

previously considered anoxygenic in the source (Bühring et al., 2011), showed active

transcription of the psbA gene (Fig. 4), which codes for the oxygen-producing P680

reaction center D1 protein in Photosystem II (Zouni et al., 2001; Kamiya & Shen, 2003;

Ferreira et al., 2004). In addition to cyanobacterial genes, eukaryotic psbA genes (classified

as “unclassified Eukaryota” in Fig. 4) had top BlastX hits to psbA genes found among

different diatom genomes, including Thalassiosira pseudonana, Odontella sinensis, and

Phaeodactylum tricornutum. Overall, the relative abundance of psbA transcripts was
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greatest at 07:30 (0.133% of potential mRNA reads) (Fig. 4). Alternatively, transcripts

coding for superoxide dismutase, which also catalyze the production of O2, were most

abundant at 22:15 (Fig. 4).

Oxygen-utilization genes were diverse in type and in taxonomic distribution (Fig. 4).

Transcripts for high-affinity terminal oxidases (cbb3-type cytochrome c oxidase and

cytochrome d ubiquinol oxidase) as well as typical cytochrome c oxidases (COX) were

transcribed at their highest levels at 12:15 (Fig. 4). As well, several monooxygenase and

dioxygenase gene transcripts were detected (Fig. 4). Gene coding for the particulate

methane monooxygenase, which uses O2 in the oxidation of methane to methanol during

methane oxidation (Nguyen et al., 1998; Schwarz, 2001), were most highly transcribed at

22:15 (0.718% of potential mRNA reads) (Fig. 4), and all mapped to the order Methylococ-

cales, which includes Type I methanotrophs within the Gammaproteobacteria (Bowman,

2005). Overall, transcripts for oxygen utilization were least abundant at 07:30 (Fig. 4).

DISCUSSION
In this study, we investigated the nature and dynamics of predominant microbial

taxa and metabolic processes occurring at Zodletone Spring through the analysis of

mRNA transcripts expressed in sediments following sunrise (early morning), at noon,

and at night. The study provides insight into a complex sulfur cycle that includes the

possible involvement of Actinobacteria in sulfur transformations and identifies several

interesting features not previously documented in the anoxic sediments of this high-sulfide

sunlight-exposed aquatic spring, including a full methane cycle, with activity of Type

I methanotrophs at night and the likelihood of O2 production and utilization through

oxygenic photosynthesis and aerobic metabolism, respectively.

Mining of metatranscriptomic datasets for gene transcripts coding for sulfur cycling

processes indeed highlighted a complex sulfur cycle in Zodletone sediments. Briefly,

sulfide and thiosulfate loss observed during the day (Fig. 1) could be attributed to both

phototrophic and aerobic chemotrophic oxidation processes carried out by Chromatiales,

Thiotrichales, and Actinobacteria (Fig. 5). Similarly, sulfidogenesis that occurs overnight

(Fig. 1) could be a function of multiple processes carried out in large part by Deltapro-

teobacteria, including sulfate reduction, sulfur reduction, thiosulfate disproportionation,

and tetrathionate reduction (Fig. 5).

Evidence for aerobic sulfide and thiosulfate metabolism by Actinobacteria is also

presented in this study (Fig. 5). Specifically, many of the transcripts encoding sulfide

oxidation (flavocytochrome c sulfide dehydrogenase) and thiosulfate disproportionation

(rhodanese) genes detected during the day (12:15) were mapped to the phylum Actinobac-

teria (Fig. 5). As taxonomic analyses of mRNA transcripts also show that Actinobacteria-

affiliated mRNA transcripts were at their highest levels during the day (Fig. 2 and Table

S3), and because many terminal cytochrome oxidase genes transcribed during the day

also mapped to the phylum Actinobacteria (Fig. 4), it is also possible that these processes

are supported by an aerobic mode of metabolism. Some species of Actinobacteria have

been shown to be involved in aerobic oxidation of dimethylsulfide and dimethyldisulfide
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(Reichert et al., 1998) as well as in the oxidation of sulfur and pyrite under acidic conditions

(Norris et al., 2011). Additionally, other species of Actinobacteria, Microbacterium

phyllosphaerae and Leifsonia shinshuensis, were recently isolated from rhizosphere soils that

are capable of the oxidation of thiosulfate, tetrathionate, trithionate and sulfur (Anandham

et al., 2008). Both of these species contained a variety of genes involved in sulfur oxidation

including rhodanese, thiosulfate oxidase and sulfite oxidase (Anandham et al., 2008).

These metatranscriptomic data also revealed that the production of sulfate in source

sediments may not occur solely through inorganic sulfur metabolism, i.e., phototrophic

sulfide/sulfur oxidation. Organo-sulfatase transcripts were much more abundant at all

three time points compared to transcripts that encode for the complete oxidation of sulfur

compounds to sulfate (Fig. 5). As well, organo-sulfatase transcripts were approx. twice

as abundant as those that encode thiosulfate transformation (Fig. 5), another possible

sulfate source. The role of sulfatases in Bacteria is typically in the cleavage of sulfate esters

of organic compounds, either providing a source of sulfate or a source of organic carbon

(Hanson, Best & Wong, 2004). As free sulfate is not likely a limiting nutrient in this system,

the abundance of sulfatase transcripts indicates the relative importance of sulfonated

organic compounds as nutrients in the spring. Together, the detection of sulfatase and

sulfonation transcripts (Fig. 5) suggests that sulfate cycling includes organic sulfonated

compounds within the source sediments.

Based on patterns observed from general subsystems and specific metabolic transcripts

(Figs. 3A, 3B and 4) along with the shifts in taxonomic lineages observed in potential

mRNA datasets (Fig. 2), we reason that the transcriptional activities of several members of

the microbial community are linked to specific metabolic processes occurring during the

day or night. For example, the abundance of methanogenesis functional gene transcripts

(Fig. 3B) and transcripts mapping to methanogenic taxa in the early morning (Fig. 2)

and the surprisingly high abundance at night of Methylococcales-affiliated transcripts

and those coding for the particulate methane monooxygenase (Fig. 4), suggests that

a complete methane cycle is occurring in Zodletone source sediment. Methylococcales,

which has previously not been considered a dominant member in the Zodletone microbial

community studies analyzing SSU rRNA genes during the daytime only (Elshahed et al.,

2003; Youssef, Couger & Elshahed, 2010), may thus play a key role in the cycling of methane

or other C1 compounds in Zodletone source sediments.

Despite the history of a lack of O2 in Zodletone source sediments (Senko et al., 2004;

Bühring et al., 2011), an abundance of aerobic taxa and aerobic respiration genes were

detected among potential mRNA datasets (Figs. 2 and 4); these observations could be

explained if oxygenic phototrophs supported the growth and metabolism of aerobic or

microaerophilic taxa, a relationship that has not been previously documented under

the sunlit, high-sulfide conditions that predominate at Zodletone. In this study, gene

transcripts encoding oxygenic photosynthetic processes were indeed expressed by

Cyanobacteria and diatoms (Fig. 4), suggesting the possibility of O2 evolution under

these conditions. While Cyanobacteria are typically considered oxygenic phototrophs,

anoxygenic phototrophy has been documented among members of this phylum as an
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alternative to, or even replacement for, oxygenic phototrophy (Cohen, Padan & Shilo,

1975; Belkin & Padan, 1978; Jorgensen, Cohen & Revsbech, 1986; Voorhies et al., 2012). It

has also been suggested that photosynthesis in Cyanobacteria will be entirely anoxygenic

at sulfide concentrations >1 mM (Cohen et al., 1986). Because sulfide concentrations in

Zodletone source water far exceed this threshold, ranging between 6.5–9 mM (Fig. 1), and

a previous suggestion (based on the lack of detectable O2 at the site during the daytime)

that anoxygenic photosynthesis was the primary metabolic mode for Cyanobacteria in

Zodletone source sediment (Bühring et al., 2011), it is surprising, here, that we report the

possible production of O2 under high-sulfide concentrations based on the transcription of

cyanobacterial psbA genes, which code for the oxygen-producing subunit of Photosystem

II Protein D1 (Zouni et al., 2001; Kamiya & Shen, 2003; Ferreira et al., 2004). Furthermore,

it appears that this O2, likely produced through oxygenic photosysnthesis (Fig. 4), could be

an important electron acceptor in Zodletone source sediment (Fig. 4), in spite of the highly

reduced conditions present, analogous to the recently described microorganisms that can

produce O2 through nitrite reduction and then use the O2 for methane oxidation under

anoxic conditions (Ettwig et al., 2010). Because oxygen levels in the source sediment are

below detectable levels, these data could suggest a yet-unidentified mechanism for oxygen

transfer between oxygenic phototrophs and aerobic chemotrophs or a rapid consumption

of produced O2, preventing its accumulation to a detectable level. While the former has

not been documented in the literature, the latter has been observed in marine sediments,

but with maximum rates of O2 production exceeding those of O2 consumption in photic

zones, resulting in low steady-state O2 concentrations (Revsbech, Madsen & Jorgensen,

1986) rather than O2 being below detectable levels, as seen in Zodletone sediments

(Senko et al., 2004; Bühring et al., 2011). However, the high sulfide concentrations at

Zodletone could both greatly limit the levels of oxygenic photosynthesis to far smaller

rates than observed in marine sediments or react abiotically with O2 produced to form

pentasulfide or thiosulfate, as observed in an alkaliphilic bacterial sulfoxidizing consortium

(González-Sánchez & Revah, 2007).

That the O2 available for sulfide oxidation may be derived from oxygenic photosynthesis

rather than from the atmosphere or sub-oxic waters overlaying source sediments is

supported by previous studies at Zodletone that find that rates of sulfide loss are most

rapid in light-exposed sediments, even in aerobic incubations exposed to O2 (Elshahed

et al., 2003; Senko et al., 2004). Previous interpretations of these studies were that sulfide

oxidation was driven by anoxygenic photosynthesis; the data presented here, however,

also lends support to the possibility that sulfide oxidation in sunlight-exposed high

sulfide environments could also be an aerobic chemolithotrophic process supported by

O2 produced from oxygenic phototrophs.

CONCLUSION
The use of metatranscriptomics for describing complex microbial ecosystems such as

Zodletone spring has its limitations, including the probable occurrence of errors in

functional and taxonomic assignment of functional genes. Also, the assumption involved
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in correlating transcript abundance with protein abundance/metabolic activity must

always be taken with caution, as transcriptional and translational activity can differ in

some cases (Gygi et al., 1999; Suzuki, Simon & Slabas, 2006). Despite these limitations,

however, this study implicates several interesting microbial processes and interactions

occurring in this sunlit, shallow, sulfur spring system, including a full sulfur and methane

cycle that involve both aerobic and anaerobic bacteria in an anoxic sediment system, with

O2 that is likely produced by Cyanobacteria and diatoms by oxygenic photosynthesis.

Lastly, the production of sulfate from mechanisms other than anoxygenic photosynthesis,

such as aerobic sulfide and thiosulfate metabolism as well as the cleavage of sulfate esters by

sulfatases, sheds insight into the microbial metabolism and lifestyles on early earth, prior to

the oxygenation of the atmosphere. This work may present alternative explanations for the

increase in sulfate concentrations that stimulated sulfate reduction as oxygen began to first

accumulate in the atmosphere during the late Archaean and Proterozoic eons (Canfield,

1998; Reinhard et al., 2009).
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