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Background. One goal of expression data analysis is to discover the biological
significance (or function) of genes that are differentially expressed. As one of the main
tools for function mining, Gene Set Enrichment (GSE) analysis has been widely used.
However, for single-cell RNA sequencing (scCRNA-SEQ) data, every gene expressed in a cell
is valuable information for GSE and not should be discarded. Methods. To utilize the
information of all expressed genes, we developed the FEM algorithm, which converts the
gene expression matrix (GEM) into a functional expressie matrix (FEM). The FEM
algorithm can not only explain the biological significance of a single cell but also can be
used to replace or integrate GEM for downstream analysis. Results. Applying FEM to the
three datasets (PBMC, human liver, and human pancreas), we found that FEM showed
good performance in cell clustering, and cell type specified function annotation.
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Abstract

Background. One goal of expression data analysis is to discover the biological significance (or
function) of genes that are differentially expressed. As one of the main tools for function mining,
Gene Set Enrichment (GSE) analysis has been widely used. However, for single-cell RNA
sequencing (scCRNA-SEQ) data, every gene expressed in a cell is valuable information for GSE
and not should be discarded.

Methods. To utilize the information of all expressed genes, we developed the FEM algorithm,
which converts the gene expression matrix (GEM) into a functional expression matrix (FEM).
The FEM algorithm can not only explain the biological significance of a single cell but also can
be used to replace or integrate GEM for downstream analysis.

Results. Applying FEM to the three datasets (PBMC, human liver, and human pancreas), we
found that FEM showed good performance in cell clustering, and cell type specified function
annotation.

Introduction

As an alternative to the microarray platform, RNA sequencing (RNA-SEQ) has been widely used
in the past 10 years. It has provided many valuable insights into the complex biological
mechanism, ranging from cancer genomics to diverse microbial communities. Compared with
traditional bulk methods that profile batches of cells in a pooled way, single-cell RNA-SEQ
(scRNA-SEQ) can facilitate new and potentially unexpected biological discoveries. For example,
it can provide information on complex and rare cell populations, regulatory relationships
between genes, and can track the trajectories of distinct cell lineages during development
(Gawad, Koh & Quake, 2016) (Hwang, Lee & Bang, 2018) (Chen, Ning & Shi, 2019).

The cell is considered to be the fundamental unit in biology. For centuries, biologists ive
known that multicellular orga=:=ms are characterized by a plethora of distinct cell types. because
of homogeneity in the genomc, e difference between cells in organisms can be characterized
based on transcriptome similarity, which can be defined through unsupervised clustering
(Kiselev, Andrews & Hemberg, 2019). Transcriptomic studies using bulk tissue assume that all
cells from a homogeneous materia ,1ereby ignoring the cellular heterogeneity of the sample.
Single-cell transcriptomics, however, can address the above question (Kulkarni et al., 2019).
High-throughput single-cell transcriptomics has provided unprecedented insights into cellular
diversity in tissues across diverse organisms. SCRNA-SEQ is a promising approach for the study
of the transcriptomes of individual cells in organisms.

However, the pipeline for sScRNA-SEQ is still based on bulk RNA-SEQ. The basic workflow
includes data pre-processing (quality control (Luecken & Theis, 2019), (Ilicic et al., 2016),
(Griffiths, Scialdone & Marioni, 2018), normalization, data correction, feature selection, and
dimensionality reduction), followed by cell-level and gene-level downstream analysis (Luecken
& Theis, 2019). Because RNA-SEQ data comprise pooled samples of multiple cells, many genes
are expressed. But it is unclear whether these genes are co-expressed or if this is just the result of
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mixing. Therefore, a portion of the particularly well-characterized genes needs to be screened for
downstream analysis.

For scRNA-SEQ data, this analysis process has the following shortcomings. First, the
characteristics of single-cell data are not fully utilized: scRNA-SEQ data are a direct reflection of
the physiological state of a cell but the above method is an analytical process based on multiple
cells or cell clusters. Second, it cannot effectively capture all meaningful functional groups
because it filters many genes that may play important roles in transient cell states. Since
functional enrichment analysis is based on all the expressed genes in a cell, including genes that
were filtered in a previous process, it is possible to miss meaningful biological functions. Third,
the results of downstream functional analysis and upstream clustering are not been integrated and
visualized. To overcome these limitations, this study proposes a method based on transforming
the gene expression matrix into a functional expression matrix

Materials & Methods

Motivation for this approach

Functional Gene Set Enrichment Analysis (GSEA) is usually the last step of expression data
analysis. A gene set usually represents a biological function, and the function will be used to
refer to a gene set in the following. There are many R packages and some online sites such as
DAVID that provide enrichment analysis tools. The software takes a set of genes given by the
user as input and returns the functions (such as pathways) that are significantly enriched.
Enrichment analysis methods for individual samnles have also been proposed(Foroutan et al.,
2018)(Hanzelmann, Castelo & Guinney, 2013).

Because of the low amount of initial material, sScRNA-SEQ has limitations in low capture
efficiency and high dropouts. sScCRNA-SEQ expression data tend to be sparse(Hicks et al., 2018b)
(Eraslan et al., 2019). Due to the non-trivial distinction between true- and false-zero counts, the
true zero represents the lack of expression of a gene in a specific cell, while a false zero is a
technical deviation. Because the RNA-SEQ technique only detects mRNA molecules that are
present, a gene in the SCRNA-SEQ dataset with a non-zero expression value means that at least
one mRNA molecule is present. These sparse non-zero expression values provided inspiration
for the possibility of performing functional GSEA analysis at the single-cell level.

Given the characteristics of sScRNA-SEQ data, functional enrichment analysis can be
performed at the single-cell transcriptome expression leve' . irst, replacing the initial expression
matrix with a functional expression matrix (FEM) can allow the direct exploration of the
differences between cells from different biological perspectives. Second, combined with the gene
expression matrix (GEM), the top variable function of a cell cluster obtained by GEM can be
represented as a cell scatter plot. Third, for GSEA, the coverage of a functional gene set is more
important than the expression of individual genes, because genes often overlap different
functional groups, which makes single high-expression genes hard to explain. For example, the
activation of a signalling pathway is the result of interactions between all genes; high expression
of one gene does not mean that the pathway is activated.
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At present, the main factors affecting the discovery of cell groups are as follows. First,
technical covariates must be regressed out before downstream analysis as these factors will
introduce systematic error and confound the technical and biological variability, leading to
systematic differences in gene expression profiles between batches(Leek et al., 2010) (Hicks et
al., 2018a) (Chen, Ning & Shi, 2019). The most prominent technical covariates in single-cell
data are count depth and batch. The FEM method is based on a gene set, which makes it more
robust than the GEM. 5econd, some biological effects can affect the results of the cluster
algorithms. For example, the cell cycle .~ n alter the clustering result in non-proliferating cell
populations. However, correcting for biological covariates is not always helpful in interpreting
scRNA-seq data (Kolodziejczyk et al., 2015). These influencing factors often do not have
uniform filtering criteria. In some cases, the cell cycle may be part of the study, or there may be a
relationship between the cell cycle and other functions (Haghverdi, Buettner & Theis, 2015)
(Vento-Tormo et al., 2018) (McDavid, Finak & Gottardo, 2016) (Blasi et al., 2017). The FEM
method can be used to systematically survey the biological aspect of each cell before
downstream analysis. To this end, we developed a scRNA-SEQ functional expression matrix
algorithm (FEM).

Workflow of the proposed methods

The FEM was divided into four steps (Fig. I). 1. The standardized scRNA-SEQ GEM was
transformed into a FEM by multi-module gene enrichment analysis (gene ontology, pathway). 2.
Because the p-value represents the significance of enrichment, the p-value obtained by
enrichment analysis was converted into information content (FEM). 3. FEM was used instead of
GEM for data standardization, dimensionality reduction clustering, and UMAP(Mclnnes et al.,
2018) visualization. 4. The FEM and GEM were integrated to find differentially expressed genes
(DEG) and differentially expressed functions (DEF).

Dataset

Peripheral blood mononuclear cells (PBMCs) are populations of immune cells that remain at the
less dense upper interface of the Ficoll layer. PBMCs include lymphocytes (T cells, B cells, and
NK cells), monocytes, and dendritic cells (DCs). In humans, the frequencies of these populations
vary across individuals. Lymphocytes are typically in the range of 70-90%, monocytes range
from 10-30%, while DCs are only present at 1-2% (NORMAN, 1995). The PBMC dataset
(Butler et al., 2018) used in this paper (downloaded from the official Seurat site) mainly included
B cells, NK cells, CD8 T cells, memory CD4 T cells, Naive CD4 T cells, DC, CD14+
monocytes, FCGR3A+ monocytes, and a small number of platelets. This dataset contains 2,700
cells.

The human pancreas dataset contains 2,126 cells and 10 cell types. It mainly includes alpha
cells, ductal cells, endothelial cells, delta cells, acinar cells, beta cells, gamma cells,
mesenchymal cells, epsilon cells, and a small number of unknown types of cells(Muraro et al.,
2016).

The human liver dataset consists of 777 cells, mainly including seven types of cells: definitive
endoderm cells, immediate hepatoblast cells, induced pluripotent stem cells (IPSCs), material
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hepatocytic cells, hepatic endoderm cells, endothelial cells, and mesenchymal stem cells(Camp
et al., 2017).

FEM algorithm

Selected functional groups and their profiles
Three functional gene sets were selected from the Msigdb database for enrichment analysis, the
Reactome pathways, gene ontology (GO), and immunologic signature gene set /. .iberzon et al.,
2011) (Table 1).
Gene-functional group conversion
The non-zero—expressed genes of the cells in the GEM were extracted first. In the second step
an enrichment analysis score for each cell was calculated. The enrichment analysis method was
based on Fisher's exact test using the Python SciPy package. The Fisher exact test is a statistical
test based on a hypergeometric distribution that is used to determine if there are non-random
associations between two categorical variables, or to test whether the theoretical value is
consistent with the actual value.

K\(N - K

i)

=7 M
o

Here, N represents the total number of background gene " represents the number of genes in
a particular gene set, n represents the number of non-zero genes in a single cell, and k represents
the number of genes present in both K and n. The Bonferroni correction was used to counteract
the problem of multiple comparisons, but this is optional
Expression value conversion based on information content
Information content measures the average rate of information from data. The smaller the p-value,
the greater the amount of information. For the adjusted p-value of enrichment of a gene set, the
null hypothesis is that there is no significant enrichment. So, the smaller the adjusted p-value, the
more significant the enrichment of the gene set (rather than stochastic). Therefore, here the

information content was used as a measure of the level of expression of a functional group.
GSi,j =-log (adj - pi,j) 2)

Here, i is the ith gene set, j is the jth cell, and adj - p; ; represents the adjusted p-value in
the ith gene set in the jth cell.

Algorithm optimization

Fisher's exact test is a time-consuming process. For single-cell data, a statistical test would be
required for each function of each cell. Therefore, when the number of cells is large, the
computation time would be untenable. Therefore, the algorithm was optimized with the addition
of multi-core computing.
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Optimization of the algorithm can be illustrated using the symbols in 2.4.2. First, because N
and K were invariable for all cells, these values were stored in memory to avoid recalculation
every time. Second, the gene expression matrix was transformed into 0,1 matrix A, where 1
represents the expression of gene i in cell j and 0 represents the non-expression of gene i in cell
j. The gene set was also transformed into 0,1 matrix B, where 1 represents the presence of gene i
in set s and 0 represents the absence of gene i in set s. The element (k) in the product A X BT of
the two matrices represents the number of genes expressed by cell j in set s (Fig. 2).

Cluster and differentially expressed gene detection based on FEM and

integration of GEM and FEM

Analysis tools for snRNA-SEQ data

There are many integrated data analysis software packages and platforms, such as Seurat (Butler
et al., 2018), Scater (McCarthy et al., 2017), and Scanpy (Wolf, Angerer & Theis, 2018). Seurat
provides integrated environments (including sample and feature selection, data standardization,
dimensionality reduction, clustering, and visualization) to explore massive sScRNA-SEQ
datasets(Luecken & Theis, 2019). This study used Seurat for normalization, dimensionality
reduction, clustering, and visualization.

Dimensionality reduction

After feature selection, the dimensions of single-cell expression matrices can be further reduced
by dedicated dimensionality-reduction algorithms. These algorithms, such as principal
component analysis (PCA), embed the expression matrix into a low-dimensional space, which is
designed to capture the underlying structure in the data in as few dimensions as
possible(Luecken & Theis, 2019) (Eraslan et al., 2019). In the present study, the data were
converted into a linear combination of the first N principal components by the PCA algorithm.
The value corresponding to the ‘elbow’ point was taken as the value of N.

Clustering

A core step in the analysis of sScCRNA-SEQ transcriptome profiles is to cluster the single cells.
This can reveal cell subtypes and infer cell lineages based on the relationships among cells.
Several software packages support the cluster analysis of sScRNA-SEQ data (Petegrosso, Li &
Kuang, 2019); here, Seurat was used to clustering, which is based on a graphical approach. The
parameter used in the cluster function was set to 0.4—1.2 according to the circumstances.
Differential expression between clusters

Differential expression analysis is very useful for finding the significant DEG between distinct
subpopulations or groups of cells (Petegrosso, Li & Kuang, 2019). Seurat was used to finding
subsets of functions that exhibited high variation between clusters.

GEM and FEM fusion analysis

The main problem in FEM is that it only considers the presence or absence of gene expression
without considering the expression value of the gene. Therefore, FEM cannot replace GEM-
based methods in cell classificatior. z..d type identification. In the present study, data from the
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GEM and FEM were used for fusion analysis (rig. I). To combine the GEM and FEM results,
the multi-modal data analysis module of Seurat was used for polymerization analysis (Stuart et
al., 2019) (Stuart & Satija, 2019). The feature number selection, scaling ratio, PCA, and
clustering parameter selection were appropriately adjusted according to circumstances, following
the Seurat instructions.

Results
FEM can separate different cell types

Since the Reactome pathway gene sets have only 5741 unique genes, a large amount of gene
informatio » v ill be lost for the FEM algorithm. GO gene sets have 15578 unique genes.
Therefore, GO gene sets-based FEM was used instead of GEM for cluster analysis. The
Reactome pathway gene sets were used in the analysis of GC-DEF.

To verify whether the GO-based FEM algorithm can separate cells of different types, three
data sets (PBMC, liver, pancreas) were used to replace GEM for dimensionality reduction and
clustering. Since the number of clusters is artificially adjusted by parameters, to better
distinguish different cell types, the number of clusters is set to be greater than or equal to the
number of actual cell types so that a cluster contains only one main cell type. The results show
that on the liver and pancreas data sets, the FEM method can distinguish different types of cells
(Fig. 3)

Some cells in the PBMC data set have different subtypes, such as FCGR3A+ Mono cells
and CD14+ Mono cells, Naive CD4 T cells, and memory CD4 T cells (Fig. 4). There is a large
overlap between the different subtypes of these two types of cells in the GO-based FEM cluster.
This means that the GO-based FEM method can reflect the "functional similarity" between cells
If the two groups of cells are far apart on GEM, but are close or partially overlapped on FEM, it
indicates that they are different subtypes of the same cell type, or the two groups of cells may
perform similar functions.

FC-DEF can directly detect the functional differences between clusters

In the PBMC dataset, official data pre-processing included the removal of cells with excessive
mitochondrial genes (> 5%, quality control) and those with too many (> 2,500) or too few (<
200) features (Bittersohl & Steimer, 2016). Therefore, some cells may have been filtered out in
the data pre-processing stage. The present method did not filter out any cells. Indeed, the filtered
cells were found to be located above the NC cells. Using the GC-DEF method, this cell group
was found to have a highly expre~==d cell proliferation-related pathway. Thus, these cells were
identified as proliferative (Fig. 5,.

The most significantly expressed pathway, “hemostasis,” was located in the platelet clusters.
The “innate immune system” pathway was significantly expressed in the monocyte, DC cell, NK
cell, and platelet cell populations, which was consistent with literature results(NORMAN, 1995).
The top five highly expressed functior <+ rere consistent with the cell type character. All other
results of FC-DEF and GC-DEF are provided in Table s1.
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Table 2 shows that most of the corresponding cells were closely related to their corresponding
top functions, such as the high expression of “Reactome regulation of beta cell development™ in
beta cells and the high expression of “Reactome gluconeogenesis” in mature stem cells. All other
results are shown in Table s1.

GO-based GC-DEF results was consistent with the pathway-based methods and
literature(NORMAN, 1995). All other results are presented in Table 3 and Table s1, s2, s3 and
s4.

Validation with an immune dataset

To test whether the proposed method could detect sets of genes that had been identified as up-
regulated or down-regulated by traditional methods, the Immunologic Signatures Collection
(ImmuneSigDB) (Liberzon et al., 2011) was employed as a validation dataset.

The ImmuneSigDB is composed of gene sets that represent cell types, states, and perturhations
within the immune system(Godec et al., 2016). Figure 6 shows that in the bulk RNA-SE(
dataset, the cell types from the up-regulated expression marker gene set were also highly
expressed using the method proposed in this study. This demonstrated the efficacy of the
proposed method for detecting cell-type-specific gene sets.

Discussion
We prove that FEM can be used for cell clustering. It also can replace or merge the GEM method
for downstream differential expression analysis to find cell type-specific functions.

Sometimes, evaluate the impact of some biological effects on the cell clusters is necessary,
such as the impact of cell cycles on cell-type clustering results. However, there is no uniform
standard for how to achieve this. Because the proposed method directly converts the expression
of genes in cells to the expressions of functions, cells can be screened according to their FEM
score at any stage of processing.

It should be noted that FEM only considers the presence and absence of gene expression,
without considering the influences of gene-expression values, so the proposed method and gene-
expression—based methods are complementary rather than alternatives.

Conclusions

Usually, the final step in the analysis of =2ne expression data is to interpret the biological
significance of the genes based on GSE.\. However, if each of the first n genes obtained by
differential expression analysis represents a function that does not overlap with each other, then
the enrichment analysis will fail. On the other hand, if most genes of a function are expressed in
a cell and are screened out in the process of gene selection, this function will also be missed.
Based on the characteristics of single-cell data, GSEA at the single-cell level effectively avoids
the above problems. The results of the present study showed that direct enrichment analysis at
the single-cell level is feasible and powerful.
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Table 1l(on next page)

Functional gene set
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Function name Number of gene sets details
Gene sets derived from the Reactome
pathway database.

C2: Reactome gene sets 1,499

Gene sets that contain genes annotated
by the same GO term. The C5 collection

C5: GO gene sets 9,996 is divided into three sub-collections
based on GO ontologies: BP, CC, and
MF.

Gene sets that represent cell states and
perturbations within the immune system.

4,872 The signatures were generated by
manual curation of published studies in
human and mouse immunology.

C7: immunologic signature gene
sets
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Table 2(on next page)

Top five pathways for mature hepatocyte cells (liver dataset) and beta cells (pancreas
dataset)
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Function cluster Adjusted p-
value
reactome-regulation-of-gene-expression-in-beta-cells beta 7.47E-48
reactome-regulation-of-beta-cell-development beta 1.02E-25
reactome-activation-of-nmda-receptors-and-postsynaptic-events beta
yeactomle-negatl\{e-regulatlon-of-tcf-dependent-s1 gnaling-by-dvl- beta 2 05E-11
interacting-proteins
reactome-synthesis-of-pips-at-the-early-endosome-membrane beta 1.76E-06
reactome-gluconeogenesis mature hepatocyte 1.75E-11
reactome-signaling-by-bmp mature hepatocyte 4.50E-09
reactome-apoptotic-cleavage-of-cell-adhesion-proteins mature hepatocyte 9.00E-09
reactome-transport-of-nucleosides-and-free-purine-and-pyrimidine- mature hepatocyte 1.51E-08
bases-across-the-plasma-membrane
reactome-bbsome-mediated-cargo-targeting-to-cilium mature hepatocyte 1.76E-08
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Table 3(on next page)

Results of the top five GO-based FEM methods for each cluster
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Function cluster Adjusted p-
value
go-mhc-class-ii-receptor-activity B 1.31E-299
go-mhc-class-ii-protein-complex B 1.94E-207
go-clathrin-coated-endocytic-vesicle-membrane B 8.60E-183
go-clathrin-coated-endocytic-vesicle B 1.40E-174
go-mhc-protein-complex-assembly B 2.39E-173
go-collagen-containing-extracellular-matrix CD14+ Mono 3.17E-235
go-rage-receptor-binding CD14+ Mono 1.42E-226
go-chemokine-production CD14+ Mono 1.61E-211
go-defense-response-to-bacterium CD14+ Mono 9.86E-194
go-neutrophil-migration CD14+_ Mono 2.36E-187
go-cytolysis CD8 T 2.61E-64
go-t-cell-receptor-complex CD8 T 7.62E-53
go-negative-regulation-by-host-of-viral-transcription CD8 T 5.71E-39
go-regulation-of-cell-cell-adhesion-mediated-by-integrin CD8 T 1.50E-36
go-t-cell-receptor-binding CD8 T 4.19E-29
go-ige-binding DC 4.78E-241
go-t-cell-act1vat10n-v1a-t-cell-rgceptor-contgct-wﬁh-antlgen- DC 6.80E-23
bound-to-mhc-molecule-on-antigen-presenting-cell
go-mhc-class-ii-receptor-activity DC 1.48E-14
go-hydrolase-activity-acting-on-ester-bonds DC 0.000373
go-lipid-metabolic-process DC 0.000529
go-igg-binding FCGR3A+ Mono 9.13E-143
go-negative-regulation-of-leukocyte-proliferation FCGR3A+ Mono 4.71E-60
go-regulation-of-mast-cell-activation FCGR3A+ Mono 7.62E-59
go-regulation-of-mast-cell-activation-involved-in-immune- FCGR3A+ Mono 1 83E-58
response
go-dendritic-cell-differentiation FCGR3A+_Mono 3.00E-58
go-positive-t-cell-selection Memory CD4 T 5.51E-40
go-positive-thymic-t-cell-selection Memory CD4 T 1.80E-37
go-t-cell-receptor-binding Memory CD4 T 1.89E-37
go-alpha-beta-t-cell-receptor-complex Memory CD4 T 7.89E-35
go-positive-regulation-of-t-cell-receptor-signaling-pathway Memory CD4 T 3.62E-33
go-t-cell-differentiation-in-thymus Naive CD4 T 5.58E-123
go-thymic-t-cell-selection Naive CD4 T 4.23E-87
go-positive-regulation-of-t-cell-receptor-signaling-pathway Naive CD4 T 2.06E-58
go-t-cell-receptor-complex Naive CD4 T 2.18E-57
go-negative-t-cell-selection Naive CD4 T 1.51E-39
go-granzyme-mediated-apoptotic-signaling-pathway NK 2.10E-190
go-cytolytic-granule NK 1.03E-150
go-positive-regulation-of-natural-killer-cell-chemotaxis NK 6.27E-128
go-cytolysis NK 6.91E-97
go-ccr5-chemokine-receptor-binding NK 9.03E-58
go-platelet-alpha-granule-membrane Platelet 6.75E-158
go-platelet-alpha-granule Platelet 4.94E-06
go-platelet-degranulation Platelet 5.90E-06
go-platelet-alpha-granule-lumen Platelet 6.23E-06
go-contractile-fiber Platelet 8.58E-06
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Figure 1

Workflow of the proposed method.

(A) Flowchart of the FEM algorithm, which was used to calculate Fisher's exact test for each
cell and each gene set, following which the calculated p-value matrix was converted into the
FEM through information content. The efficiency of the calculation method was improved by
matrix operation and multi-core parallel processing (see the method section for details). (B)
Cluster differential expression analysis based on FEM and integration of FEM and GEM. (C)
FEM was used for dimension reduction, clustering, and differential expression function
analysis (FC-DEF). (D) Due to the loss of gene expression information in FEM, the
dimensionality and clustering were first reduced based on GEM, and differential expression

function analysis among clusters in the GEM cluster (GC-DEF) was performed.
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Figure 2

Algorithm optimization based on matrix multiplication and multi-core operation.

(A) Convert the GEM and the gene sets into a 0, 1 matrix. The result of multiplication of the
two matrices representing the number of genes expressed in cell j and set s. (B) The multi-
core parallel computing method established two queues. The data queue was used to store
the data needed for calculation and the result queue stored the calculated results. Each set
of the two queues uniquely identified the cell and the function to which it belonged. The

calculation process adopted multi-process operation.

A Matrix manipulation
Functions
Genes Functions
= 8 =
: X ¢ S
B Multi-core computing
Data queue Result queue
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Figure 3

The clustering results of the GO-based FEM algorithm.

(A) GO-based FEM cluster for each cell type in liver data set. (B) The overlap between GO-
based FEM cluster and ground truth cell label in liver data set. (C) GO-based FEM cluster for
each cell type in pancreas data set. (D) The overlap between GO-based FEM cluster and

ground truth cell label in pancreas data set.
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Figure 4

Comparison of cluster results based on GEM and FEM.

(A) Clustering results based on GEM. (B) Clustering results based on FEM. (C) The overlap
between GO-based FEM cluster and ground truth cell label in PBMC dataset.
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Figure 5

An example of GC-DEF functional analysis.

(A) Official clustering results. (B) Results of GEM without cell filtering show a small cell group
above the NK cell cluster. (C) By directly displaying the expression value of specific pathways

in all cells, this cell group was found to have high expression of the cell proliferation-related

pathway.
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Figure 6

Validation results of Immunologic Signatures Collection gene sets.

Each of these gene sets represents a set of all highly expressed genes of one (or several) cell

types relative to another (or several) cell types.
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