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Background. One goal of expression data analysis is to discover the biological
significance (or function) of genes that are differentially expressed. As one of the main
tools for function mining, Gene Set Enrichment (GSE) analysis has been widely used.
However, for single-cell RNA sequencing (scRNA-SEQ) data, every gene expressed in a cell
is valuable information for GSE and not should be discarded. Methods. To utilize the
information of all expressed genes, we developed the FEM algorithm, which converts the
gene expression matrix (GEM) into a functional expression matrix (FEM). The FEM
algorithm can not only explain the biological significance of a single cell but also can be
used to replace or integrate GEM for downstream analysis. Results. Applying FEM to the
three datasets (PBMC, human liver, and human pancreas), we found that FEM showed
good performance in cell clustering, and cell type specified function annotation.
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41 Abstract

42 Background. One goal of expression data analysis is to discover the biological significance (or 

43 function) of genes that are differentially expressed. As one of the main tools for function mining, 

44 Gene Set Enrichment (GSE) analysis has been widely used. However, for single-cell RNA 

45 sequencing (scRNA-SEQ) data, every gene expressed in a cell is valuable information for GSE 

46 and not should be discarded. 

47 Methods. To utilize the information of all expressed genes, we developed the FEM algorithm, 

48 which converts the gene expression matrix (GEM) into a functional expression matrix (FEM). 

49 The FEM algorithm can not only explain the biological significance of a single cell but also can 

50 be used to replace or integrate GEM for downstream analysis. 

51 Results. Applying FEM to the three datasets (PBMC, human liver, and human pancreas), we 

52 found that FEM showed good performance in cell clustering, and cell type specified function 

53 annotation.

54

55 Introduction

56 As an alternative to the microarray platform, RNA sequencing (RNA-SEQ) has been widely used 

57 in the past 10 years. It has provided many valuable insights into the complex biological 

58 mechanism, ranging from cancer genomics to diverse microbial communities. Compared with 

59 traditional bulk methods that profile batches of cells in a pooled way, single-cell RNA-SEQ 

60 (scRNA-SEQ) can facilitate new and potentially unexpected biological discoveries. For example, 

61 it can provide information on complex and rare cell populations, regulatory relationships 

62 between genes, and can track the trajectories of distinct cell lineages during development 

63 (Gawad, Koh & Quake, 2016) (Hwang, Lee & Bang, 2018) (Chen, Ning & Shi, 2019). 

64 The cell is considered to be the fundamental unit in biology. For centuries, biologists have 

65 known that multicellular organisms are characterized by a plethora of distinct cell types. Because 

66 of homogeneity in the genome, the difference between cells in organisms can be characterized 

67 based on transcriptome similarity, which can be defined through unsupervised clustering 

68 (Kiselev, Andrews & Hemberg, 2019). Transcriptomic studies using bulk tissue assume that all 

69 cells from a homogeneous material, thereby ignoring the cellular heterogeneity of the sample. 

70 Single-cell transcriptomics, however, can address the above question (Kulkarni et al., 2019). 

71 High-throughput single-cell transcriptomics has provided unprecedented insights into cellular 

72 diversity in tissues across diverse organisms. scRNA-SEQ is a promising approach for the study 

73 of the transcriptomes of individual cells in organisms.

74 However, the pipeline for scRNA-SEQ is still based on bulk RNA-SEQ. The basic workflow 

75 includes data pre-processing (quality control (Luecken & Theis, 2019), (Ilicic et al., 2016), 

76 (Griffiths, Scialdone & Marioni, 2018), normalization, data correction, feature selection, and 

77 dimensionality reduction), followed by cell-level and gene-level downstream analysis (Luecken 

78 & Theis, 2019). Because RNA-SEQ data comprise pooled samples of multiple cells, many genes 

79 are expressed. But it is unclear whether these genes are co-expressed or if this is just the result of 
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80 mixing. Therefore, a portion of the particularly well-characterized genes needs to be screened for 

81 downstream analysis. 

82 For scRNA-SEQ data, this analysis process has the following shortcomings. First, the 

83 characteristics of single-cell data are not fully utilized: scRNA-SEQ data are a direct reflection of 

84 the physiological state of a cell but the above method is an analytical process based on multiple 

85 cells or cell clusters. Second, it cannot effectively capture all meaningful functional groups 

86 because it filters many genes that may play important roles in transient cell states. Since 

87 functional enrichment analysis is based on all the expressed genes in a cell, including genes that 

88 were filtered in a previous process, it is possible to miss meaningful biological functions. Third, 

89 the results of downstream functional analysis and upstream clustering are not been integrated and 

90 visualized. To overcome these limitations, this study proposes a method based on transforming 

91 the gene expression matrix into a functional expression matrix.

92

93 Materials & Methods

94 Motivation for this approach

95 Functional Gene Set Enrichment Analysis (GSEA) is usually the last step of expression data 

96 analysis. A gene set usually represents a biological function, and the function will be used to 

97 refer to a gene set in the following. There are many R packages and some online sites such as 

98 DAVID that provide enrichment analysis tools. The software takes a set of genes given by the 

99 user as input and returns the functions (such as pathways) that are significantly enriched. 

100 Enrichment analysis methods for individual samples have also been proposed(Foroutan et al., 

101 2018)(Hänzelmann, Castelo & Guinney, 2013).

102 Because of the low amount of initial material, scRNA-SEQ has limitations in low capture 

103 efficiency and high dropouts. scRNA-SEQ expression data tend to be sparse(Hicks et al., 2018b) 

104 (Eraslan et al., 2019). Due to the non-trivial distinction between true- and false-zero counts, the 

105 true zero represents the lack of expression of a gene in a specific cell, while a false zero is a 

106 technical deviation. Because the RNA-SEQ technique only detects mRNA molecules that are 

107 present, a gene in the scRNA-SEQ dataset with a non-zero expression value means that at least 

108 one mRNA molecule is present. These sparse non-zero expression values provided inspiration 

109 for the possibility of performing functional GSEA analysis at the single-cell level. 

110 Given the characteristics of scRNA-SEQ data, functional enrichment analysis can be 

111 performed at the single-cell transcriptome expression level. First, replacing the initial expression 

112 matrix with a functional expression matrix (FEM) can allow the direct exploration of the 

113 differences between cells from different biological perspectives. Second, combined with the gene 

114 expression matrix (GEM), the top variable function of a cell cluster obtained by GEM can be 

115 represented as a cell scatter plot. Third, for GSEA, the coverage of a functional gene set is more 

116 important than the expression of individual genes, because genes often overlap different 

117 functional groups, which makes single high-expression genes hard to explain. For example, the 

118 activation of a signalling pathway is the result of interactions between all genes; high expression 

119 of one gene does not mean that the pathway is activated.
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120 At present, the main factors affecting the discovery of cell groups are as follows. First, 

121 technical covariates must be regressed out before downstream analysis as these factors will 

122 introduce systematic error and confound the technical and biological variability, leading to 

123 systematic differences in gene expression profiles between batches(Leek et al., 2010) (Hicks et 

124 al., 2018a) (Chen, Ning & Shi, 2019). The most prominent technical covariates in single-cell 

125 data are count depth and batch. The FEM method is based on a gene set, which makes it more 

126 robust than the GEM. Second, some biological effects can affect the results of the cluster 

127 algorithms. For example, the cell cycle can alter the clustering result in non-proliferating cell 

128 populations. However, correcting for biological covariates is not always helpful in interpreting 

129 scRNA-seq data (Kolodziejczyk et al., 2015). These influencing factors often do not have 

130 uniform filtering criteria. In some cases, the cell cycle may be part of the study, or there may be a 

131 relationship between the cell cycle and other functions (Haghverdi, Buettner & Theis, 2015) 

132 (Vento-Tormo et al., 2018) (McDavid, Finak & Gottardo, 2016) (Blasi et al., 2017). The FEM 

133 method can be used to systematically survey the biological aspect of each cell before 

134 downstream analysis. To this end, we developed a scRNA-SEQ functional expression matrix 

135 algorithm (FEM). 

136 Workflow of the proposed methods

137 The FEM was divided into four steps (Fig. 1). 1. The standardized scRNA-SEQ GEM was 

138 transformed into a FEM by multi-module gene enrichment analysis (gene ontology, pathway). 2. 

139 Because the p-value represents the significance of enrichment, the p-value obtained by 

140 enrichment analysis was converted into information content (FEM). 3. FEM was used instead of 

141 GEM for data standardization, dimensionality reduction clustering, and UMAP(McInnes et al., 

142 2018) visualization. 4. The FEM and GEM were integrated to find differentially expressed genes 

143 (DEG) and differentially expressed functions (DEF).

144 Dataset

145 Peripheral blood mononuclear cells (PBMCs) are populations of immune cells that remain at the 

146 less dense upper interface of the Ficoll layer. PBMCs include lymphocytes (T cells, B cells, and 

147 NK cells), monocytes, and dendritic cells (DCs). In humans, the frequencies of these populations 

148 vary across individuals. Lymphocytes are typically in the range of 70–90%, monocytes range 

149 from 10–30%, while DCs are only present at 1–2% (NORMAN, 1995). The PBMC dataset 

150 (Butler et al., 2018) used in this paper (downloaded from the official Seurat site) mainly included 

151 B cells, NK cells, CD8 T cells, memory CD4 T cells, Naïve CD4 T cells, DC, CD14+ 

152 monocytes, FCGR3A+ monocytes, and a small number of platelets. This dataset contains 2,700 

153 cells.

154 The human pancreas dataset contains 2,126 cells and 10 cell types. It mainly includes alpha 

155 cells, ductal cells, endothelial cells, delta cells, acinar cells, beta cells, gamma cells, 

156 mesenchymal cells, epsilon cells, and a small number of unknown types of cells(Muraro et al., 

157 2016). 

158 The human liver dataset consists of 777 cells, mainly including seven types of cells: definitive 

159 endoderm cells, immediate hepatoblast cells, induced pluripotent stem cells (IPSCs), material 
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160 hepatocytic cells, hepatic endoderm cells, endothelial cells, and mesenchymal stem cells(Camp 

161 et al., 2017).

162

163 FEM algorithm

164 Selected functional groups and their profiles

165 Three functional gene sets were selected from the Msigdb database for enrichment analysis, the 

166 Reactome pathways, gene ontology (GO), and immunologic signature gene sets (Liberzon et al., 

167 2011) (Table 1).

168 Gene-functional group conversion

169 The non-zero–expressed genes of the cells in the GEM were extracted first. In the second step, 

170 an enrichment analysis score for each cell was calculated. The enrichment analysis method was 

171 based on Fisher's exact test using the Python SciPy package. The Fisher exact test is a statistical 

172 test based on a hypergeometric distribution that is used to determine if there are non-random 

173 associations between two categorical variables, or to test whether the theoretical value is 

174 consistent with the actual value.

𝑃 =

(
𝐾𝑘)(

𝑁 ‒ 𝐾𝑛 ‒ 𝑘 )

(
𝑁𝑛)

(1)

175 Here,  represents the total number of background genes,  represents the number of genes in N K

176 a particular gene set,  represents the number of non-zero genes in a single cell, and  represents n k

177 the number of genes present in both  and . The Bonferroni correction was used to counteract K n

178 the problem of multiple comparisons, but this is optional.

179 Expression value conversion based on information content

180 Information content measures the average rate of information from data. The smaller the p-value, 

181 the greater the amount of information. For the adjusted p-value of enrichment of a gene set, the 

182 null hypothesis is that there is no significant enrichment. So, the smaller the adjusted p-value, the 

183 more significant the enrichment of the gene set (rather than stochastic). Therefore, here the 

184 information content was used as a measure of the level of expression of a functional group.

  𝐺𝑆𝑖,𝑗 =‒ log (𝑎𝑑𝑗 ‒ 𝑝𝑖,𝑗) (2)

185

186 Here,  is the  gene set,  is the  cell, and  represents the adjusted p-value in 𝑖 𝑖𝑡ℎ 𝑗 𝑗𝑡ℎ 𝑎𝑑𝑗 ‒ 𝑝
i,j

187 the  gene set in the  cell.𝑖𝑡ℎ 𝑗𝑡ℎ
188

189 Algorithm optimization

190 Fisher's exact test is a time-consuming process. For single-cell data, a statistical test would be 

191 required for each function of each cell. Therefore, when the number of cells is large, the 

192 computation time would be untenable. Therefore, the algorithm was optimized with the addition 

193 of multi-core computing. 
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194 Optimization of the algorithm can be illustrated using the symbols in 2.4.2. First, because 𝑁
195 and  were invariable for all cells, these values were stored in memory to avoid recalculation 𝐾
196 every time. Second, the gene expression matrix was transformed into 0,1 matrix , where 1 𝐴
197 represents  the expression of gene  in cell  and 0 represents the non-expression of gene  in cell 𝑖 𝑗  𝑖
198 . The gene set was also transformed into 0,1 matrix , where 1 represents the presence of gene  𝑗 𝐵 𝑖
199 in set  and 0 represents the absence of gene  in set . The element ( ) in the product  of s 𝑖 s 𝑘 𝐴 × 𝐵𝑇
200 the two matrices represents the number of genes expressed by cell  in set  (Fig. 2).𝑗 s

201

202

203 Cluster and differentially expressed gene detection based on FEM and 

204 integration of GEM and FEM

205 Analysis tools for snRNA-SEQ data

206 There are many integrated data analysis software packages and platforms, such as Seurat (Butler 

207 et al., 2018), Scater (McCarthy et al., 2017), and Scanpy (Wolf, Angerer & Theis, 2018). Seurat 

208 provides integrated environments (including sample and feature selection, data standardization, 

209 dimensionality reduction, clustering, and visualization) to explore massive scRNA-SEQ 

210 datasets(Luecken & Theis, 2019). This study used Seurat for normalization, dimensionality 

211 reduction, clustering, and visualization.

212 Dimensionality reduction

213 After feature selection, the dimensions of single-cell expression matrices can be further reduced 

214 by dedicated dimensionality-reduction algorithms. These algorithms, such as principal 

215 component analysis (PCA), embed the expression matrix into a low-dimensional space, which is 

216 designed to capture the underlying structure in the data in as few dimensions as 

217 possible(Luecken & Theis, 2019) (Eraslan et al., 2019). In the present study, the data were 

218 converted into a linear combination of the first  principal components by the PCA algorithm. 𝑁
219 The value corresponding to the ‘elbow’ point was taken as the value of .𝑁
220 Clustering

221 A core step in the analysis of scRNA-SEQ transcriptome profiles is to cluster the single cells. 

222 This can reveal cell subtypes and infer cell lineages based on the relationships among cells. 

223 Several software packages support the cluster analysis of scRNA-SEQ data (Petegrosso, Li & 

224 Kuang, 2019); here, Seurat was used to clustering, which is based on a graphical approach. The 

225 parameter used in the cluster function was set to 0.4–1.2 according to the circumstances.

226 Differential expression between clusters

227 Differential expression analysis is very useful for finding the significant DEG between distinct 

228 subpopulations or groups of cells (Petegrosso, Li & Kuang, 2019). Seurat was used to finding 

229 subsets of functions that exhibited high variation between clusters.

230 GEM and FEM fusion analysis

231 The main problem in FEM is that it only considers the presence or absence of gene expression 

232 without considering the expression value of the gene. Therefore, FEM cannot replace GEM-

233 based methods in cell classification and type identification. In the present study, data from the 
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234 GEM and FEM were used for fusion analysis (Fig. 1). To combine the GEM and FEM results, 

235 the multi-modal data analysis module of Seurat was used for polymerization analysis (Stuart et 

236 al., 2019) (Stuart & Satija, 2019). The feature number selection, scaling ratio, PCA, and 

237 clustering parameter selection were appropriately adjusted according to circumstances, following 

238 the Seurat instructions.

239

240 Results

241 FEM can separate different cell types

242 Since the Reactome pathway gene sets have only 5741 unique genes, a large amount of gene 

243 information will be lost for the FEM algorithm. GO gene sets have 15578 unique genes. 

244 Therefore, GO gene sets-based FEM was used instead of GEM for cluster analysis. The 

245 Reactome pathway gene sets were used in the analysis of GC-DEF.

246 To verify whether the GO-based FEM algorithm can separate cells of different types, three 

247 data sets (PBMC, liver, pancreas) were used to replace GEM for dimensionality reduction and 

248 clustering. Since the number of clusters is artificially adjusted by parameters, to better 

249 distinguish different cell types, the number of clusters is set to be greater than or equal to the 

250 number of actual cell types so that a cluster contains only one main cell type. The results show 

251 that on the liver and pancreas data sets, the FEM method can distinguish different types of cells 

252 (Fig. 3). 

253 Some cells in the PBMC data set have different subtypes, such as FCGR3A+ Mono cells 

254 and CD14+ Mono cells, Naïve CD4 T cells, and memory CD4 T cells (Fig. 4). There is a large 

255 overlap between the different subtypes of these two types of cells in the GO-based FEM cluster. 

256 This means that the GO-based FEM method can reflect the "functional similarity" between cells. 

257 If the two groups of cells are far apart on GEM, but are close or partially overlapped on FEM, it 

258 indicates that they are different subtypes of the same cell type, or the two groups of cells may 

259 perform similar functions.

260 FC-DEF can directly detect the functional differences between clusters

261 In the PBMC dataset, official data pre-processing included the removal of cells with excessive 

262 mitochondrial genes (> 5%, quality control) and those with too many (> 2,500) or too few (< 

263 200) features (Bittersohl & Steimer, 2016). Therefore, some cells may have been filtered out in 

264 the data pre-processing stage. The present method did not filter out any cells. Indeed, the filtered 

265 cells were found to be located above the NC cells. Using the GC-DEF method, this cell group 

266 was found to have a highly expressed cell proliferation-related pathway. Thus, these cells were 

267 identified as proliferative (Fig. 5).

268 The most significantly expressed pathway, “hemostasis,” was located in the platelet clusters. 

269 The “innate immune system” pathway was significantly expressed in the monocyte, DC cell, NK 

270 cell, and platelet cell populations, which was consistent with literature results(NORMAN, 1995). 

271 The top five highly expressed functions were consistent with the cell type character. All other 

272 results of FC-DEF and GC-DEF are provided in Table s1.  
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273 Table 2 shows that most of the corresponding cells were closely related to their corresponding 

274 top functions, such as the high expression of “Reactome regulation of beta cell development” in 

275 beta cells and the high expression of “Reactome gluconeogenesis” in mature stem cells. All other 

276 results are shown in Table s1.

277 GO-based GC-DEF results was consistent with the pathway-based methods and 

278 literature(NORMAN, 1995). All other results are presented in Table 3 and Table s1, s2, s3 and 

279 s4.

280 Validation with an immune dataset

281 To test whether the proposed method could detect sets of genes that had been identified as up-

282 regulated or down-regulated by traditional methods, the Immunologic Signatures Collection 

283 (ImmuneSigDB) (Liberzon et al., 2011) was employed as a validation dataset. 

284 The ImmuneSigDB is composed of gene sets that represent cell types, states, and perturbations 

285 within the immune system(Godec et al., 2016). Figure 6 shows that in the bulk RNA-SEQ 

286 dataset, the cell types from the up-regulated expression marker gene set were also highly 

287 expressed using the method proposed in this study. This demonstrated the efficacy of the 

288 proposed method for detecting cell-type-specific gene sets.

289

290 Discussion

291 We prove that FEM can be used for cell clustering. It also can replace or merge the GEM method 

292 for downstream differential expression analysis to find cell type-specific functions.

293 Sometimes, evaluate the impact of some biological effects on the cell clusters is necessary, 

294 such as the impact of cell cycles on cell-type clustering results. However, there is no uniform 

295 standard for how to achieve this. Because the proposed method directly converts the expression 

296 of genes in cells to the expressions of functions, cells can be screened according to their FEM 

297 score at any stage of processing. 

298 It should be noted that FEM only considers the presence and absence of gene expression, 

299 without considering the influences of gene-expression values, so the proposed method and gene-

300 expression–based methods are complementary rather than alternatives. 

301

302 Conclusions

303 Usually, the final step in the analysis of gene expression data is to interpret the biological 

304 significance of the genes based on GSEA. However, if each of the first n genes obtained by 

305 differential expression analysis represents a function that does not overlap with each other, then 

306 the enrichment analysis will fail. On the other hand, if most genes of a function are expressed in 

307 a cell and are screened out in the process of gene selection, this function will also be missed. 

308 Based on the characteristics of single-cell data, GSEA at the single-cell level effectively avoids 

309 the above problems. The results of the present study showed that direct enrichment analysis at 

310 the single-cell level is feasible and powerful. 

311
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Table 1(on next page)

Functional gene set
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1

Function name Number of gene sets details

C2: Reactome gene sets 1,499
Gene sets derived from the Reactome 

pathway database.

C5: GO gene sets 9,996

Gene sets that contain genes annotated 

by the same GO term. The C5 collection 

is divided into three sub-collections 

based on GO ontologies: BP, CC, and 

MF.

C7: immunologic signature gene 

sets
4,872

Gene sets that represent cell states and 

perturbations within the immune system. 

The signatures were generated by 

manual curation of published studies in 

human and mouse immunology.

2

3

4
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Table 2(on next page)

Top five pathways for mature hepatocyte cells (liver dataset) and beta cells (pancreas
dataset)
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1

Function cluster
Adjusted p-

value

reactome-regulation-of-gene-expression-in-beta-cells beta 7.47E-48

reactome-regulation-of-beta-cell-development beta 1.02E-25

reactome-activation-of-nmda-receptors-and-postsynaptic-events beta

reactome-negative-regulation-of-tcf-dependent-signaling-by-dvl-

interacting-proteins
beta 2.05E-11

reactome-synthesis-of-pips-at-the-early-endosome-membrane beta 1.76E-06

reactome-gluconeogenesis mature hepatocyte 1.75E-11

reactome-signaling-by-bmp mature hepatocyte 4.50E-09

reactome-apoptotic-cleavage-of-cell-adhesion-proteins mature hepatocyte 9.00E-09

reactome-transport-of-nucleosides-and-free-purine-and-pyrimidine-

bases-across-the-plasma-membrane
mature hepatocyte 1.51E-08

reactome-bbsome-mediated-cargo-targeting-to-cilium mature hepatocyte 1.76E-08

2

3

4
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Table 3(on next page)

Results of the top five GO-based FEM methods for each cluster
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1

2

Function cluster
Adjusted p-

value

go-mhc-class-ii-receptor-activity B 1.31E-299

go-mhc-class-ii-protein-complex B 1.94E-207

go-clathrin-coated-endocytic-vesicle-membrane B 8.60E-183

go-clathrin-coated-endocytic-vesicle B 1.40E-174

go-mhc-protein-complex-assembly B 2.39E-173

go-collagen-containing-extracellular-matrix CD14+_Mono 3.17E-235

go-rage-receptor-binding CD14+_Mono 1.42E-226

go-chemokine-production CD14+_Mono 1.61E-211

go-defense-response-to-bacterium CD14+_Mono 9.86E-194

go-neutrophil-migration CD14+_Mono 2.36E-187

go-cytolysis CD8_T 2.61E-64

go-t-cell-receptor-complex CD8_T 7.62E-53

go-negative-regulation-by-host-of-viral-transcription CD8_T 5.71E-39

go-regulation-of-cell-cell-adhesion-mediated-by-integrin CD8_T 1.50E-36

go-t-cell-receptor-binding CD8_T 4.19E-29

go-ige-binding DC 4.78E-241

go-t-cell-activation-via-t-cell-receptor-contact-with-antigen-

bound-to-mhc-molecule-on-antigen-presenting-cell
DC 6.80E-23

go-mhc-class-ii-receptor-activity DC 1.48E-14

go-hydrolase-activity-acting-on-ester-bonds DC 0.000373

go-lipid-metabolic-process DC 0.000529

go-igg-binding FCGR3A+_Mono 9.13E-143

go-negative-regulation-of-leukocyte-proliferation FCGR3A+_Mono 4.71E-60

go-regulation-of-mast-cell-activation FCGR3A+_Mono 7.62E-59

go-regulation-of-mast-cell-activation-involved-in-immune-

response
FCGR3A+_Mono 1.83E-58

go-dendritic-cell-differentiation FCGR3A+_Mono 3.00E-58

go-positive-t-cell-selection Memory_CD4_T 5.51E-40

go-positive-thymic-t-cell-selection Memory_CD4_T 1.80E-37

go-t-cell-receptor-binding Memory_CD4_T 1.89E-37

go-alpha-beta-t-cell-receptor-complex Memory_CD4_T 7.89E-35

go-positive-regulation-of-t-cell-receptor-signaling-pathway Memory_CD4_T 3.62E-33

go-t-cell-differentiation-in-thymus Naive_CD4_T 5.58E-123

go-thymic-t-cell-selection Naive_CD4_T 4.23E-87

go-positive-regulation-of-t-cell-receptor-signaling-pathway Naive_CD4_T 2.06E-58

go-t-cell-receptor-complex Naive_CD4_T 2.18E-57

go-negative-t-cell-selection Naive_CD4_T 1.51E-39

go-granzyme-mediated-apoptotic-signaling-pathway NK 2.10E-190

go-cytolytic-granule NK 1.03E-150

go-positive-regulation-of-natural-killer-cell-chemotaxis NK 6.27E-128

go-cytolysis NK 6.91E-97

go-ccr5-chemokine-receptor-binding NK 9.03E-58

go-platelet-alpha-granule-membrane Platelet 6.75E-158

go-platelet-alpha-granule Platelet 4.94E-06

go-platelet-degranulation Platelet 5.90E-06

go-platelet-alpha-granule-lumen Platelet 6.23E-06

go-contractile-fiber Platelet 8.58E-06

3

4

5
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Figure 1
Workflow of the proposed method.

(A) Flowchart of the FEM algorithm, which was used to calculate Fisher's exact test for each
cell and each gene set, following which the calculated p-value matrix was converted into the
FEM through information content. The efficiency of the calculation method was improved by
matrix operation and multi-core parallel processing (see the method section for details). (B)
Cluster differential expression analysis based on FEM and integration of FEM and GEM. (C)
FEM was used for dimension reduction, clustering, and differential expression function
analysis (FC-DEF). (D) Due to the loss of gene expression information in FEM, the
dimensionality and clustering were first reduced based on GEM, and differential expression
function analysis among clusters in the GEM cluster (GC-DEF) was performed.
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Figure 2
Algorithm optimization based on matrix multiplication and multi-core operation.

(A) Convert the GEM and the gene sets into a 0, 1 matrix. The result of multiplication of the
two matrices representing the number of genes expressed in cell j and set s. (B) The multi-
core parallel computing method established two queues. The data queue was used to store
the data needed for calculation and the result queue stored the calculated results. Each set
of the two queues uniquely identified the cell and the function to which it belonged. The
calculation process adopted multi-process operation.
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Figure 3
The clustering results of the GO-based FEM algorithm.

(A) GO-based FEM cluster for each cell type in liver data set. (B) The overlap between GO-
based FEM cluster and ground truth cell label in liver data set. (C) GO-based FEM cluster for
each cell type in pancreas data set. (D) The overlap between GO-based FEM cluster and
ground truth cell label in pancreas data set.
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Figure 4
Comparison of cluster results based on GEM and FEM.

(A) Clustering results based on GEM. (B) Clustering results based on FEM. (C) The overlap
between GO-based FEM cluster and ground truth cell label in PBMC dataset.
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Figure 5
An example of GC-DEF functional analysis.

(A) Official clustering results. (B) Results of GEM without cell filtering show a small cell group
above the NK cell cluster. (C) By directly displaying the expression value of specific pathways
in all cells, this cell group was found to have high expression of the cell proliferation-related
pathway.
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Figure 6
Validation results of Immunologic Signatures Collection gene sets.

Each of these gene sets represents a set of all highly expressed genes of one (or several) cell
types relative to another (or several) cell types.
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