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Background: Copy-number variants (CNVs) have been recognized as one of the major causes of genetic
disorders. Reliable detection of CNVs from genome sequencing data has been a strong demand for
disease research. However, current software for detecting CNVs has high false-positive rates, which
needs further improvement.

Methods: Here, we proposed a novel and post-processing approach for CNVs prediction (CNV-P), a
machine-learning framework that could efficiently remove false-positive fragments from results of CNVs
detecting tools. A series of CNVs signals such as read depth (RD), split reads (SR) and read pair (RP)
around the putative CNV fragments were defined as features to train a classifier.

Results: The prediction results on several real biological datasets showed that our models could
accurately classify the CNVs at over 90% precision rate and 85% recall rate, which greatly improves the
performance of state-of-the-art algorithms. Furthermore, our results indicate that CNV-P is robust to
different sizes of CNVs and the platforms of sequencing.

Conclusions: Our framework for classifying high-confident CNVs could improve both basic research and
clinical diagnosis of genetic diseases.
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15 Abstract

16 Background: Copy-number variants (CNVs) have been recognized as one of the major causes 

17 of genetic disorders. Reliable detection of CNVs from genome sequencing data has been a strong 

18 demand for disease research. However, current software for detecting CNVs has high false-

19 positive rates, which needs further improvement. 

20 Methods: Here, we proposed a novel and post–processing approach for CNVs prediction (CNV-

21 P), a machine-learning framework that could efficiently remove false-positive fragments from 

22 results of CNVs detecting tools. A series of CNVs signals such as read depth (RD), split reads 

23 (SR) and read pair (RP) around the putative CNV fragments were defined as features to train a 

24 classifier. 

25 Results: The prediction results on several real biological datasets showed that our models could 

26 accurately classify the CNVs at over 90% precision rate and 85% recall rate, which greatly 

27 improves the performance of state-of-the-art algorithms. Furthermore, our results indicate that 

28 CNV-P is robust to different sizes of CNVs, as well as the platforms of sequencing. 

29 Conclusions: Our framework for classifying high-confident CNVs could improve both basic 

30 research and clinical diagnosis of genetic diseases.

31

32 Introduction

33 Copy number variations (CNVs) are one of the genetic variations and sequence 

34 polymorphisms that widely exist in the human genome. Research shows that CNVs are closely 

35 related to the pathogenesis and development of many human diseases such as autism, Parkinson 

36 and other neurological diseases (Hollox et al. 2008; Pankratz et al. 2011; Rosenfeld et al. 2010; 

37 Sebat et al. 2007). Therefore, accurate detection of CNVs is essential for the diagnosis and 

38 research of such diseases.

39 With the rapid development of high-throughput sequencing technology, genomic 

40 sequencing-based technology for CNVs detection has gradually become a leading method owing 

41 to its high speed, high resolution, and high repeatability. Many sequencing-based CNVs 

42 detection methods have been proposed (Kosugi et al. 2019; Pirooznia et al. 2015; Zhao et al. 

43 2013). Typical CNVs detection approaches mainly utilize three signatures to detect CNVs: read 

44 depth (RD), read pairs (RP), split read (SR) (Pirooznia et al. 2015). RD means the number of 

45 reads that encompass or overlap CNVs. For example, a deletion indicates a decrease in the 

46 average depth of this area. RP refers to the distribution of the insert size of the sequenced library. 

47 If the mapping distance of read pairs significantly deviates from the average value of the 

48 sequencing library, such discordant alignment features herald the occurrence of CNVs. SR 
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49 indicates the split (soft-clipped) alignment features of reads that span CNVs. The initial 

50 strategies for detecting CNVs mainly focused on one of these features (Abyzov et al. 2011; Chen 

51 et al. 2009; Medvedev et al. 2010). Most of the approaches have high false-positive rates because 

52 of the noises of sequencing data, such as sequencing error and artificial chimeric reads. 

53 Ambiguous mapping of reads from repeat- or duplication-rich regions also decreases the 

54 accuracy of CNVs (Kosugi et al. 2019; Teo et al. 2012). Consequently, tools integrating multiple 

55 features to detect CNVs have been gradually developed (Bartenhagen & Dugas 2016; Layer et 

56 al. 2014; Rausch et al. 2012), while their performance still needs be further modified (Kosugi et 

57 al. 2019).

58 To identify high confident CNVs, a commonly used strategy is setting a cutoff value or 

59 applying various statistical distributions to filter fragments. This strategy greatly depends on the 

60 expertise of researchers and their subjective assumptions about the analyzed data. Another 

61 strategy uses the intersection of CNVs generated by two or more algorithms. However, due to 

62 various CNV-property-dependent and library-property-dependent features used by different 

63 detection methods, they usually provide inconsonant results. Thus, a large number of potentially 

64 true CNVs could be discarded. Additionally, some tools, such as MetaSV(Mohiyuddin et al. 

65 2015), Parliament2 (Zarate et al. 2020) and FusorSV (Becker et al. 2018), use the method of 

66 integrating and merging CNVs from multiple software. These approaches require output results 

67 of several certain tools, usually more than four software, while reanalyzing CNVs using their 

68 default methods is impractical and time-consuming. 

69 Here, we developed a machine-learning framework for CNVs prediction (CNV-P), aiming 

70 to accurately predict CNVs from the results of present software. CNV-P collected three 

71 aforementioned signatures (RD, RP and SR) and other information of the putative CNVs. The 

72 results of our model on real data demonstrate that CNV-P greatly improves the performance of 

73 state-of-the-art algorithms

74

75 Materials & Methods

76 Data download and preprocessing

77 The gold-standard sets of CNVs from 9 individuals (NA19238, NA19239, NA19240, 

78 HG00512, HG00513, HG00514, HG00731, HG00732, HG00733) were downloaded from 

79 Chaisson et al (Chaisson et al. 2019). The whole genome sequencing (WGS) data (~30x) of 

80 these 9 individuals were downloaded from the National Center for Biotechnology Information 

81 (NCBI) with an accession number SRP159517 (Table S1, S2). For external validation samples, 

82 the sequencing data of NA12878 and HG002 were also downloaded from NCBI with accession 
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83 numbers SRP159517 and SRP047086 respectively. The gold-standard CNVs of NA12878 were 

84 generated by three data sets: the Database of Genomic Variants 

85 (http://dgv.tcag.ca/dgv/app/home?ref=GRCh37/hg19) (R. et al. 2013), the 1000 Genomes Project 

86 phaseIII (https://ftp.ncbi.nih.gov/1000genomes/ftp/phase3/integrated_sv_map) (Sudmant et al. 

87 2015), and the CNVs of PacBio data from Pendleton, M. et al (Pendleton et al. 2015). The gold-

88 standard CNVs of HG002 were downloaded from Zook, J.M., et al (Zook et al. 2019). 

89 For the above gold-standard sets, we excluded other types of CNVs except for deletion and 

90 duplication, removed CNVs shorter than 100bp and merged fragments with over 80% reciprocal 

91 overlaps. On average, each sample had more than 10,000 CNVs after processing (Table S1). For 

92 WGS data, the clean reads after removing adapter and filtering low-quality reads were aligned to 

93 the human genome reference (hg19) with bwa (Li 2013) ‘mem’ command to generate the BAM 

94 file. All of these datasets were generated by standard WGS protocol, with libraries of 

95 approximate 400bp insert size and average ~30X coverage (Table S2). 

96

97 Generate simulated dataset

98 We generate random CNVs (range from 100bp to 100kb) based on a copy of human 

99 genome (hg19) using mason2 (Holtgrewe 2010). To avoid the same or similar CNVs between 

100 training data and test data, we selected fragments on chromosome 1 and chromosome 2 as 

101 training samples and CNVs on chromosome 3 and chromosome 4 as testing samples (more 

102 details in Table S1). Then, the paired-end sequencing reads (100bp) from the altered genome 

103 was simulated by wgsim (Li 2011 ), with an insert size of 500bp and 0.001 base error rate.

104

105 Training set and test set

106 We chose five common software to obtain the initial sets of CNVs for simulated data and 

107 the downloaded sequencing data (deletions and duplications): Lumpy (Layer et al. 2014), Manta 

108 (Chen et al. 2015), Pindel (Ye et al. 2009), Delly (Rausch et al. 2012) and breakdancer (Chen et 

109 al. 2009). The details of running parameters were shown in the supplemental methods section. 

110 The original CNVs were then performed as follows: 1. Removed other types of CNVs except for 

111 deletion and duplication. 2. Removed CNVs with > 10 bp overlapped with N region of human 

112 genome (download from http://genome.ucsc.edu/). 3. Merged CNVs with ≥80% reciprocal 

113 overlaps and kept the union part of fragments. 4. Removed CNVs that less than 100bp. Then, we 

114 labeled these treated CNVs as either ‘True’ or ‘False’ based on their overlapped part with gold-

115 standard CNVs. CNVs having ≥80% reciprocal overlap with the gold-standard CNVs in 

116 simulated data were labeled as “True” and the cutoff was set to ≥50% for sequencing data. We 
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117 then selected data of 6 individuals as a training set and the other 3 samples as a test set, including 

118 two dependent validation datasets (more details in Table S1, S2).

119

120 Feature extraction

121 We chose commonly used signals by detection tools as features in our training model, such 

122 as read depth, information of paired and spited read, mapping quality and GC content of CNVs, 

123 as well as all these features around CNV’s boundaries (Table S3). Training features were 

124 obtained from the alignment results (Fig. 1) in BAM format, which was generated by a read 

125 aligner that supports partial read alignments, such as BWA-MEM (Li 2013). For read depth-

126 based and GC content-based features, we computed the read depth and GC rate of three regions: 

127 500 bp upstream and downstream of the left breakpoint Lb1k, 500 bp upstream and downstream 

128 of the right breakpoint Rb1k, and the region from start to end Cstart-end. Read depth was calculated 

129 by total number of aligned bases divided by the length of the region. We then normalized the 

130 read depth by the average coverage of entire genome and processed log2 transformation to 

131 eliminate the impact of fluctuations in sequencing depth. GC content was also calculated in these 

132 three regions. Thus, using read depth and GC content of the three local regions (Lb1k, Rb1k and 

133 Cstart-end), six features were defined. Split-read, read pair and mapping quality were computed for 

134 two regions: Lb1k and Rb1k. Split read-based features were defined as the number of clipped 

135 reads within the area Lb1k or Rb1k. Read pair–based features were defined as the number of outlier 

136 reads pair within Lb1k or Rb1k. Normally, The insert size of a normal paired-end read should be 

137 within , where  and  are the median and standard deviation of insert size, 𝒎𝒊𝒔 ±  𝒏𝝈𝒊𝒔 𝒎𝒊𝒔 𝝈𝒊𝒔
138 respectively, and  is the number of standard deviation from the median( we set is to 3). In 𝒏
139 addition to aberrant insert size, we also calculated the number of reads without pair within the 

140 area Lb1k or Rb1k. The features of mapping quality were defined as the number of reads with 

141 mapping quality <10 within Lb1k or Rb1k. Finally, we also normalized the value of split reads, read 

142 pair and mapping quality according to the mean value of genome coverage. Besides, we included 

143 the size and type of CNVs as training features, since the efficacy of CNVs could vary for 

144 different size ranges and types (duplication/deletion).

145

146 Comparison with CNV-JACG, MetaSV and hard cutoff method

147 We compared the performance of CNV-P with that of CNV- JACG (Zhuang et al. 2020), 

148 MetaSV (Mohiyuddin et al. 2015) and hard cutoff method in the same datasets. Since MetaSV 

149 currently does not support Delly's output, only four CNV detection tools (Lumpy, Manta, Pindel, 
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150 and breakdancer) were taken into consideration. CNV-JACG was conducted running with default 

151 parameters (details in supplementary methods). MetaSV was carried out with complete mode. 

152 For hard cutoff method, we used SR and RP as the evidence to support the existence of CNVs, 

153 therefore, the number of SR and RP greater than 2, 5, and 10 were set as hard cutoff to evaluate. 

154 SURVIVOR(Jeffares et al. 2017) was used to merge fragments with 80% overlap after filtering 

155 by CNV-P, CNV- JACG, MetaSV and hard cutoff method.

156

157 Methodology evaluation

158 we calculated the classifier performance on the test dataset in terms of precision and recall 

159 (TP: true positive, TN: true negative, FP: false positive, FN: False negative)

160 Precision =
TP

TP + FP

161 Recall =
TP

TP + FN

162 F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall

163 Also, we plotted the ROC with the AUC for model evaluation. ROC curves were drawn 

164 based on a series of false positive rates (FPR) and true positive rates (TPR).

165

166 Results

167 Study overview

168 In this study, we built a random forest (RF) framework for the CNVs prediction base on 

169 both simulated and real datasets (Fig. 1A). Firstly, we identified CNVs using five common tools 

170 (Lumpy, Manta, Pindel , Delly and breakdancer). For each set, we removed CNVs with low 

171 quality or locating on the N region of the human genome (details in Methods). Secondly, we 

172 labeled CNVs as either “True” or “False” based on a 50% reciprocal overlap with the gold-

173 standard CNVs in real data and 80% reciprocal overlap in simulated data respectively (details in 

174 Methods). Next, we extracted the signatures around these CNVs such as RD, SR and RP as 

175 training features from alignment results (Fig. 1B). 

176 We then split the data set into a training set and a test set. Based on the training set, we 

177 trained a RF classifier to identify CNVs as “true” or “false”. We performed 10-repeated 10-fold 

178 cross-validation for optimal parameter selection and used the receiver operating characteristic 

179 (ROC) curve to quantify the prediction performance. Next, we evaluated the robustness of our 

180 models on test data from multiple aspects, such as sizes of CNVs and platforms of raw 
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181 sequencing data. We also compared the performance of Support Vector Machine (SVM) and 

182 Gradient Boosting classifier (GBC) with our random forest model. Finally, we validated our 

183 model on two extra data sets.

184

185 Performance of CNV-P on a simulated dataset 

186 We train RF, GBC, and SVM classifiers for CNV prediction based on a simulated dataset 

187 (details in Methods). The results show that there was a significant improvement after CNV-P 

188 prediction compared with the original CNV results. The precision of CNVs produce by each 

189 CNV detection tools improved from 49.58% to 99% with almost zero loss recall rate (Fig. 2A, 

190 B). Compared with GBC and SVM classifiers, RF was slightly superior. The RF classifiers for 5 

191 tools achieved comparable performance since an average increasing of F1-score was about 

192 14.55% for Lumpy, 14.34% for Manta, 13.84% for Pindel, 11.10% for Delly and 16.16% for 

193 breakdancer (Fig. 2C). 

194

195 Performance of CNV-P on a real dataset

196 In this part, we trained RF classifier for the five selected tools respectively based on real 

197 samples. The 10-repeated 10-fold cross-validation was performed for optimal parameter 

198 selection (Fig. S1). The overall diagnostic ability of each classifier was measured as the area 

199 under the receiver operating characteristic curve (AUC) for the test dataset. The highest value of 

200 AUC was 97.10% for the model of Lumpy while the model for Pindel had the smallest value of 

201 93.62% (Fig. 3A). Each classifier accurately classified the CNVs as either true or false at 91.76-

202 95.17% precision and 87.75-96.54% recall rate (Fig. 3B). After processing by CNV-P, a large 

203 number of false-positive CNVs were removed, and the majority of true CNVs were remained 

204 (Fig. 3C).

205 To dissect the principle of the CNV-P classifier, we assessed the relative importance of each 

206 feature for corresponding classifiers. As expected, for all classifiers, read-depth provided the 

207 most discriminatory power to make accurate predictions (Fig. S2). However, the second 

208 important feature was inconsistent between different classifiers. It was probably due to various 

209 detection algorism these tools used. 

210 To evaluate the robustness of CNV-P, we trained each model on various proportions of 

211 training data (from 10% to 90% in increments of 20%). The results showed a steady 

212 improvement in accuracy (precision and recall rate) with an increase in the number of training 

213 data (Fig. S3). 

214 We further assessed the performance of CNV-P for CNVs of different sizes. We divided 
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215 CNVs into three sets based on their length: CNV_S (100 bp to 1 kb; bp: base pair, kb: kilobase), 

216 CNV_M (1 kb to 100 kb) and CNV_L (>100kb). The overall precisions were greatly improved, 

217 comparing with the raw CNVs achieved by the corresponding software (Fig. 3D). We noticed 

218 that almost all precision and recall rates of CNV_S and CNV_M were over 90%, while theses 

219 values of CNV_L were slightly lower. These results are probably caused by the insufficient 

220 number of CNV_L in our training data.

221 We also profiled the distribution of predicted probability scores for all CNVs within a 

222 different size range. Since CNVs with a probability score >0.5 were classified as true in our 

223 CNV-P prediction results, we found that the threshold of 0.5 distinguished true and false CNVs 

224 very well (Fig. S4). Besides, the probability scores could be used as a measurement of 

225 confidence for a certain fragment of CNVs, which would provide support evidence in further 

226 analysis.

227 Furthermore, we implanted two additional models, GBC and SVM, to train CNV-P 

228 classifiers. Comparing the precision and recall values, as well as the result of ROC curve, we 

229 found they had comparable performance (Fig. S5). Still, the RF classifier was recommended as 

230 the first choice with a slight superiority. 

231

232 Prediction on external data sets

233 To further evaluate the performance of CNV-P, we implemented our models on two 

234 independent WGS datasets of NA12878 and HG002 (Table S1). Since we had proved that 

235 increasing the size of training data could improve the accuracy of our model (Fig. S3), the final 

236 classifiers were trained on both the training set and test set mentioned above. Consistent with the 

237 above results, CNV-P produced the optimal performance with AUCs of 0.89-0.95 in NA12878 

238 (Fig. 4A). Most of the false-positive CNVs were removed with a loss of a small number of true 

239 positive fragments (Fig 4B, C). Likewise, our approach had a similar performance on sample 

240 HG002 (Fig. 4D-F). 

241 We next compared CNV-P with other post-process tools for CNV filtering, including CNV-

242 JACG and MetaSV. We also included commonly used hard filtering method, setting cut-off of 

243 SR and RP number for each CNV. We applied various filtering approaches on NA12878 and 

244 HG002, and then evaluated fragments using gold-standard CNVs of these two samples. Our 

245 results showed that CNV-P had the highest F1-score among all the post-process methods (Table 

246 1). 

247 Besides, we evaluated the performance of our approach in data generated from multiple 

248 sequencing platforms. With precision of 91.6-96.8% and recall rates of 84.1-94% (Fig. 5), CNV-

249 P showed similar performance on sequencing data generated by BGI-500. Moreover, in addition 
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250 to the trained classifiers for the above five software, we provided extra modules in our approach 

251 for training and predicting if CNVs were detected by other tools. These results suggest that our 

252 approach is suitable for CNVs generated from multiple sequencing platforms and detecting 

253 software.

254

255 Discussion

256 Detecting CNVs from WGS is error-prone because of short-length reads and library-

257 property-dependent bias [5]. Inflated false positive makes it a big challenge for researchers to 

258 identify clinically relevant CNVs, as it is time- and money-consuming to validate a large amount 

259 of false positive CNVs. To solve this problem, we develop CNV-P, an effective machine-

260 learning-based framework to acquire high-confident CNVs. Instead of handling the shortcomings 

261 of existing methods by developing another detecting algorithm, CNV-P focuses on providing a 

262 reliable set of CNVs from existing detection software. We demonstrate that CNV-P can identify 

263 a set of high-confidence CNVs with high precision and recall rates. Moreover, CNV-P is robust 

264 to the proportion of variants in training sets, size of CNVs and sequencing platforms, indicating 

265 the utility of CNV-P in a variety of clinical or research contexts.

266 Comparing with the conventional method of using hard cutoff, such as a minimum number 

267 of supporting reads, to filtering CNV results, CNV-P greatly reduces errors caused by lack of 

268 expertise and subjective assumptions. Instead of running default multiple software in advance, 

269 CNV-P can make accurate predictions for each tool dependently. In addition to the five 

270 commonly used software that we have trained prediction models, we provide an extra module in 

271 CNV-P including the function of model training and predicting if CNVs are detected by other 

272 tools.

273 However, our models may have weaker power for large-size CNVs, because there are only 

274 a small number of large fragments in our training data. Besides of data from healthy individuals, 

275 we believe that great improvement could be made to identify large-size true CNVs in the future 

276 when more datasets are accumulated.

277

278 Conclusions

279 CNV-P is a well-performed machine-learning framework for accurately filtering CNVs. 

280 CNV-P framework can be applied on CNVs from various detection methods and sequencing 

281 platforms, making our framework easy to adopt and customize. CNV-P greatly helps to generate 

282 a set of high-confident CNVs, benefiting both basic research and clinical diagnosis of genetic 

283 diseases.
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Figure 1
The study overview of CNV-P

A) The workflow of CNV-P framework classifyng candidate CNVs as True or False. B) The
features we used to train supervised machine learning models
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Figure 2
Performance of CNV-P on simulated dataset.

A)The F-score , B) sensitivity, and C) precision over testing simulated dataset.
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Figure 3
Performance of CNV-P on real dataset.

A) Area Under the receiver operating characteristic Curve (AUC) of CNV-P in 3 test datasets.
B) The precise and recall rate of CNV-P. C) The number of CNVs before and after CNV-P
predicting for five commonly used tools. D) The precise and recall rate of CNV-P at different
size range of CNVs. CNV_S: 100 bp to 1 kb, CNV_M: 1 kb to 100 kb, CNV_L: >100kb.
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Figure 4
Performance of CNV-P on other validation dataset.

CNV-P detects high-confident CNVs with high precision and recall rates on two independent
sequencing datasets from NA12878 (A, B, C) and HG002 (D, E, F). (A, D) Receiver operating
characteristic (ROC) curves of CNV-P. (B, E) The precision and recall rate of CNV-P; (C, F) The
number of classified CNVs by CNV-P from five commonly used tools.
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Figure 5
Performance of CNV-P on different sequencing platform.

The precise and recall rate of CNV-P for sample NA12878 using sequencing data generated
from BGI-SEQ500 and Illumina. A) The raw precise results; B) Precise rate; C) Recall rate.
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Table 1(on next page)

Comparison with CNV-JACG, MetaSV and hard cutoff method in NA12878 and HG002
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1 Table 1: Comparison with CNV-JACG, MetaSV and hard cutoff method in NA12878 and HG002.

Sample method precise recall F1-score

RAW 0.6032 1.0000 0.7525

Hard_Cutoff_2 0.6197 0.9792 0.7590

Hard_Cutoff_5 0.7145 0.8630 0.7818

Hard_Cutoff_10 0.7780 0.6976 0.7356

CNV-JACG 0.6828 0.7496 0.7146

MetaSV 0.7094 0.8817 0.7862

NA12878

CNV-P 0.9007 0.7977 0.8461

RAW 0.2054 1.0000 0.3408

Hard_Cutoff_2 0.4026 0.9729 0.5695

Hard_Cutoff_5 0.5740 0.8653 0.6901

Hard_Cutoff_10 0.6642 0.7482 0.7037

CNV-JACG 0.5443 0.7076 0.6153

MetaSV 0.5917 0.8274 0.6900

HG002

CNV-P 0.7078 0.7516 0.7290

2
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