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ABSTRACT
Ephemeral wetlands are commonly embedded within pine uplands of the southeastern
United States. These wetlands support diverse communities but have often been
degraded by a lack of growing-season fires that historically maintained the vegetation
structure. In the absence of fire, wetlands develop a densemid-story ofwoody vegetation
that increases canopy cover and decreases the amount of herbaceous vegetation. To
understand how reduced fire frequency impacts wetland processes, we measured leaf
litter breakdown rates and invertebrate communities using three common plant species
(Longleaf Pine (Pinus palustris), Pineland Threeawn Grass (Aristida stricta), and Black
Gum (Nyssa sylvatica)) that occur in pine flatwoods wetlands located on Eglin Air
Force Base, Florida. We also tested whether or not the overall habitat type within a
wetland (fire maintained or fire suppressed) affected these processes. We placed leaf
packs containing 15.0 g of dried leaf litter from each species in both fire-maintained
and fire-suppressed sections of three wetlands, removing them after 103–104 days
submerged in the wetland. The amount of leaf litter remaining at the end of the study
varied across species (N. sylvatica = 7.97 ± 0.17 g, A. stricta = 11.84 ± 0.06 g, and
P. palustris = 11.37 ± 0.07 g (mean ± SE)) and was greater in fire-maintained habitat
(leaf type: F2,45 = 437.2, P < 0.001; habitat type: F1,45 = 4.6, P = 0.037). We identified
an average of 260 ± 33.5 (SE) invertebrates per leaf pack (range: 19–1,283), and the
most abundant taxonomic groups were Cladocera, Isopoda, Acariformes, and Diptera.
Invertebrate relative abundance varied significantly among litter species (approximately
39.9 ± 9.4 invertebrates per gram of leaf litter remaining in N. sylvatica leaf packs,
27.2± 5.3 invertebrates per gram of A. stricta, and 14.6± 3.1 invertebrates per gram of
P. palustris (mean ± SE)) but not habitat type. However, both habitat (pseudo-F1,49 =
4.30, P = 0.003) and leaf litter type (pseudo-F2,49 = 3.62, P = 0.001) had a significant
effect on invertebrate community composition. Finally, this work was part of ongoing
projects focusing on the conservation of the critically imperiled Reticulated Flatwoods
Salamander (Ambystoma bishopi), which breeds exclusively in pine flatwoods wetlands,
and we examined the results as they relate to potential prey items for larval flatwoods
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salamanders. Overall, our results suggest that the vegetation changes associated with a
lack of growing-season fires can impact both invertebrate communities and leaf litter
breakdown.

Subjects Conservation Biology, Ecology, Zoology, Freshwater Biology
Keywords Ambystoma bishopi, Ephemeral wetlands, Reticulated Flatwoods Salamander, Leaf
packs, Longleaf Pine, Wiregrass

INTRODUCTION
Natural disturbances, events that disrupt an ecosystem or change the physical environment,
occur across a variety of both spatial and temporal scales and have historically played a
critical role in shaping many ecosystems (White & Pickett, 1985; White & Jentsch, 2001;
Turner 2010). However, anthropogenic activity has caused significant changes to individual
disturbance events and to overall disturbance regimes (Johnstone et al., 2016; Newman,
2019). These changes are important because disturbances can promote biodiversity and
habitat heterogeneity that would otherwise be lost (Carlson et al., 1993; Townsend &
Scarsbrook, 1997; Conway, Nadeau & Piest, 2010). Thus, restoring ecologically important
disturbances are often the target of active management programs that attempt to emulate
natural processes that have been disrupted by anthropogenic activity (Long, 2009).

Wildfire is a widespread natural disturbance, impacting a wide variety of terrestrial and
aquatic ecosystems (Morgan et al., 2001; Bisson et al., 2003; Mouillot & Field, 2005; Butz,
2009). In the southeastern United States, the Longleaf Pine (Pinus palustris) ecosystem
historically covered an area of approximately 35 million hectares (Frost, 1993). Longleaf
Pine forests are a classic example of a fire-adapted ecosystem, experiencing frequent low-
intensity fires (Henderson, 2006; Stambaugh, Guyette & Marshall, 2011). These regular fires
historically maintained vegetation structure (e.g., a pine overstory with thick herbaceous
vegetation on the forest floor) and reduced leaf litter and woody debris build up (Brockway
& Lewis, 1997). In the absence of natural or prescribed fires, Longleaf Pine forests transition
to closed-canopy systems with abundant hardwoods in the mid-story and decreased
diversity and abundance of herbaceous vegetation on the forest floor (Gilliam & Platt,
1999; Glitzenstein, Streng & Wade, 2003).

Ephemeral wetlands are a common landscape feature in Longleaf Pine forests and are
characterized by a regular wetting and drying cycle that is tied to annual variation in
precipitation and evapotranspiration rates. These wetlands are frequently geographically
isolated (i.e., lacking a consistent surface water connection to other water bodies; (Tiner,
2003; Cohen et al., 2016) and commonly support abundant and diverse biotic communities
that are dependent on relatively predictable periods of inundation (e.g., Golladay, Taylor
& Palik, 1997; Kirkman et al., 1999; Erwin et al., 2016). Furthermore, these wetlands are
subject to vegetation shifts similar to other Longleaf Pine ecosystems that can occur
both from fire suppression and from poorly timed (e.g., during the winter months when
wetlands are more likely to have standing water present) prescribed fires (Kirkman, 1995;
Bishop & Haas, 2005). Vegetation shifts change aquatic systems by altering leaf litter inputs,
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reducing the amount of structure available in the aquatic environment, and impacting
other ecosystem processes (Mulhouse et al., 2005; Hinman & Brewer, 2007). Ultimately,
these types of changes can impact the composition and abundance of aquatic communities
(Hornung & Foote, 2006; Chandler et al., 2015).

Aquatic invertebrate communities are a critical component of ephemeral wetlands
(Batzer & Wissinger, 1996; McInerney et al., 2017), functioning across multiple trophic
levels by acting as both a prey base for other species and as predators in generally
fishless environments (Murkin & Wrubleski, 1988; Batzer & Wissinger, 1996). Ephemeral
wetlands can also support higher aquatic invertebrate biomass and differing community
composition when compared to permanent wetlands with fish populations (Zimmer et
al., 2001; McInerney et al., 2017). One of the important roles that invertebrates play in
wetland ecosystems is contributing to leaf litter breakdown by consuming and physically
breaking down leaf litter that falls into the wetland basin (Fazi & Rossi, 2000; Gingerich,
Panaccione & Anderson, 2015). Breakdown rates can vary widely across different leaf litter
species (Leroy & Marks, 2006), and litter inputs into the wetland can broadly impact both
biotic and abiotic processes (Stoler & Relyea, 2016). The structure, nutrient content, and
availability of individual leaf litter species can all impact the invertebrate community,
with effects potentially transitioning to higher trophic levels (Batzer & Palik, 2007; Stoler &
Relyea, 2016).

Here, we describe the results of a field experiment testing the effects of habitat type
(i.e., fire maintained vs. fire suppressed) on leaf litter breakdown and invertebrate
communities in pine flatwoods wetlands. We assessed these environmental processes
for three species of leaf litter: Longleaf Pine (P. palustris), Pineland Threeawn Grass,
commonly referred to as wiregrass, (Aristida stricta), and Black Gum (Nyssa sylvatica).
Pinus palustris and A. stricta are commonly found in fire-maintained wetlands, while
N. sylvatica is mostly restricted to wetlands with reduced fire frequency or deeper
portions of wetlands that are less likely to experience regular fires (Chandler, 2015).
We predicted that fire-maintained sections of wetlands would support more abundant
invertebrate communities, leading to higher breakdown rates. Furthermore, we predicted
that P. palustris and A. stricta would breakdown more slowly than N. sylvatica because
of lower surface area for invertebrate colonization. Finally, we assessed invertebrate
communities overall and specifically focused on taxa that are important food sources for
larval Reticulated Flatwoods Salamanders (Ambystoma bishopi), a US Federally endangered
species (U. S. Fish and Wildlife Service, 2009). Larval flatwoods salamanders feed primarily
on aquatic invertebrates (e.g., Isopoda, Amphipoda, and Copepoda) and, while little is
known about foraging behavior, opportunistic observations suggest that larvae forage in
and around herbaceous vegetation as well as along benthic substrates (Palis, 1996; Sekerak,
Tanner & Palis, 1996; Whiles et al., 2004).

MATERIALS & METHODS
Study sites
All field work was conducted on Eglin Air Force Base (Eglin) and access to field sites
was approved by the US Fish and Wildlife Service and Jackson Guard (Eglin’s Natural
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Resources Division; Cooperative Agreement Number F14AC00068). Eglin is a large
military installation covering over 188,459 ha of the Florida Panhandle’s Gulf Coastal
Plain. Consisting largely of sandhills and other upland habitat, Eglin also contains some
of the best remaining examples of mesic pine flatwoods. These forests have sandy, poorly
drained soils and ephemeral, geographically isolated wetlands embedded within the
surrounding pine forest. Eglin has an extensive active habitat management program that
routinely applies prescribed fire to pine forests across the installation. However, there
have been persistent challenges associated with burning inside of wetland basins, and most
pine flatwoods wetlands on the installation were either partially or completely degraded
by long-term fire suppression and exclusion. Pine flatwoods wetlands on Eglin support
diverse amphibian communities, including breeding populations of Reticulated Flatwoods
Salamanders (U. S. Fish and Wildlife Service, 2009). During their aquatic larval phase,
flatwoods salamanders depredate a variety of freshwater invertebrate groups (Whiles et al.,
2004), serving as important predators in the wetlands that they inhabit.

Study design
We collected leaf litter from the three species of interest (P. palustris, A. stricta, and
N. sylvatica) in areas surrounding pine flatwoods wetlands on Eglin. We raked P. palustris
needles from underneath large trees, collected N. sylvatica leaves from plants that had been
manually removed from wetlands, and collected A. stricta material from standing dead
stems at the end of the reproductive period. We dried all leaf litter at room temperature
for approximately one week. We then filled coarse mesh bags (8-mm openings), allowing
for invertebrate colonization, with 15.0 g of dried leaf litter from a single species.

We placed a total of 72 leaf packs across three pine flatwoods wetlands on Eglin that were
part of long-term monitoring projects focused on wetland communities and management
(e.g., Gorman, Haas & Himes, 2013). We selected wetlands that had areas of both high
(fire maintained) and low (fire suppressed) herbaceous vegetation cover. We note here
that we chose wetlands based on their vegetation characteristics and not on a specific fire
history. All wetlands are located in actively managed pine flatwoods on Eglin with similar
overall management histories. Based on limited data, wetland basins included in this study
experienced 2–3 prescribed fires from 2012–2015, and we documented fire effects 86%
of the time in fire-maintained sections and 29% of the time in fire-suppressed sections
(based on leaf pack locations). Furthermore, current conditions are the result of multiple
management activities, including both prescribed fire and mechanical removal of woody
vegetation (Gorman, Haas & Himes, 2013).

In each wetland, we deployed leaf packs along 10-m transects in both habitat types,
placing one leaf pack of each plant species at both ends and in the middle of the transect
(9 per transect and 18 per wetland). We separated individual leaf packs by approximately
30 cm perpendicular to the transect. We added leaf packs to wetlands on 10 and 11
November 2015 and secured them to the bottom of the wetland using metal gardening
stakes. Finally, in one wetland, we doubled the number of leaf packs to examine the effects
of time submerged on breakdown and invertebrate communities (logistical constraints
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prevented this effort in all wetlands). We positioned these leaf packs adjacent to the same
transect, placing leaf packs containing the same plant species next to one another.

Wetlands remained flooded for the entire duration of the study, and we removed leaf
packs at two time periods. First, we collected the leaf packs from the additional replicate
in the single wetland on 5 December 2015 (25 days submerged). All other leaf packs
were removed from wetlands on 22 February 2016 (103–104 days submerged). Upon
removal from the wetland, we immediately placed all leaf packs in 95% ethanol to stop
further decomposition of leaf material and to preserve invertebrates until samples could
be processed.

We washed all of the remaining leaf litter to separate out invertebrates using a 125 µm
sieve. All remaining material from the leaf packs was then dried at 55 ◦C for at least 48 h.
We then weighed this material to obtain dry mass (DM). Next, we ground samples into a
fine powder by milling at 25,000 rpm for either 90 s (N. sylvatica) or 180 s (P. palustris and
A. stricta) (IKA R© Tube Mill 100 control). We burned ground samples in a muffle furnace
at 500 ◦C for 1 h to obtain ash-free dry mass (AFDM). For the 25-day replicate, we burned
the entire sample, while we burned approximately 1 g of the 103–104-day samples and
calculated the AFDM from this subsample. We used the AFDM of each sample to calculate
the processing coefficient (k) using the exponential decay model (Petersen & Cummins,
1974; Maloney & Lamberti, 1995; Benfield, Fritz & Tiegs, 2017). We used the estimated
processing coefficients to calculate number of days it would take for 99% of the sample to
breakdown. Finally, we identified all invertebrates to broad taxonomic groups that were
easily identifiable (order in most cases).

In addition to leaf packs, we also quantified herbaceous vegetation cover and canopy
cover as part of other ongoing projects. Herbaceous vegetation and canopy cover were
measured at points along each wetland’s longest axis, partially overlapping the locations
with leaf packs (Gorman, Haas & Himes, 2013). We estimated the percent herbaceous
vegetation cover using a 0.5 m × 0.2 m Daubenmire frame and the Daubenmire cover
class scale (Daubenmire, 1959). We measured canopy cover by averaging the canopy cover
recorded in each of the four cardinal directions with a convex spherical densiometer. All
vegetation data were collected during the fall of 2014, and for this assessment, we included
the two sampling locations that were closest to the leaf packs.

Statistical analyses
Prior to all analyses, we excluded all results from one 104-day leaf pack (A. stricta, fire-
suppressed habitat) and the invertebrate results from one 25-day leaf pack (P. palustris,
fire-maintained habitat) because these data were not consistent with the other results.
Furthermore, we only included data from leaf packs submerged for 103–104 days in
the following analyses. We tested for an effect of leaf litter species and habitat type (fire
suppressed or maintained) on leaf litter breakdown and invertebrate abundance using a
series of linear mixed effects models (LMM). First, we fit a mixed effects model to test
for the effects of litter species and habitat type on the amount of leaf litter remaining
at the end of the experiment. We treated the wetland as a random effect to account for
non-independence in the leaf packs collected from the same wetland. Leaf litter species,
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habitat type, and their interaction were included in the model as fixed effects. Second, we fit
two similarmodels using the total invertebrate abundance and the abundance of groups that
make up the primary components of the larval flatwoods salamander diet. We defined these
groups as Isopoda, Amphipoda, and Copepoda, whichmake up approximately 65% of prey
items found in larval flatwoods salamander stomachs (Whiles et al., 2004). Both measures
of invertebrate abundance were standardized by the mass remaining in their respective
leaf pack prior to analyses. Invertebrate models also contained leaf species, habitat type,
and their interaction as fixed effects and wetland as a random effect. We verified that the
assumptions of linearity, normality, and homogeneity of the residuals were met in all three
models using diagnostic plots. Finally, we performed pairwise comparisons using Tukey’s
HSD when tests on main effects indicated a significant difference among leaf litter species.

To further examine the composition of invertebrate communities, we visualized
the community data using a non-metric multidimensional scaling (NMDS) plot. We
graphed community data using Bray–Curtis dissimilarities and verified that the Stress
statistic for the NMDS was less than 0.2 (Clarke, 1993). We tested for differences in
community composition among leaf litter species and habitat type using a distance-based
permutational multi-variate analysis of variance (PERMANOVA; Anderson & Walsh,
2013). We conducted the PERMANOVA using Bray–Curtis dissimilarity indices and 999
permutations. The individual wetland was treated as a block in this analysis, and we
tested for significance using the marginal effects. We also tested for differences in group
dispersions (variance) following Anderson (2006). All statistical analyses were performed in
R (R Core Team, 2020), and NMDS, PERMANOVA, and tests for dispersion were available
in the vegan package (Oksanen et al., 2019). Mixed models were fit using the lme4 package
(Bates, Maechler & Walker, 2015), and pairwise comparisons were performed using the
emmeans package (Lenth, 2021).

RESULTS
Across all three leaf species and both habitat types, the rate of mass loss was highest
during the first 25 days after being submerged (Fig. 1). After 103–104 days submerged,
N. sylvatica had the fastest mean k rate (−0.0062 ± 0.0002 (SE)) followed by P. palustris
(−0.0027 ± 0.00006 (SE)) and A. stricta (−0.0023 ± 0.00005 (SE)). There was no
interaction effect between habitat and leaf type on the amount of leaf litter remaining
after 103–104 days in the wetland (LMM: F2,45= 2.0, P = 0.15). However, both habitat
(LMM: F1,45= 4.6, P = 0.037) and leaf type (LMM: F2,45= 437.2, P < 0.001) significantly
impacted leaf litter breakdown after 104 days (Fig. 1; Table 1, Table 2). Nyssa sylvatica
(weight remaining = 7.97 ± 0.17 g (mean ± SE)) leaves broke down faster than both P.
palustris (weight remaining = 11.37 ± 0.07 g (mean ± SE)) (P < 0.0001) and A. stricta
(weight remaining: = 11.84 ± 0.06 g (mean ± SE)) (P < 0.0001). Breakdown was slower,
on average, in fire-suppressed sections of wetlands. However, the effect was small compared
to the differences between leaf types and was not consistent across wetlands (Table 1).

We identified a total of 2,677 invertebrates in leaf packs (mean: 158 per pack, range:
14–379, SE: 32.2) collected after 25 days submerged and 14,062 invertebrates in leaf
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Figure 1 Mass loss for Longleaf Pine (Pinus palustris), Pineland Threeawn Grass (Aristida stricta), and
Black Gum (Nyssa sylvatica) measured in three pine flatwoods wetlands on Eglin Air Force Base. (A)
Mass loss from fire-maintained habitats. (B) Mass loss from fire-suppressed habitats. Solid lines represent
the non-linear least squares fit for each group, approximating the rate of mass loss over time using 25-day
leaf packs collected in a single wetland.

Full-size DOI: 10.7717/peerj.12534/fig-1

packs (mean: 260 per pack, range: 19–1,283, SE: 33.5) collected after 103–104 days
submerged. Themost abundant invertebrate groups were Cladocera, Isopoda, Acariformes,
and Diptera, accounting for approximately 93% of all invertebrates identified across all
samples (Table 3). For leaf packs submerged 103–104 days, there was no interaction effect
between litter species and habitat type on the total invertebrate relative abundance (LMM:
F2,45= 0.52, P = 0.60) or on the relative abundance of preferred flatwoods salamander prey
items (LMM: F2,45= 0.12, P = 0.88). Leaf type but not habitat type affected both overall
invertebrate relative abundance (LMM: Leaf: F2,45= 3.98, P = 0.03; Habitat: F1,45= 0.70,
P = 0.41) and the relative abundance of flatwoods salamander prey items (LMM: Leaf:
F2,45 = 13.4, P = 0.00003; Habitat: F1,45 = 0.40, P = 0.53; Table 2). Nyssa sylvatica leaf
packs (39.9 ± 9.4 (mean ± SE) invertebrates per gram of leaf litter remaining) had higher
total invertebrate relative abundance than P. palustris (14.6± 3.1 (mean± SE) invertebrates
per gram of leaf litter remaining; Tukey’s HSD: t45 = 2.8, P = 0.007) but not A. stricta
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Table 1 Leaf litter breakdownmetrics recorded in pine flatwoods wetlands on Eglin Air Force Base,
Florida. Breakdown metrics for three plant species (Longleaf Pine (Pinus palustris), Pineland Threeawn
Grass (Aristida stricta), and Black Gum (Nyssa sylvatica)) after 103–104 days submerged. Leaf packs
were placed in sections of wetlands with vegetation characteristics indicative of fire-maintained and
fire-suppressed habitat. Values represent means± standard deviations from three leaf packs of each
species. The processing coefficient (k) was estimated using an exponential decay model.

%Litter
remaining

k Days to 99%
decomposition

Pond 53
Fire maintained

A. stricta 0.78± 0.01 −0.0024± 0.0001 1898± 91
P. palustris 0.77± 0.004 −0.0025± 0.0001 1857± 37
N. sylvatica 0.50± 0.01 −0.0067± 0.0002 688± 24

Fire suppressed
A. stricta 0.81± 0.02 −0.0020± 0.0002 2305± 261
P. palustris 0.78± 0.01 −0.0024± 0.0001 1906± 87
N. sylvatica 0.63± 0.01 −0.0045± 0.0001 1020± 24

Pond 16
Fire maintained

A. stricta 0.77± 0.02 −0.0025± 0.0003 1843± 187
P. palustris 0.76± 0.01 −0.0027± 0.0001 1728± 88
N. sylvatica 0.52± 0.04 −0.0064± 0.0007 721± 72

Fire suppressed
A. stricta 0.80± 0.01 −0.0021± 0.0001 2174± 132
P. palustris 0.76± 0.01 −0.0027± 0.0002 1713± 97
N. sylvatica 0.51± 0.03 −0.0065± 0.0006 714± 65

Pond 12
Fire maintained

A. stricta 0.79± 0.01 −0.0023± 0.0001 2017± 75
P. palustris 0.75± 0.01 −0.0028± 0.0001 1645± 71
N. sylvatica 0.53± 0.02 −0.0062± 0.0003 749± 34

Fire suppressed
A. stricta 0.79± 0.01 −0.0023± 0.0001 2022± 79
P. palustris 0.73± 0.02 −0.0030± 0.0003 1535± 159
N. sylvatica 0.50± 0.03 −0.0067± 0.0005 692± 51

(27.2 ± 5.3 (mean ± SE) invertebrates per gram of leaf litter remaining; Tukey’s HSD: t45
= 1.4, P = 0.17). Similarly, N. sylvatica leaf packs (17.4 ± 2.8 (mean ± SE) invertebrates
per gram of leaf litter remaining) had higher flatwoods salamander prey relative abundance
than P. palustris (4.3± 0.9 (mean± SE) invertebrates per gram of leaf litter remaining) and
A. stricta (8.8 ± 1.3 (mean ± SE) invertebrates per gram of leaf litter remaining) (Tukey’s
HSD: t45 = 5.1, P < 0.0001 and t45 = 3.3, P = 0.002, respectively) (Fig. 2).

The NMDS ordination showed only marginal separation among habitat types and
larger separation among leaf types (Stress = 0.13; Fig. 3). The PERMANOVA indicated
that both habitat (PERMANOVA: pseudo-F1,49 = 4.30, P = 0.003) and leaf litter type
(PERMANOVA: pseudo-F2,49= 3.62, P = 0.001) were significantly affecting invertebrate

Chandler et al. (2021), PeerJ, DOI 10.7717/peerj.12534 8/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.12534


Table 2 Parameter estimates for three linear mixed effects models. Linear mixed effects models esti-
mated the effects of habitat type (fire suppressed or fire maintained) and leaf litter species (Longleaf Pine
(Pinus palustris), Pineland Threeawn Grass (Aristida stricta), and Black Gum (Nyssa sylvatica)) on leaf lit-
ter breakdown, invertebrate relative abundance, and the relative abundance of invertebrate groups that are
important prey items for larval flatwoods salamanders. Leaf litter breakdown and invertebrate communi-
ties were measured using leaf packs in three wetlands on Eglin Air Force Base, Florida.

Model Habitat Leaf species Estimate Standard error

Leaf litter breakdown Fire suppressed N. sylvatica 8.21 0.18
Fire Suppressed P. palustris 3.13 0.20
Fire Suppressed A. stricta 3.83 0.21
Fire maintained – −0.48 0.20

Invertebrate relative abundance Fire suppressed N. sylvatica 31.53 10.17
Fire suppressed P. palustris −18.12 12.70
Fire suppressed A. stricta −4.14 13.10
Fire maintained – 16.73 12.70

Relative larval flatwoods Fire suppressed N. sylvatica 18.78 3.00
salamander prey abundance Fire suppressed P. palustris −14.16 3.63

Fire suppressed A. stricta −9.80 3.74
Fire maintained – −2.82 3.63

Table 3 Invertebrate abundance in leaf packs that were placed in pine flatwoods wetlands on Eglin Air Force Base, Florida. Invertebrate
groups collected in 54 leaf litter packs submerged for 103–104 days in ephemeral wetlands. Leaf packs containing either Longleaf Pine (Pinus
palustris), Pineland Threeawn Grass (Aristida stricta), or Black Gum (Nyssa sylvatica) were placed in either fire-suppressed or fire-maintained
habitat in three wetlands. Values represent the mean (±standard deviation) abundance of each invertebrate group averaged across nine replicates.
Taxonomic groups marked with an asterisk were dominated by a single family but were grouped to higher taxonomic levels for all analyses (Isopoda
- Asellidae, Amphipoda - Gammaridae, Diptera - Chironomidae, Hemiptera - Corixidae, Zygoptera - Coenagrionidae, Acariformes - Hydrachnidae,
Gastropoda - Planorbidae).

Fire suppressed Fire maintained

Gum Pine Wiregrass Gum Pine Wiregrass

Isopoda* 129.3± 113.3 41.4± 52.1 80.4± 70.6 105.0± 40.5 42.6± 36.1 91.7± 57.7
Amphipoda* 8.6± 4.0 9.4± 8.6 13.8± 26.6 12.6± 23.3 2.0± 2.7 5.4± 5.5
Anostraca 0.1± 0.3 — — — — —
Cladocera 23.0± 23.7 9.6± 7.3 62.1± 81.2 189.8± 329.1 64.0± 93.9 127.8± 182.0
Copepoda 7.7± 5.7 1.3± 1.4 5.7± 4.3 4.0± 4.2 1.0± 1.3 1.2± 1.7
Decapoda — — — 0.2± 0.4 — —
Diptera* 38.2± 13.7 24.7± 20.8 22.6± 17.9 12.3± 5.3 9.7± 11.2 12.1± 14.0
Hemiptera* — 0.2± 0.4 — — 0.1± 0.3 0.2± 0.4
Coleoptera 0.2± 0.4 0.1± 0.3 — 0.1± 0.3 0.1± 0.3 1.6± 2.3
Odonata — 0.1± 0.3 — — — —
Anisoptera — — — 0.6± 1.3 0.2± 0.7 0.1± 0.3
Zygoptera* — — — 1.0± 1.4 1.6± 2.4 2.7± 3.8
Acariformes* 38.3± 69.7 63.2± 96.7 122.8± 170.0 21.4± 25.2 56.8± 64.4 69.2± 67.9
Collembola 0.3± 0.7 0.0± 0.0 0.3± 1.0 0.2± 0.4 0.1± 0.3 —
Gastropoda* 1.2± 2.6 0.7± 1.3 0.1± 0.3 14.4± 20.3 2.8± 3.3 2.3± 4.2
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Figure 2 Invertebrate relative abundance measured in leaf packs in three pine flatwoods wetlands on
Eglin Air Force Base, Florida. (A) Total relative invertebrate abundance. (B) Relative abundance of taxa
(Isopoda, Amphipoda, and Copepoda) important to larval flatwoods salamander diets. Leaf packs rep-
resented one of six treatments that varied by leaf type and the overall habitat type in that portion of the
wetland (FS-G: fire-suppressed, Black Gum (Nyssa sylvatica); FS-P: fire-suppressed, Longleaf Pine (Pinus
palustris); FS-W: fire-suppressed, Pineland Threeawn Grass, commonly referred to as wiregrass, (Aristida
stricta); FM-G: fire-maintained, N. sylvatica; FM-P: fire-maintained, P. palustris; FM-W: fire-maintained,
A. stricta). Relative abundance is calculated as the number of invertebrates divided by the dry mass of re-
maining leaf litter, and polygons represent the mirrored kernel density plot, showing the smoothed distri-
bution of the data points.

Full-size DOI: 10.7717/peerj.12534/fig-2

community composition. Similar to the above results, invertebrate communities observed
on N. sylvatica had larger differences from those observed on P. palustris and A. stricta
leaf litter, while the community observed on P. palustris almost completely overlapped the
community observed on A. stricta (Fig. 3). The distance-based tests for homogeneity of
community dispersions indicated that variation was similar across groups (Leaf: pseudo-
F2,50= 0.1.6, P = 0.23; Habitat: pseudo-F1,51= 0.98, P = 0.34).

Environmental characteristics varied across the fire-maintained and fire-suppressed
sections of wetlands. Herbaceous vegetation cover was nearly absent from fire-suppressed
sections of the three wetlands (2.5 ± 0.0% in each wetland (mean ± SE)), while canopy
cover showed more variation across the three wetlands (33–92%). In the fire-maintained
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Figure 3 Non-metric Multidimensional Scaling (NMDS) plots of invertebrate communities measured
in leaf packs from pine flatwoods wetlands on Eglin Air Force Base, Florida. (A) Leaf packs were placed
in either fire-suppressed or fire-maintained habitat. (B) Leaf packs contained one of three leaf types: Lon-
gleaf Pine (Pinus palustris), Pineland Threeawn Grass (Aristida stricta), or Black Gum (Nyssa sylvatica).

Full-size DOI: 10.7717/peerj.12534/fig-3
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habitat, herbaceous vegetation cover ranged from 63–85%, and canopy cover ranged from
8–16%.

DISCUSSION
The ecology of pine flatwoods wetlands is primarily regulated by wetland hydrology and fire
regime. Both of these factors directly impact floral and faunal communities within wetlands
along with a variety of biotic and abiotic processes that shape wetland ecosystems (Brockway
& Lewis, 1997; Powell et al., 2005; Gorman, Haas & Bishop, 2009; Watts, 2013). Our results
indicate that vegetation community composition within pine flatwoods wetlands impacts
both leaf litter breakdown and aquatic invertebrate communities. Overall, leaf species had
a larger effect on these processes than the broad vegetation characteristics within a wetland.
However, in natural wetlands, leaf species and vegetation characteristics are fundamentally
linked because certain tree and shrub species (i.e., ones that increase canopy cover) are
generally limited to either fire-suppressed sections of wetlands or the deepest areas in
fire-maintained wetlands (Kirkman, 1995). Our results, along with other work, strongly
indicate that altered fire regimes (particularly a loss of growing-season fire) fundamentally
alter wetland ecosystems that are embedded within fire-dependent landscapes (De Szalay
& Resh, 1997; Bixby et al., 2015; Chandler, Haas & Gorman, 2015).

Over the course of our study, a majority of the observed mass loss in all three leaf species
occurred within 25 days of leaf packs being submerged. This rapid initial breakdown
is generally driven by a combination of microbial activity and leaching of secondary
compounds into the aquatic environment (Tietema &Wessel, 1993). After this initial
period, N. sylvatica leaves continued to break down, while both P. palustris and A. stricta
leaf packs lost little mass after the initial period. Over the entire study period, N. sylvatica
leaf packs lost approximately 15–28% more mass than either P. palustris or A. stricta. The
decay rates that we observed forN. sylvatica are similar to those previously reported (Battle
& Golladay, 2001;Battle & Golladay, 2007). Interspecific differences in leaf litter breakdown
can be attributed to the chemical make-up of the leaves (Battle & Golladay, 2007) and the
abundance of invertebrates, particularly shredders, present (Tiegs et al., 2008), although
the effects of invertebrates on leaf breakdown are variable across studies (Battle & Golladay,
2001; Fuell et al., 2013). Our results showed that N. sylvatica leaf packs contained more
invertebrates relative to the amount of material remaining, possibly contributing to their
continued breakdown across the entire 104-day period.

We also observed differences in breakdown rates between habitat types, although
these effects were smaller overall and appeared to vary among the three wetlands. Leaf
litter breakdown in ephemeral wetlands is driven by multiple processes that span both
aquatic and terrestrial environments, such as water temperature, water chemistry, flooding
regime (both depth and hydroperiod), and the above-mentioned biotic factors (Álvarez &
Bécares, 2006; Battle & Golladay, 2007; Gingerich, Panaccione & Anderson, 2015). Canopy
cover was variable across the three wetlands included in this study, potentially influencing
the breakdown rate between habitat types in individual wetlands by impacting water
temperatures (Werner & Glennemeier, 1999; Becker et al., 2012). This interpretation is
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supported by our observation that the largest within-wetland difference in breakdown
rates occurred in the wetland with the highest canopy cover in the fire-suppressed section
(i.e., 92% in Pond 53 compared to just 62% and 33% in Ponds 12 and 16, respectively;
Table 1). All fire suppressed sections of wetlands had almost no herbaceous vegetation but
the variability in canopy cover may reflect differences in the severity of fire suppression
or in the species composition of the mid-story vegetation (Peterson & Reich, 2008). While
none of the wetlands experienced fire during our study, fires can impact water quality
within wetlands, potentially altering breakdown rates (Battle & Golladay, 2003). Overall, it
appears that differences between fire-suppressed and fire-maintained habitats may alter leaf
breakdown rates in some cases, but that these effects are inconsistent and small compared
to differences between leaf litter types.

Observed differences in invertebrate relative abundance were attributed to the different
leaf litter species but not to the overall habitat type. Across both habitat types, N. sylvatica
leaf packs tended to support more abundant invertebrate communities relative to the
amount of leaf litter remaining at the end of the study. Higher invertebrate abundance may
be related to differences in leaf structure for invertebrate colonization (e.g., complex N.
sylvatica leaves vs. cylindrical P. palustris needles and A. stricta stalks). Greater complexity
and surface area can increase the abundance and diversity of invertebrate colonizers
(Beckett, Aartila & Miller, 1992; Jeffries, 1993). Furthermore, leaf litter quality is often
hypothesized to account for differences in invertebrate abundance across leaf species, and
coniferous leaf litter has lower nutrient quality when compared to deciduous leaf litter
(Polyakova & Billor, 2007; Hisabae, Sone & Inoue, 2010). However, coniferous leaf litter
can be an important food resource for invertebrate communities when other litter types
are scarce (Sakai et al., 2016), which may be the case in fire-maintained pine flatwoods
wetlands where deciduous leaf litter is generally absent.

Our results indicated that there was little effect of overall habitat type on invertebrate
relative abundance when sampling using leaf packs. These results starkly contrast some of
our previous surveywork in thesewetlands that used dip net surveys to quantify invertebrate
communities and showed a large difference across fire-maintained and fire-suppressed
habitats (Chandler et al., 2015). These observed differences between studies are likely driven
by the different sampling methodologies employed (i.e., sampling in the water column vs.
colonization in leaf packs). Ultimately, both leaf packs and dip net surveys over relatively
small temporal and spatial scales are only targeting a subset of the aquatic invertebrate
communities in these wetlands. In tandem, the results reported here and from Chandler
et al. (2015) indicate that invertebrate abundance is likely similar throughout wetland
habitat types but that both the composition and spatial arrangement (i.e., in leaf litter vs.
in standing herbaceous vegetation) of invertebrate communities varies across habitats.

Differences in the habitat use of invertebrate communities could have important
implications for flatwoods salamanders because larvae are primarily found in areas
with thick herbaceous vegetation (Sekerak, Tanner & Palis, 1996; Gorman, Haas & Bishop,
2009), and wetlands lacking sufficient area with dense herbaceous vegetation support few
or no flatwoods salamanders (Brooks et al., 2019; Wendt et al., 2021). This association may
be linked to egg deposition sites (Gorman et al., 2014) but could also reduce predation
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pressure, increase foraging opportunities for larvae, or both. Limited observations suggest
that larval flatwoods salamanders forage in and around herbaceous vegetation and along
edges of wetland basins (Palis, 1996; Sekerak, Tanner & Palis, 1996; Whiles et al., 2004),
but larvae can be forced into deeper areas with high canopy cover and little herbaceous
vegetation when wetland drying occurs (Chandler et al., 2017). Of the three most common
invertebrate groups found in larval flatwoods salamander stomachs, Isopoda was by far
the most abundant in leaf packs, regardless of litter species or habitat type, suggesting
that isopods are a plentiful food source in most wetlands. Even though there were no
differences in the overall abundance of the three most abundant invertebrate groups
predated by flatwoods salamander larvae across habitat types, Cladocera abundance was
higher in fire-maintained sections of wetlands, and these small crustaceans are an important
part of the diets of small salamander larvae (Whiles et al., 2004). Overall, during a typical
cycle of wetland flooding, invertebrate abundance appears unlikely to be a limiting factor
for flatwoods salamander larvae but both hydroperiod and the timing of flooding could
significantly impact invertebrate community composition and abundance (Gleason &
Rooney, 2017).

Compared to many lotic systems, the available information on nutrient cycling, leaf
breakdown, and invertebrate communities in ephemeral wetlands embedded within
Longleaf Pine forests is minimal. Our study was limited in scope, and future studies
could expand on this work in several ways. First, to acquire a more comprehensive
understanding of this ecosystem, a complete inventory of aquatic invertebrate species
could be conducted in these wetlands, focusing on identifying invertebrates to lower
taxonomic levels. Higher taxonomic resolution would allow for a better assessment of the
role that specific invertebrates fill in wetland food webs (e.g., Golladay, Taylor & Palik,
1997). Second, the shrub layers that develop in fire-suppressed wetlands are diverse, both
in terms of species composition and leaf characteristics. Other common shrub species
(e.g., members of the genus Ilex) may have different effects on invertebrate communities
than those observed in this study. Furthermore, examining the chemical composition of
common litter types would shed light on the causal relationships between litter quality
and invertebrate abundance. Third, there is a paucity of data on water quality and broader
nutrient cycling in pine flatwoods wetlands (but see Sun et al., 2006). Finally, our study only
examined leaf breakdown and invertebrate communities across a continuously flooded
time period. However, hydrology, especially wetland drying, can have significant effects
on these processes (Battle & Golladay, 2007; Gleason & Rooney, 2017), and vegetation
community composition can in turn impact wetland hydrology (McLaughlin, Kaplan &
Cohen, 2013; Golladay et al., 2021).

CONCLUSIONS
Our study adds to the large body of literature demonstrating the effects of historic and
contemporary fire suppression and exclusion on pine ecosystems in the southeasternUnited
States. Our results indicated that vegetation changes associated with a lack of growing-
season fires can alter both breakdown and invertebrate communities in wetland systems.
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Leaf litter inputs into wetlands form the foundation of aquatic food webs and contribute
to the overall cycling of nutrients within the wetland. These processes are also linked to the
surrounding uplands through annual movements of animals into and out of wetlands in
response to flooding events (Smith et al., 2019). Ultimately, management of pine flatwoods
wetlands should prioritize maintaining or restoring vegetation structure characteristic of a
fire-dependent ecosystem through a combination of mechanical treatments and prescribed
fire applied during the growing season ormost importantly whenwetlands are dry, allowing
fire to carry through wetland basins (Gorman, Haas & Himes, 2013).
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