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ABSTRACT

A comprehensive statistical analysis using a wide range of linear and non-linear
morphological parameters enabled identification of the main stages in the in vitro
dynamics of cell behavior of immune cells of the marine invertebrate Asterias amurensis
(Echinodermata, Asteroidea). Three stages may be distinguished in the cell behav-
ior, which are characterized by the differences in complexity of the cell boundary
microsculpture as well as by the size and asymmetry of the cell and convex hull of
the cell. The first stage (5 min after placing cells onto a substrate) is characterized by
more complex cell morphology and an increase in the process number and spreading
area. The second stage (15 min) is characterized by simplification of cell morphology,
retraction of some processes, and rounding of cells upon continued cell spreading.
At the third stage (60 min), new large processes with rounded contours emerge
due to partial retraction of the flattened cell surface. Each stage is characterized by
statistically significant differences in several linear and nonlinear parameters of the
external morphology for all cell types.

Subjects Cell Biology, Marine Biology
Keywords Morphometry, Asterias Amurensis, Fractal analysis, Classification, Coelomocytes

INTRODUCTION

Asterias amurensis is a seastar native to the seacoasts of China, Korea, Russia and Japan.
This species recently has been introduced to the Tasmania, southern Australia, Alaska,
the Aleutian Islands, parts of Europe, and Maine (Stevens, 2012). Today the species attracts
the close attention of researchers in view of the wide spread, threatening the stability of
biocenoses on the introduced territories (Ross, Johnson ¢ Chad, 2002; Domimnisse ¢ Hough,
2004).

The typical parameters for classification of invertebrate immune cells include features
such as the cytoplasm granularity, nuclear-cytoplasmic relationships, phagocytic activity
and immunological specificity. Most of these features are variable (Fisher, 1986). For
example, granulocytes may have the agranular precursors (Hine, 1999); according to
Martin ¢ Hose Jo (1992), granules can appear upon condition changes or be present
in cells defined as hyalinocytes based on other morphological features. The ability of
marine invertebrate immune cells to phagocytosis can significantly differ among animals
within a single population (Kurtz, 2002); phagocytosis can be observed only in one type
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(Scapigliatia & Mazzinia, 1994) or in all described types of hemocytes (Stoepler et al., 2013).
Invertebrates also may mount a highly variable immune response that is dependent on
which pathogen is involved (Cerenius ¢~ Soderhill, 2013). The antigens characterize distinct
subsets which partially overlap with those defined by morphological description (Kurucz
et al., 2007). In some species only individual cell types became immunologically activated
with obvious morphological changes (Hwang et al., 2015).

Since the conventional parameters often provide an ambiguous picture, the
development of a universal classification scheme requires a combination of more extensive
morphometric, genetic and biochemical methods as well as cytodifferentiation data
of determining the cell specificity. Different sets of parameters will potentially able to
identify different cell types associated with a particular feature of their physiology or
morphology. Which of classification models can serve as a natural universal model for the
classification hemocytes it is still an open question. However, we may suppose that the
external morphology play an important role in the natural classification of invertebrate
immune cells. Features of morphology of the flattened cell shape are reflected in its
cytoskeleton structure, the organization of related cell systems and directly dependent on
the type-specific cell behavior.

The methodology of multiparametric morphological classification of immune cells
of invertebrates, using nonlinear parameters of morphology analysis (Karetin, 2010a;
Karetin, 2010b; Karetin ¢ Pushchin, 2015) and interspecific comparisons of morphotypes
of invertebrate cells based on such a methodology (Karetin, 2016) show their effectiveness
in describing the morphology of hemocytes and coelomocytes of marine invertebrates.
However, a description of static cell morphology, which is usually carried out in a few
minutes after the attachments, makes classification schemes based on morphological
features incomplete. Analysis of the dynamics of cellular behavior shows that we are
dealing with a number of transitional forms, the dynamics of which can also reflect the
species-specific features of cellular behavior, the state of the animal’s immune status or
reaction to the experimental effect. Description of cell dynamics should complement the
static patterns of cellular morphology used for description of the cellular immunity of
invertebrates.

Using the population of Asterias amurensis coelomocytes as example, we have shown in
this work the effectiveness of multiparametric analysis of the dynamics of the spreading of
immune cells, with the identification of a number of characteristic morphotypes of cells

and their transformation in the process of short-term cultivation.

MATERIALS & METHODS

Material preparation

The study was performed on 398 coelomocytes of the 10 Asterias amurensis starfish
(Echinodermata, Asteroidea) (Lutken, 1871). Field experiments were approved by the
Federal Fisheries Administration, Primorsky Territorial Administration, issued for NSCMB
FEB RAS. Approval number to access field sites: 252021030802. Animals were collected
in the Peter the Great Bay (Sea of Japan, Russia). After collecting, the coelomic fluid was

Karetin (2021), PeerJ, DOI 10.7717/peerj.12514 2/22


https://peerj.com
http://dx.doi.org/10.7717/peerj.12514

Peer

sampled from the starfish coelomic cavity using a syringe, placed onto glass coverslips, and
incubated for 2, 5, 15, and 60 min. After incubation the glasses with adhered cells were
fixed with a 4% formaldehyde solution in seawater, stained with hematoxylin and eosin,
dehydrated, and embedded in Canada balsam for a light microscopy study. Photos of the
adhered cells were taken using a 10-megapixel digital camera of a Zeiss Axiovert 200M
Apotome microscope (magnification of the x 100 lens). The images of the cells were drawn
directly from a tablet computer screen onto transparent films that were then scanned. Both
silhouette and contour images of flattened cells were analyzed. A single pixel outline of the
outer cell boundary was used for contour images. Cell images were digitized and converted
to single-bit format.

Parameterization

Parameters were obtained using ImageJ 1.41 image analysis software with a FracLac 2.5
plug-in for a fractal analysis. 1/2half in50/out50 was calculated using CellMaster 1.3.2b,
https:/figshare.com/s/d3c3784e43efal913db4, author: Eduardas Cicinskas.

A total of 39 parameters were examined (see Supplemental 1); of these, 19 parameters
were selected for use, including seven nonlinear and 12 linear parameters.

Linear parameters:

Aspect ratio: major_axis/minor_axis of cell image, (AR);

Roundness: 4*area /(ﬂ*major_axisz), (Round);

1/2half : the ratio of area parts of the cell in the two halves of the bounding circle. The
diameter dividing cells was drawn in the direction that most unevenly divided the image
of cells. Parameter was used as a measure of cell asymmetry;

in50/out50: The ratio of cell area in the outer half of the bounding circle to the area of
the cells in the inner half of bounding circle;

Area;

Circularity: 4 m*area / perimeterz, (Circ);

Feret’s Diameter: the longest distance between any two points along the object boundary,
also known as maximum caliper, (Feret);

Hull’s Perimeter: perimeter of the convex hull drawn around the object. The convex hull
is a boundary enclosing the foreground pixels of an image using straight line segments to
each outermost point, (Hull’sPer);

Diameter of Bounding Circle: the smallest circle around the convex hull, (DiamBoundCirc);

Density: Foreground Pixels/Hull Area;

Perimeter of cell, (Per);

Hull’s Perimeter: perimeter of the convex hull drawn around the object (Hull’sPer);

Nonlinear parameters:

Lacunarity L (F - foreground pixels): lacunarity based on the variation of pixels in each
analyzed box summarized over all grid orientations for an image, only pixels of the image
of the object were taken into account, (LF);

Lacunarity L (E - foreground and empty space): lacunarity calculated on the basis of
differences in the number of pixels in each square of the grid for all orientations of the
squares, with allowance for the background pixels taken as zero, (LE);
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outMean A D: The lacunarity of contour images of cells based box counting dimension
(AD p) or its average AD 5 = (Grids Y G =1(AD p(g))) xGrids™! , where AD pg) is the
lacunarity calculated for each orientation of the grid, Grids are all possible orientations of
the grid;

Mean A: Average lacunarity calculated for different orientations of the square grid;

LCFD Prefactor Lacunarity: a measure of heterogeneity or translational invariance
dependent on where a grid series is placed, Local Connected Fractal Dimension is found
from a type of fractal analysis that uses pixel mass from concentrically placed sampling
units, using the connected set around each pixel to produce a distribution of local variation
in complexity, (LCFD PreLac);

Fractal dimension of contour images of cells calculated as follows: Mean D =
¥ (D)/GRIDS (D =slope (In(Boxes with Foreground Pixels)/In(¢)), where & - box
size or scale, the average D g (box-counting fractal dimension) from multiple box counting
scans, each delivering its own D g, based on a different orientation of grid, (outMeanD);

Mean Local Fractal Dimension: the average dimension calculated on the basis of multiple
sampling an image and defining the local fractal dimension of various parts of contour
images of cells, (outMeanLFD).

Statistical analysis
All analyses were performed using NCSS 2007 and STATISTICA 10 software.

The correlation between parameters was measured using Pearson’s linear correlation
analysis. The scatterplots of pair-wise correlations were also examined to reveal false
correlations due to outliers (Gordon, 1999). In each group of significantly correlated
parameters (R > 0.8 at p < 0.05), only one parameter was selected to assure that the
respective aspect of cell morphology is adequately, but non-redundantly, represented
(Schweitzer ¢ Renehan, 1997).

Cells were classified using a hierarchical cluster analysis; the Ward’s agglomerative
algorithm providing the best results in classifying cell objects on the basis of morphological
parameters was used as a clustering method (Pushchin ¢ Karetin, 2009). It starts with
each object as a separate cluster, merging similar objects into successively larger clusters.
Analysis of variance is used at each cycle to minimize the within-cluster variance.

Tukey-Kramer Multiple-Comparison Test is a single-step multiple comparison
procedure that was used to find means of groups that are significantly different from
each other. It compares all pairs of means, and is uses a studentized range distribution (q).

RESULTS

Visual description of cell morphology

Two minutes after placing cells onto glass (group 1), cells that could spread and form

a large number of small and large processes were observed among a large number of
small cells with minor processes. Cells fixed 5 min after placement (group 2) were the
most heterogeneous group in the experiment. The group included both small cells with
minor processes and cells of a very complex structure, with long processes covered by
secondary microprocesses, branched processes, and processes with expanding ends. After
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15 min of culturing (group 3), cells remained visually very flattened, but acquired in most
cases a more regular nonsegmented shape compared to cells of the previous group. Often,
their shape was nearly round; the cells had a small number of thin and long processes
or a large number of small processes evenly covering the outer contour of the cell. After
60 min of culturing (group 4), the number of small cellular processes was visually even
more reduced; the processes lost sharpness; the microsculpture of cell boundaries became
simpler; rounded cell forms at this stage alternated with cells having a small number of
large processes (Fig. 1). At this stage, a morphotype emerged that had been absent at the
earlier cultivation times: cells with curved, circle segment-like processes. Therefore, starting
with the 15th min of culturing, simplification of the cell morphology and retraction of
small processes occurred along with continued cell spreading. At the 60th min of culturing,
retraction led to the disappearance of certain cell regions: there remained elements of the
region boundary in the form of curved pseudopodia delineating the boundary.

Trends in parameter dynamics
The dynamics of cultured cell parameters demonstrated 5 trends: 1. an increase or drop in
the parameter value during culturing, with a significant difference of each group (ex. Area)
(Fig. 2A); 2. a sharp decrease or increase in the studied parameter value in group 2 (ex.
Circularity) (Fig. 2B); 3. a significant increase in the parameter value in the period from
the 2nd to 5th min and from 15th to 60th min of culturing, with an insignificant difference
between groups 2 and 3 (ex. Feret’s diameter) (Fig. 2C); 4. an increase or decrease in the
parameter value, starting with group 3, with an insignificant difference between groups 1
and 2 (ex. outMeanLCFD) (Fig. 2D); 5. significantly smaller parameter values in groups 1
and 3 and significantly larger parameter values in groups 2 and 4 (ex. in50/out50) (Fig. 2E).
A wide range of parameters had no significant differences among all four groups.
Parameters showing similar trends were usually highly correlated, although there
were exceptions from this rule. Parameters, changes in which during culturing had no
recognizable trends, were not of great interest for this study because they did not reflect the
dynamics of morphological transformations of cultured cells; although, different cell types
within a single time group showed significant differences in some parameters (AR, Round),
and some of these parameters (e.g., 1/2half) became key parameters for classifying cells
within the same time group in other species of marine invertebrates (Karetin ¢ Pushchin,
2015). In general, according to the Tukey-Kramer multiple comparison test, cells of all 4
time groups had significant differences in a number of studied parameters (Table 1).

Peculiarities of parameter selection

A parameter selection methodology used in our previous studies (Pushchin ¢ Karetin, 2014;
Karetin & Pushchin, 2015) involved the initial search for highly correlated characteristics
and selection of those that had a higher multimodality index value. In the present study,
the methodology needed modifying because characteristics highly correlated in the same
time group were not correlated in another, and many parameters with similar trends

in parameter value changes had almost identical multimodality indices that differed by
no more than 0.01. Parameters with a lower multimodality index were excluded from the
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Figure 1 Silhouette images of cells at different stages of cultivation: (A) 2 min (group 1); (B) 5 min
(group 2); (C) 15 min (group 3); (D) 60 min (group 4).

Full-size k4] DOI: 10.7717/peerj.12514/fig-1

parameters highly correlated in all 4 time groups as well as from the parameters with similar
trends. In the case of similar multimodality indices, we chose a parameter providing a better
cluster structure of identified cell types; highly correlated parameters with a similar trend
in the parameter dynamics as well as parameters without significant differences in all time
groups were excluded from the cluster analysis and description of intergroup differences.
The lack of correlation for similar trends and vice versa as well as the difference in
correlation in different time groups generally indicate that this parameter in different cell

groups describes different features of cell morphology.
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Figure 2 Different trends in changes in parameter values during in vitro culturing of coelomocytes
from A. amurensis. (A) Area; (B) circularity; (C) Feret’s diameter; (D) mean local connected fractal di-
mension of contour images of cells; (E) in50/out50.

Full-size Gl DOI: 10.7717/peer;j.12514/fig-2

Characteristics of cell morphology described by the parameters used
A complex of linear and quasi-fractal parameters was used to parametrize the cells. Linear
parameters include morphometric parameters based on Euclidean geometry, such as the
area, the perimeter of the cell, a number of parameters of the bounding circle and the
convex hull. The area reflects the size of the cell and, to a greater extent, the spreading area,
which can be many times larger than the original size of the cell, the perimeter depends
on both the size of the cell and the number of processes, the bounding circle and the

convex hull (a boundary enclosing the foreground pixels of an image using straight line
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Table 1 Tukey-Kramer multiple comparison test of differences in five parameters in four time groups.

Group Mean Different from groups
Area
2 min 45644.3 5 (P =0,02401), 15 (P = 0,00000), 60 (P = 0,00000)
5 min 63175.76 2 (P =0,02401), 15 (P = 0,00000), 60 (P = 0,00000)
15 min 88625.09 2 (P =0,00000), 5 (P = 0,00000), 60 (P = 0,00000)
60min  151098.52 (P =0,00000), 5 (P = 0,00000), 15 (P = 0,00000)
Circularity
5 min 0.1707483 15 (P =0,00000), 2 (P = 0,00000), 60 (P =0,00000)
15min  0.2614072 5 (P = 0,00000), 60 (P = 0,00873)
2 min 0.290832 5 (P =0,00000)
60min  0.2964816 5 (P = 0,00000), 15 (P = 0,00873)
Feret’s diameter
2 min 1.078258 5 (P =0,0000), 15 (P = 0,0000), 60 (P = 0,0000)
5 min 1.520865 2 (P =0,0000), 60 (P = 0,0000)
15min  1.584021 2 (P = 0,0000), 60 (P = 0,0000)
60 min 2.144441 2 (P =0,0000), 5 (P =0,0000), 15 (P =0,0000)
in50_out50
15 min 1.328015 60 (P =0,00003), 5 (P = 0,00000)
2 min 1.486176 60 (P =0,04257), 5 (P = 0,00000)
60min  1.797293 15 (P = 0,00003), 2 (P = 0,04257), 5 (P = 0,00082)
5 min 2.222238 15 (P =0,00000), 2 (P = 0,00000), 60 (P = 0,00082)
LE
60 min 1.709738 15 (P =0,00000), 5 (P = 0,00000), 2 (P = 0,00000)
15min  2.075289 60 (P = 0,00000), 5 (P = 0,00025), 2 (P = 0,00000)
5 min 2.296859 60 (P =0,00000), 15 (P =0,00025), 2 (P =0,01327)
2 min 2.473771 60 (P = 0,00000), 15 (P = 0,00000), 5 (P = 0,01327)

segments to each outermost point, Fig. 3) reflect the area of cell stratification defined by
the longest processes. Also, the linear parameters include density, which reflects the ratio
of the number of pixels in the image to the total number of pixels covered by the circle
bounding the cell. The value of density depends on the ratio of the size of the cell body to
the area of stratification of its processes.

The parameters Roundness and Circularity characterize various aspects of the cell shape,
Roundness characterizes the deviation of the shape of the object from the circle towards
the ellipse; Circularity, determined by the ratio of the area to the perimeter, is equal to one
for the circle and decreases as the perimeter of the cell border increases, that is, it depends
not only on the overall shape, as in the case of Roundness, but also on the number of cell
processes that increase the perimeter of the cell.

The parameter 1/2half is the ratio of area parts of the cell that turned out to be in the
two halves of the bounding circle most unevenly divided the image (in Fig. 4: 1/2half =
A/B). The largest values of this parameter will belong to the cells most asymmetrically
positioned inside the bounding circle. The in50/out50 parameter describes the ratio of the
cell area in the inner and outer parts of the bounding circle (in Fig. 4: in50/out50 = C/D),
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Figure 3 Convex hull of cell.
Full-size &l DOI: 10.7717/peer;j.12514/fig-3

the parameter value is determined both by the asymmetry of the cell location inside the
bounding circle, and by the ratio of the cell body size and the area of stratification of the
cell processes.

Nonlinear parameters include a number of fractal dimensions and lacunarities, the
value of which depends on the complexity of the object or the heterogeneity of its space
filling. Fractal analysis is based on the consideration of an object as a quasi-fractal, which
has a fractional dimension, the values that describe them are the same as objects of
Euclidean geometry describes by measures of length, area, or volume. The basic algorithm
for calculating the fractal dimension used here is the box-counting method, for counting
which an object is enclosed in a network of squares of a certain size (Fig. 5). The number
of squares that the structure fell into is calculated, and the ratio of the decimal logarithm of
the number of squares that covered the structure to the decimal logarithm of the length of
the side of the square is determined. In the next step, the structure is covered by a network
of smaller squares. Again, we calculate the ratio of the logarithms of the number of squares
and the length of their sides. We do this procedure several times. The resulting dimension
value is calculated using the formula:
D= lim InN () (1)

(L—0) InL
where N (L) is the number of squares with side L required to cover the fractal structure.
Different types of fractal dimensions have a similar basic algorithm and can differ in such
aspects as the shape of the elements in which the object is enclosed (it may not be a square
grid, but a set of circles of increasing diameter, mass—radius dimension), the location of the
grid elements: fixed squares or a rotating grid (MeanD), the calculation can be performed
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Figure 4 1/2half and in50/0ut50. calculation. 1/2half = A/B , where A, B —two segments of the cell lying
in different halves of the bounding circle . in50/out50 = C/D, where C and D are the parts of the cell lo-
cated in the inner and outer part of the.

Full-size G DOI: 10.7717/peerj.12514/fig-4

Figure 5 Box-counting fractal dimension calculation. See the description of the method in the text.
Full-size G DOLI: 10.7717/peerj.12514/fig-5

for the entire image as a whole (MeanD), or the local dimension in the vicinity of each
pixel (Local fractal dimension) is calculated and averaged. To calculate the dimension of
only the upper and lower scale of the image, only a large (BiggestD) or small (SmallestD)
grid is used, respectively. The fractal dimension in our work was measured in contour and
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silhouette images. Silhouette images represent a planar one-bit image of a flattened cell, in
the contour image only the one-pixel contour of the silhouette image of the cell remains.
The fractal dimension of silhouette and contour images is significantly different, since the
value of the fractal dimension of the silhouette image increases by the space filled with
image pixels inside the cell, while the fractal dimension of contour images consists only of
the fractalization of the cell boundaries.

Twofold increase the complexity of the cell shape leads to an increase in its fractal
dimension by about 0.1 (Jelinek and Fernandez, 1998). Different types of fractal dimensions
describe different aspects of the complex shape of a flattened cell. These differences are
difficult to formalize in traditional terms of Euclidean geometry or classical descriptions of
cell morphology, but they reliably differentiate different cell types.

Cell types

Because the visual analysis revealed that cells of each time groups were a morphologically
heterogeneous population, cells of all groups were divided into morphotypes using a
hierarchical cluster analysis. Five weakly correlated parameters with different trends in
the parameter dynamics during culturing were selected for the cluster analysis: Area,
Circ, Feret, in50/out50, and LE. The parameters were used to generate a cluster model
for each time group, which clearly revealed three clusters corresponding to three cell
morphotypes (Fig. 6). Four clusters might be distinguished in a cell sample from group
3; however, 3 clusters were also chosen in this group to simplify intergroup comparisons.
This is consistent with the logic of hierarchical cluster analysis when closely related types
can always be combined into a common parent type; cells of the parent type combine
characteristics of subsidiary cell types and, to the same or greater extent, differ from cells
of other clusters, like cells of subsidiary clusters.

Cells of obtained types differed in a number of the analyzed parameters. In this case,
similarity of trends in parameter changes among types in each time group suggested that
the cluster analysis identified a similar cell types in each group by transposing types 1
and 2 in the second group, which did not change the general picture because a cluster
sequence may be arbitrary due to free rotation of cluster axes, not affecting results of the
cluster analysis. In general, the identified cell types are characterized by different sizes and
complexity of cell boundaries. Here, we may distinguish small cells with simple boundary
microsculpture: 2-1, 5-2, 15-1, and 60-1 (type I); medium-sized cells: 2-3, 5-3, 15-3, and
60-3 (type II); large cells or cells with very complex dendritic microsculpture of boundaries:
2-2, 5-1, 15-2, and 60-2 (type III) (Fig. 7).

The parameter Area most clearly distinguished both time groups and individual cell types
within time groups (Fig. 8A). It is seen that cell types include the smallest (type I), medium
(type II), and large (type III) cells. In this case, the area of cells of similar types in different
time groups increases within the 2 to 60 min culturing interval. Because we consider a
single population of cells, this indicates that the spreading process that is accompanied
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by an increase in the area of the two-dimensional cell projection occurs in all cell types
throughout the cultivation period.

When considering trends of individual cell types, parameters that are correlated with
Feret’s Diameter, characterized by trend 3, and have an insignificant difference between
time groups 2 and 3 demonstrate a continuous increase in the parameter value, with
significant differences among all cell types within each group; however, group 3 has a
lower upper boundary for feature manifestation compared to that of group 2, with the
lower boundary being higher, which makes group 3 comparable to group 2 in the mean
feature value (Fig. 8B). The Feret’s diameter is a dimensional characteristic correlated with
parameters of the convex hull and bound circle, such as Hull’sPer and DiamBoundCirc.
Both the total cell area and processes size affect values of all these parameters. An increase
in the total cell area, which is well detectable in small type I cells with minor processes, is
compensated by a decrease in complexity of cell boundaries in type II and III cells of group
3, which creates the effect of absent significant differences in these parameters between
groups 2 and 3.

A group of parameters demonstrating a sharp drop or increase in a studied parameter
value in group 2 (trend 2), which includes parameters Circularity, Density, and LF,

demonstrates a small increase or decrease in parameter values upon transition from the
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Figure 7 Silhouette images of type I-III cells from all time groups.
Full-size Gal DOI: 10.7717/peerj.12514/fig-7

Ist to IIIrd cell type. In this case, confidence intervals of values in most cases overlap both
among cell types of the same group and among different time groups. The exceptions are cell
types 5-3 and 5-1 that sharply distinguish group 2 from other groups. Decreased circularity
and cell image density and increased lacunarity always non-specifically characterize an
increase in structural complexity of the cell, cell protrusivity, complexity of boundaries,
elongation, and asymmetry of filling of the surrounding space by the cell. The same
pattern is observed for parameters associated with trend 5 (Perimeter, in50/out50): upon
similar parameter dynamics for most cell types, types 5-1 and 6-2 are characterized by a
sharp increase in values of the parameters Perimeter and in50/out50, which also indicates
increased protrusivity in these cell types (Fig. 8C).

In general, it is noteworthy that the cell type 5-1 significantly surpasses the other cell
types in most parameters that directly (several nonlinear parameters: outMeanLD, LF,
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MeanL, LCFD PreLac) or indirectly (several linear parameters: Circ, Density, in50/out50,
Per) characterize spatial complexity of the cell. It is the type that includes cells reaching the
highest level of spatial complexity at the 5th minute.

Parameters based on measurements of the convex hull and bound circle (Hull’sPer,
DiamBoundCirc) (Fig. 8D) combine characteristics of cell size and the degree of protrusivity
and are reducible to characteristics of filling of the surrounding space by the cell. Two cell
types are clearly distinguished by high values of these parameters: 5-1—cells with the highest
degree of protrusivity and 60-2—cells with the largest area and protrusivity that reduces to
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the 15th min of culturing and re-emerges at the 60th min, which is associated with partial
retraction of the flattened cell body leaving large curved processes, as described above.

In addition, it can be seen that cell types 15-2 and 60-2 are significantly different in
parameters Hull’s Circularity and Roundness (Fig. 8E); the other cell types do not have
significant differences in these parameters. The Roundness describes similarity of the overall
cell shape to the circle (4*area/(7 *major_axis of fitted ellipsez), i.e., the highest Roundness
value is observed for cells with an elongated shape typical of crawling cells or cells with long
asymmetrically arranged processes. Large errors of the parameter’s mean and the absence
of significant differences among most of the cell types indicate that a chaotic variety of
common cellular shapes does not reflect any structural and functional patterns occurring
in cell culture by the 15th minute of culturing. Only a significant increase in this parameter
in types 15-2 and 60-2 at the 15th and 60th minutes of culturing means rounding of cells,
which indicates the disappearance of large processes and a reduction in cell motility that
leads to the development of radial symmetry. Also, rounding of cells is reflected in an
increase in the Hull’s Circularity parameter value. The Circularity parameter that is based
on the ratio of the object perimeter to the object area (4 7 *area/perimeter?) reduces as
the perimeter increases, i.e., it is anti-correlated with many nonlinear parameters that
increase as indentation of cell boundaries becomes more pronounced, which is confirmed
by the correlation analysis. However, Circularity applied to the convex hull connecting
only extreme points of an object becomes a parameter that characterizes the overall shape
of the object.

Correlation analysis

Interestingly, the presence of significant correlations for some pairs of parameters only in the
2nd time group is related to the prevalence of cells with much more complex morphology
(type 5-1) in this group compared to other groups. For example, two parameters: Area
— outMeanD (0.01, 0.70, 0.05, and 0.18; correlations are provided for groups 1 —4,
respectively; significant and high correlations are shown in bold) demonstrate a significantly
high correlation in the second group because a simultaneous significant increase in the
area and spatial complexity of the cell occurs only in this group. A variety of both large
and small cells with simple microsculpture (and, correspondingly, with a lower outMeanD
value) makes the correlation between these parameters in other groups insignificant.
We observed the same effect of spatial complexity of the cell contour on correlation of
characteristics in a pair of characteristics: Feret — Density (—0.14, —0.80, —0.30, —0.58).
An increase in Feret, a parameter describing one of the characteristics of space filling by
the cell, is anti-correlated with Density only if an increase in the filling area is achieved
through an increase in the length and number of cellular processes (and, correspondingly,
through a decrease in the ratio of the number of object pixels to the number of background
pixels), but not through continuous filling of the space by the cell body; otherwise, these
two parameters are positively correlated. In other groups, an increase in the Feret value is
achieved both through an increase in the size of flattened cells and through an increase in
the number of processes, which makes the correlation invalid.
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Some parameters have sufficient discriminatory power for reliable identification of the
most dendritic cells combined in types 5-1 and 60-2. These parameters also form variable
correlations in different time groups. One of these pairs is Density — Perimeter (0.31,
—0.76, —0.42, —0.70). In groups 2 and 4, low density of the cell image in dendritic cells
with a high degree of cell boundary indentation is anti-correlated with a large length of the
cell perimeter; in groups 1 and 3, whose cells have less complex morphology, the density
and perimeter grow simultaneously as the cell size increases, due to continuous filling of
the surrounding space by the cell body, which makes the correlation insignificant.

In some cases, the difference in correlation in different time groups is associated with
different dynamics of parameter changes in cells with different morphology. For example, in
a pair of parameters outMeanD — outMeanLFD (0.73, 0.21, 0.66, 0.34), only the parameter
outMeanD grows as protrusivity strongly increases in cells of groups 2 and 4; outMeanLFD
is not correlated with the maximum increase in spatial complexity of the cell; the greatest
outMeanLFD value occurs in a special type of cells with a relatively uniform distribution
of processes around the cell body (Fig. 9). The morphology of these cells can be called
moderately complex, and outMeanD values of these cells are medium. In groups 1 and 3,
where this cell type reaches the maximum complexity of cell morphology, outMeanLFD is
correlated with outMeanD; in groups with a sufficient number of cells with higher spatial
complexity, a further increase in the outMeanD parameter is not accompanied by an
increase in the outMeanLFD parameter, and the correlation is not valid.

DISCUSSION

Coelomic fluid cells in invertebrates perform the protective function that is realized through
several variants of a single systemic cellular response to a foreign body: phagocytosis of
microscopic foreign particles identified by the cell, encapsulation — in vivo cell spreading
across a foreign body that is too big to be uptaken by the cell, and, finally, cell spreading
through a substrate as an attempt to isolate the foreign surface, the amount of which
significantly exceeds the cell size (Ratner ¢ Vinson, 1983).

Within a few minutes after placing coelomic fluid onto an artificial substrate, cells
precipitate, adhere to it, form conglomerates of various sizes (a reaction of thrombus
formation and cell agglutination of a body fluid, which is transferred to in vitro condition)
and flatten. In this case, some species form almost a continuous cell layer, while others
form a network of contiguous pseudopodia of cells self-assembled into cell flows.

Morphological characteristics of coelomocytes vary greatly in different species of
echinoderms, even within the same class. In the late 1950s, R.A. Boolootain and A.C. Guise
from the Stanford University, on the basis of previously conducted studies of morphological
features, described in detail various cell types of coelomocytes in 15 species from different
classes of echinoderms (Boolootain & Guise, 1958). The developed classification of formed
elements of the coelomic fluid amounted to at least 13 cell types. According to the authors,
different cell morphotypes in some cases reflected the functional state of cells of the same
types. The described cell elements are observed in all classes of echinoderms, except sea
stars, in which amoebocytes are considered to be the only cellular component of the
immune system (Bossche Vanden & Jangoux, 1976).
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Introduction of electron microscopy, histochemical, and histological methods has
enabled identification of five main cell types, the existence of which is now recognized by
most researchers: granular and agranular amoebocytes, morula cells, and lymphocyte-like
and flagellated cells (Korenbaum, 1989; Kudryavtsev, 2006). However, various names of the
same classes of starfish coelomocytes can still be found in the literature. Furthermore,
genesis of different cell types still remains unclear: whether they belong to several
differentiation lines, or they stem from common progenitor cells. The amount of different
coelomocyte types in the coelomic fluid depends on a wide range of external and internal
factors, including different techniques for coelomic fluid fixation, which may affect the
formula of cellular composition (Bossche Vanden ¢ Jangoux, 1976).

The classification of adherent cells is even more ambiguous. It has been supposed
that small cells are progenitors of all other cell types and that irreversible transformation
occurs upon transition from small cells to differentiated cells, and from circulating cells
with short pseudopodia to flattened cells (Fontaine ¢» Lambert, 1975; Bossche Vanden ¢
Jangoux, 1976). According to Pinsino, Thorndyke ¢ Matranga (2007), adherent Asteroidea
immune cells form cell shapes described as petaloid or filopodial cytoplasmic protrusions,
which replace each other through a series of transitional forms for 8 min. In our study,
cells with a small number of processes, which are especially numerous at the 15th min of
culturing, as well as insufficiently flattened cells of a 2-minute culture may be assigned to
the petaloid form. We describe for the first time the cell shape with curved processes, which
emerges after 60 min of culturing.
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Each time group contains cells with petaloid and filopodial cytoplasmic protrusions.
The classification based on the most variable parameters distinguishing cell types with a
high degree of reliability enabled us to identify types of small and petaloid cells (type I) that
represent the initial and final stages of spreading across a cell substrate. These cells have the
lowest, compared to other types, area, a simple form and boundary microsculpture, and
respectively, a low value of the mean fractal dimension of the cell contour (outMeanD)
and high Circularity. Type II is a transitional type between the petaloid and filopodial
forms, which is characterized by medium values of most parameters. Type III includes
predominantly cells of a filopodial form, which may be called the most morphologically
differentiated cell form. These cells have high values of several fractal dimensions and
lacunarities characterizing overall complexity of the cell shape and inhomogeneity of space
filling by the form, a large spreading area, and even a greater spreading area of processes
(low Density value), and a low Circularity value indicating complexity of the overall shape
of this cell type, which is the most different from the rounded shape.

The identified cell types are comparable in each time group, but similar types differ in
a number of characteristics in different time groups, and comparison of these differences
enables identification of several trends in the dynamics of cell behavior. First of all, the
degree of cell spreading continues to significantly increase in all cell types during culturing
for 1 h. In this case, the maximum activity of cells was observed at the fifth minute of
culturing. Here, there is a cell type (type 5-3) that significantly surpasses other types
in microsculpture complexity and overall complexity of the cell shape. This indicates
cell motility, active process formation, and cell shape changes. At this stage, cells are
characterized by the search behavior; cell spreading also occurs most rapidly. By the 15th
min, activity of cells reduces. The number of processes reduces; cells acquire a more
rounded shape; the cell body area to protrusion area ratio increases; the number of petaloid
type cells increases. Despite continued cell spreading, it looks, according to the patterns
of morphological characteristics, like uniform spreading of a fixed cell with pronounced
retraction of processes and uniform filling of a substrate by the cell body. This is confirmed
by an increase in the cell area with a simultaneous reduction in most parameters that
characterize complexity of cell morphology. Morphological complexity of cells at the
60th min of culturing decreases to a level comparable to that at the 2 min stage, but cells
are characterized by a significantly greater degree of spreading and symmetry. Curved
processes, which develop in this time group, make the cell shape more round, but do not
reduce the Roundness parameter, which distinguishes these cells from typical filopodial
cells at other spreading stages where increased protrusivity leads to a decrease in the
Roundness value.

CONCLUSIONS

Unlike nerve tissue cells, the morphometry of which, both neurons (Pushchin ¢
Karetin, 2014), and microglia cells (Morrison et al., 2017; Young & Morrison, 2018), is
well developed, and uses a wide range of nonlinear parameters in combination with
different imaging methods, the morphological description of fibroblast-like cells is less
formalized. A large number of recent studies on biochemical, morphological, physiological,
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and genetic processes associated with changes in the immune cell behavior have used

a statistically unverifiable language to describe cell shapes. The difficulty is related to
irregularity and a wide chaotic variety of shapes of flattened cells. Attempt to cover the
entire potential spectrum of cell shapes in vitro using classical morphometry inevitably
results in a set of rather general, non-specific, linear morphometric parameters describing
the general features of a two-dimensional object, such as the area, diameter of the bounding
circle, circularity, or elongation of the cell (Rajagopalan et al., 2004; Solon et al., 2007).
However, these structures can be effectively described by a set of nonlinear morphometric
parameters, including calculation of the fractal and information dimension, evaluation
of spatial heterogeneity and lacunarity of the object, its multifractal spectrum, etc. A
number of examples involving a wide range of cell types have demonstrated the possibility,
in principle, of efficient, comparative, numerical morphometry of cells (Karetin, 2010a;
Karetin, 2010b; Karetin, 2016). This argues that the methodology based on the synthesis of
linear and nonlinear morphometry can effectively complement a non-formalized language
for description of morphology of invertebrates’ immune cells in culture.

A complex statistical analysis of the morphology of coelomocytes from Asterias amurensis
(Echinodermata, Asteroidea), which included cluster and correlation analyses and an
variance analysis using a variety of linear and nonlinear cell morphology parameters,
enabled identification of cell characteristics, such as complexity of cell boundary
microsculpture, overall asymmetry of the cell, sizes of the cell, bounding circle, and
convex hull, and inhomogeneity of surrounding space filling by the cell and establishment
of a relationship between these characteristics and differences in the dynamics of cell
spreading at different culturing stages.
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