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ABSTRACT
Aim. Alzheimer’s disease (AD) is a chronic neurodegenerative disease. Recently,
computer scientists have developed various methods for early detection based on
computer vision and machine learning techniques.
Method. In this study, we proposed a novel AD detection method by displacement
field (DF) estimation between a normal brain and an AD brain. The DF was
treated as the AD-related features, reduced by principal component analysis (PCA),
and finally fed into three classifiers: support vector machine (SVM), generalized
eigenvalue proximal SVM (GEPSVM), and twin SVM (TSVM). The 10-fold cross
validation repeated 50 times.
Results. The results showed the “DF + PCA + TSVM” achieved the accuracy of
92.75± 1.77, sensitivity of 90.56± 1.15, specificity of 93.37± 2.05, and precision
of 79.61 ± 2.21. This result is better than or comparable with not only the other
proposed two methods, but also ten state-of-the-art methods. Besides, our method
discovers the AD is related to following brain regions disclosed in recent publications:
Angular Gyrus, Anterior Cingulate, Cingulate Gyrus, Culmen, Cuneus, Fusiform
Gyrus, Inferior Frontal Gyrus, Inferior Occipital Gyrus, Inferior Parietal Lobule,
Inferior Semi-Lunar Lobule, Inferior Temporal Gyrus, Insula, Lateral Ventricle,
Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus,
Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral
Gyrus, Posterior Cingulate, Precentral Gyrus, Precuneus, Sub-Gyral, Superior
Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, and Uncus.
Conclusion. The displacement filed is effective in detection of AD and related
brain-regions.

Subjects Neuroscience, Psychiatry and Psychology, Radiology and Medical Imaging,
Computational Science
Keywords Region detection, Machine vision, Generalized eigenvalue proximal SVM, Alzheimer’s
disease, Whole brain analysis, Support vector machine (SVM), Machine learning, Twin SVM
(TSVM)

INTRODUCTION
Alzheimer’s disease (AD) is an abnormal process of aging. AD is a special category of senile

dementia (SD) which leads to short-term and long-term memory, thinking, and behavior

(Dong et al., 2015a). Research on AD has attracted scholars from all over the world because

of its importance and effect on the society. Symptoms of AD may become severe enough to
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interfere with daily life, and to death (Goh et al., 2014; Hahn et al., 2013). There is neither

cure nor treatment for AD. In 2006, more than twenty million people in the world suffered

from this disease (Murphy et al., 2011). AD is predicted to influence 1 in every 85 people

worldwide about thirty years later, and more than forty percent of prevalent cases need

high level of care (Brookmeyer et al., 2007).

Now that the earth is growing into an aging society, AD has caused heavier burdens on

families and society than before (Esposito et al., 2013; Kantanen et al., 2014). In China, AD

accounts for more than half of SD, which extracts a total economic loss of more than eighty

billion yuan every year, and is responsible for nearly sixty billion yuan in healthcare costs

every year (Song & Wang, 2010). In United States, healthcare on people with Alzheimer’s

disease currently costs roughly $100 billion per year and is predicted to cost $1 trillion per

year by 2050 (Miller, Erlien & Piersol, 2012; Yuan, Machado & Arias-Carrion, 2014).

Nowadays, it is beneficial to develop early and accurate detection methods for AD,

which is also necessary for the treatment and management for controlling the deterioration

of AD (Zhang et al., 2015b). A 3D scan of the whole brain becomes acceptable and

affordable with recent advances in neuroimaging technology (Zhang et al., 2015e; Zhang

et al., 2014b), especially by the help of the most popular imaging technique: magnetic

resonance imaging (MRI). With its high-resolution magnetic resonance (MR) images, the

diagnostic accuracy of AD are greatly enhanced. MR images already play an essential role in

detecting AD from normal elder controls (NC).

In this study, we proposed to employ displacement field (DF) to track the morphometry

from normal brains to AD brains. The main advantage is that this method does not need

to segment region-of-interest (ROI) beforehand, namely, it obtains the DF for the whole

image. The classical level-set method was employed to estimate the DF.

This work is structured as follows: ‘State-of-the-Art’ provides the state-of-the-art. ‘Ma-

terials and Methods’ presents the materials and methodology. ‘Experiments and Results’

gives the experimental results. ‘Discussion’ discusses the results and the proposed method.

‘Conclusions’ concludes this work. The nomenclature in this work is listed in Table 7.

STATE-OF-THE-ART
In the past, most diagnosis work was carried out by measuring region of interest (ROI)

of brain MR images, since researchers already know several typical AD-related regions

and corresponding shape deformation (Anagnostopoulos et al., 2013; Kubota, Ushijima &

Nishimura, 2006), such as the enlarged ventricles, the shrinkage of hippocampus (HC),

and the shrinkage of cortex (Pennanen et al., 2004). Somehow, the ROI-based methods

suffer from some shortcomings: (i) The ROI methods need a priori information and expert

knowledge. (ii) The detection accuracy relies on the experiences of the interpreters (Yang

et al., 2015). (iii) The mutual information among the voxels is difficult to implement

(Lee, Park & Han, 2013; Xinyun, Wenlu & Xudong, 2011). (iv) We need to explore other

potential regions that may be connected to AD (El-Dahshan et al., 2014). (v) Automatic

segmentation of ROI is not feasible in practice, and examiners tend to segment the brain

manually (Zhang et al., 2013).

Zhang and Wang (2015), PeerJ, DOI 10.7717/peerj.1251 2/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.1251


Recently, a new type of methods, the “whole-brain analysis”, gets popularity since

it considers all voxels in the brain as a whole. It does not need to segment the brain

beforehand, and it does not need any biomarker for classification task. The main

disadvantage is the curse of dimensionality, which can be solved as the high-speed

computers are very cheap nowadays (Álvarez et al., 2009). The whole-brain analysis heavily

relies on pure computation, and it can be accomplished by only computer scientists,

after physicians help to label the data as either AD or healthy. Generally, the whole-brain

analysis treats the whole brain as a ROI, and it consists of two stages: feature extraction and

classification. We reviewed more than 10 literatures, and analyzed them in detail.

Scholars have presented various methods to extract efficient features for AD and other

types of pathological brain detection.1 In addition, various classification models and

1 Some abbreviations are modified to
avoid conflict within this paper.

methods exist, nevertheless, only a few of them are suitable for MR images. El-Dahshan,

Hosny & Salem (2010) extracted the approximation and detail coefficients of 3-level

discrete wavelet transform (DWT). They used artificial neural network (ANN) and

K-nearest neighbors (KNN) classifiers. Plant et al. (2010) used brain region cluster

(BRC). They suggested to use information gain (IG) to evaluate the interestingness of a

voxel, and applied clustering algorithm to identify groups of adjacent voxels with a high

discriminatory power. They used support vector machine, Bayes statistics, and voting

feature intervals (VFI), with the aim of pattern classification. Park (2012) employed

manifold learning for classification. Their use of the first and second distance measure

resulted in an 18% and 46% error rate for classifying between patients with AD and

normal patients, respectively. Chaves et al. (2012) utilized large margin-based methodology

for AD detection in SPECT and PET images. Their system yielded accuracy, sensitivity

and specificity values of 90.67%, 88% and 93.33% (for PET) and 92.78%, 91.07% and

95.12% (for SPECT), respectively. Saritha, Joseph & Mathew (2013) was the first to

use wavelet-entropy in pathological brain detection. They employed spider-web plots

to reduce the size of feature space. They also used the probabilistic NN (PNN) for

classification. Zhang et al. (2015a) suggested that removing spider-web-plot yielded the

same classification performance. Savio & Grana (2013) presented a novel method that

employed deformation-based morphometry (DBM) method. They tested five features, and

found three features performed excellent as trace of Jacobian matrix (TJM), modulated

GM (MGM), and Geodesic Anisotropy (GEODAN). Furthermore, they utilized Pearson’s

correlation (PEC), Welch’s t-test (WTT), and Bhattacharyya distance (BD), to measure the

significance of voxel site. Kalbkhani, Shayesteh & Zali-Vargahan (2013) modeled the detail

coefficients of 2-level DWT by generalizing autoregressive conditional heteroscedasticity

(GARCH) statistical model, and the parameters of GARCH model were considered as

the primary feature vector. They tested the KNN and SVM models. Wang et al. (2014)

proposed to utilize the undersampling (US) technique on a three-dimensional image.

They used singular value decomposition (SVD) to select features. Finally, they combined

kernel SVM (KSVM) with decision tree (KSVM-DT). Zhou et al. (2015) followed Saritha’s

method, and again employed wavelet-entropy for feature extraction. Naive Bayes classifier

(NBC) was employed for abnormal brain detection. Harikumar & Kumar (2015) analyzed
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Table 1 Demographic status of subjects. MMSE denotes mini-mental state examination.

Characteristic Alzheimer’s disease Normal control

Subject # 28 98

Age 77.75± 6.99 75.91± 8.98

Gender (M/F) 9/19 26/72

Education 2.57± 1.31 3.26± 1.31

Socioeconomic status 2.87± 1.29 2.51± 1.09

MMSE 21.67± 3.75 28.95± 1.20

CDR 1 0

the performance of ANN, in terms of classification of medical images, using wavelets

as feature extractor. Their classification accuracy achieved 96%. Zhang et al. (2015c)

employed discrete wavelet packet transform (DWPT). They utilized Tsallis entropy to

get wavelet packet entropy features. They introduced a generalized eigenvalue proximal

support vector machine (GEPSVM). Nazir, Wahid & Khan (2015) suggested to use filters

for the removal of noises, and extracted color moments as mean features. Finally, they

achieved an overall accuracy of 91.8%. Dong et al. (2015b) employed the eigen-brain (EB)

to extract features, and then they employed Welch’s t-Test (WTT) for the aim of reducing

features. They proposed to use SVM with radial basis function (RBF). Damodharan &

Raghavan (2015) combined tissue segmentation and neural network for brain tumor

detection. Zhang et al. (2015f) proposed a novel classification system that implemented 3D

discrete wavelet transform (3D-DWT) to extract wavelet coefficients the volumetric image.

After reviewing the latest literature, two findings can be obtained: (1) The DWT based

features are efficient. However, we presented a novel feature of displacement field, which

is the first to be used in MR images. (2) SVMs were commonly used, compared with

conventional decision tree, artificial neural network (Wang et al., 2015a; Zhang et al.,

2015d), and other classifiers (Collins & Pape, 2011). Hence, we continue to use SVM.

Besides, two variants of SVM are introduced in this study: generalized eigenvalue proximal

SVM (GEPSVM) and twin SVM (TSVM), with the aim of augmenting the classification

performance further.

MATERIALS AND METHODS
Materials
The open dataset was downloaded from “Open Access Series of Imaging Studies (OASIS)”

(Ardekani, Figarsky & Sidtis, 2013), which consists of 416 subjects aged from eighteen to

ninety-six. All subjects are right-handed. Then, we merely selected 126 samples (28 ADs

and 98 NCs) from the dataset. The demographic statuses are reported in Table 1. Following

common convention, clinical dementia rating (CDR) was interpreted as the target (label).

Note that subjects either with missing records or under sixty years old were removed.

Co-registration and brain-masking
All three-dimensional MR brain images of each subject were motion-corrected, and

coregistered to generate an averaged three-dimensional image, with the aim of increas-
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ing signal-to-noise ratio. Afterwards, those three-dimensional images were spatially

co-registered to the Talairach space and then were brain-masked.

Figure 1 offers an example of the preprocessing on 3D images with resolution of

1 mm × 1 mm × 1.25 mm. The motion-correction procedure registered the images of

three scans, and then generated an image in the original acquisition space with resampling

to 1 mm× 1 mm× 1 mm. Finally, the averaged image was normalized to the Talairach

coordinate space, and brain-extracted (Fig. 1).

Key slice selection
Calculating the displacement field on the whole brain was time-consuming. Therefore,

we introduced the “key-slice (KS) selection” method that picks up key slices containing

structures indicative of AD from NC. The procedure was as follows: we established a

criterion called “inter-class variance (ICV)” v as

v(k)= ∥µA(k)−µN(k)∥2 (1)

where k is the index of key slice, ∥ · ∥2 represents the l2-norm, µA and µN represents the

mean of gray-level values of the kth slice of AD subjects and NC subjects, respectively, and v

denotes the ICV. We select the KSs whose ICVs are larger than half of maximum ICV, with

10× undersampling factor (i.e., every ten slices).

Besides, the direction of key slice can be either sagittal, or axial, or coronal. Scholars

found images along coronal direction give a well-defined view compared to those along

sagittal and axial directions. Figure 2 shows an image along coronal direction has an

advantage because it covers 3 most important AD-related regions, which are treated as

indicative of AD. These AD-related regions consist of the cerebral cortex (CC), the HC, and

the ventricle. When sagittal or axial directions are used, two or even more slices are needed

to cover those tissues. Therefore, we chose the coronal direction for key slice selection, in

order to use less slices.

Shape registration
The shape registration consists of both global and local registrations. The global

registration estimates the rigid parameters, which was accomplished in ‘Co-registration

and brain-masking’. Then, the local registration finds the “displacement field (DF)”

between the moving and reference images (see Fig. 3).

The rigid registration is an essential preprocessing procedure before non-rigid

registration. It can fix the deformation stemming from the position, move, and pose of

patients. Then, the following non-rigid registration can reflect the shape deformation of

diseases.

The problem of finding the non-rigid estimation can be thought of a motion estimation

task between a normal brain (moving) and an AD brain (reference). Several types

of solutions are available to solve this task, such as spline function based methods,

phase-correlation methods, fluid methods, optical-flow methods, elastic methods, etc.

Among the above methods, the first type is parametric, hence, this kind of solution needs
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Figure 1 Preprocessing of a specified subject.
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Figure 2 Important regions between (A) an AD brain and (B) a normal brain. i, CC; ii, ventricle; iii,
HC. (Pseudocolor enhancement is performed for enlarging contrast.)

Figure 3 Flowchart of displacement field.

to solve optimal spline-based function parameters (Petibon et al., 2013). The second

type needs a mass of computation resources; it is difficult to determine the local search

range, and it is impossible to guarantee to find global optimal points (Lu, Yang & Zhang,

2014). The other three methods are non-parametric. They find the DF by solving directly a

predefined physical model using partial differential equation (PDE) (Yang et al., 2007).

The level-set motion estimation method (Huang et al., 2014; Lee, Sandhu & Tannen-

baum, 2013; Vandemeulebroucke et al., 2012) is a rather novel method, which is formed on

the basis of the level set evolution theory. The moving image I1 morphs iteratively along its

gradient direction, till it deforms close to the given reference image I2. The displacement

field is in the form of

dV

dt
= (I2− I1(V))

∇I1(V)

|∇I1(V)|
(2)

where V represents the displacement field, and I1(V) the deformed image of I1 by V .

The above equation can be solved by iterative algorithms described in reference (Kodipaka

et al., 2007).
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Figure 4 Illustration of displacement field between a Glioma brain and a normal one. (A) Moving
Image I1; (B) Reference Image I2; (C) Overlap of (B) and (A); (D) Rigid Registration of I1; (E) Overlap
of (B) and (D); (F) Non-rigid registration of (D); (G) Overlap of (B) and (F); (H) Displacement Field
between (B) and (D); (I) Enlarged CC of (H); (J) Enlarged temporal and occipital lobe of (H).

Figure 4 gives an example of the displacement field between a glioma brain and a normal

one. Figure 4A presents a moving image while Fig. 4B is a reference image. Their overlap

is shown in Fig. 4C. Apparently, the reference image is larger than the moving image, and

they are not quite a match. Figure 4D shows the result of rigid-registration, and Fig. 4E

shows the two images now match well except the cortex, the temporal and occipital lobe.
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Table 2 Pseudocode of the region detection method.

Region detection

Step 1 Select a normal brain (I1) and an AD brain (I2) from the dataset

Step 2 For each key slice k

Implement level-set displacement-field estimation between I1 and I2, and obtain the
displacement field V .

Move the points (x,y), that satisfies |V(x,y)|> 5, to the set R.

End

Step 3 Output R.

Figure 4F shows the result of non-rigid registration. Compare to Fig. 4B, they closely match

each other, and Fig. 4G also suggests a nearly-perfect match. The displacement field is

shown in Fig. 4H, with two enlarged areas in Figs. 4I and 4J.

The values of displacement field are complex, i.e., the real part represents the

displacement field along the horizontal direction, and the imaginary part along the

vertical direction. Those values of Cartesian system are transformed into polar coordinate

system, viz., the magnitude-direction spaces. Hence, the inputs to the classifiers are two

fold in this study: (1) the directions of the displacement vector of the whole brain and

(2) the magnitude of the displacement field of the whole brain. We did not use the

sign of the displacement vector, which were commonly used in literature (Das Gupta &

Tamadapu, 2013; Kodipaka et al., 2007). The reason is the direction field already contains

the information of sign of the displacement.

Method of region detection
Here, we proposed a visual interpretation approach based on displacement field to detect

regions R that can distinguish AD and NC.

R= {(x,y)|V(x,y)|> T}. (3)

Here | · | represents the magnitude, V(x,y) represents the displacement field at point of

(x,y), T the threshold. From another point of view, Eq. (3) means we preserve the points

whose displacement magnitude is larger than T. In this work, T is assigned with a value of

5, which is defined empirically. A smaller threshold T may introduce more noises in the

estimated displacement field; whereas, a larger threshold T will drop realistic deformation

with short deformation magnitude. Hence, we believe the deformation with magnitude

larger than 5 represents realistic deformation in the brain. In all, the visual interpretation is

a three-step process (see Table 2).

Non-parallel support vector machine
Among all recent classifiers, the support vector machine (SVM) has gained popularity

as the most excellent classifiers in small-size problem (Zhang & Wu, 2012). To further

enhance the classification performance, two new variants of SVM were introduced:
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Generalized eigenvalue proximal SVM
Original SVM has a limitation that two hyperplanes should be parallel (Wang et al., 2014).

Mangasarian & Wild (2006) designed a generalized eigenvalue proximal SVM (GEPSVM).

It drops the parallelism restrain on the two planes (remember the parallelism is necessary

in original SVM), and requires each hyperplane should be as close as possible to one

of the data sets and as far as possible from the other. The latest literature shows that

GEPSVM yielded superior performance to canonical support vector machines in terms of

sensitivity, specificity, precision, and accuracy (Khemchandani, Karpatne & Chandra, 2011;

Shao et al., 2013).

Suppose samples are from either class 1 (denote by symbol X1) or class 2 (denoted by

symbol X2), respectively. The GEPSVM finds the two optimal nonparallel planes with the

form of (w and b denotes the weight and bias of the classifier, respectively)

wT
1 x− b1 = 0 and wT

2 x− b2 = 0. (4)

To obtain the first plane, we deduce from Eq. (4) and get the following solution

(w1,b1)= argmin
(w,b)≠0

∥wTX1− oTb∥2/∥z∥2

∥wTX2− oTb∥2/∥z∥2
(5)

U←


w

b


(6)

where o is a vector of ones with any possible dimension according to the context.

Simplifying formula (5) gives

min
(w,b)≠0

∥wTX1− oTb∥2

∥wTX2− oTb∥2
. (7)

We include the Tikhonov regularization term to decrease the norm of the variables U

that corresponds to the first hyperplane in (4).

min
(w,b)≠0

∥wTX1− oTb∥2
+ t∥U∥2

∥wTX2− oTb∥2
(8)

where t is a positive (or zero) Tikhonov factor. Formula (8) turns to the “Rayleigh Quotient

(RQ)” in the following form of

U1 = argmin
U≠0

UTPU

UTQU
(9)

where P and Q are symmetric matrices in size of (p+ 1)× (p+ 1)

P
def
=


X1 −o

T 
X1 −o


+ tI (10)

Q
def
=


X2 −o

T 
X2 −o


. (11)
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Considering the stationarity and boundedness characteristics of RQ, the answer of (9) is

deduced by figuring out a generalized eigenvalue problem (GEP) as

PU= λQU, U ≠ 0 (12)

here the global optimal result of (9) can be obtained at an eigenvector U1 associated to

the smallest eigenvalue λmin of formula (12). Therefore, w1 and b1 can be deduced from

formula (6), and utilized to from the plane as written in formula (4). Afterwards, a similar

optimization problem is generated that is analogous to (7) by exchanging the symbols of X1

and X2. The eigenvector U2∗ corresponding to the smallest eigenvalue of the 2nd GEP will

obtain the 2nd hyperplane approximate to samples of class 2.

Twin support vector machine
Jayadeva & Chandra (2007) provided a novel variant of standard SVM: the twin support

vector machine (TSVM). The TSVM is similar to GEPSVM in the way that both obtain

non-parallel hyperplanes. The difference lies in that GEPSVM and TSVM are formulated

entirely differently. Each of the two quadratic programming (QP) problems in TSVM pair

is formulated as a typical SVM. Reports have shown that TSVM is better than both SVM

and GEPSVM (Nasiri, Charkari & Mozafari, 2014; Shao et al., 2014; Xu, Qi & Zhang, 2014).

Mathematically, the TSVM is constructed by solving the two QP problems

min
w1,b1,q

1

2
(X1w1+ o1b1)

T (X1w1+ o1b1)+ c1oT
2 q

s.t. − (X2w1+ o2b1)+ q > o2,q > 0
(13)

min
w2,b2,q

1

2
(X2w2+ o2b2)

T (X2w2+ o2b2)+ c2oT
1 q

s.t. − (X1w2+ o1b2)+ q > o1,q > 0
(14)

here ci (i = 1,2) are positive parameters, and oi (i = 1,2) is the same as in formula (5).

By this means, the TSVM constructed two hyperplanes. The first term in equations of

(13)(14) is the sum of squared distances from the hyperplane to one class. The second

term is the sum of error variables. Therefore, minimizing Eqs. (13) and (14) will force the

hyperplanes approximate to data of each class, and minimize the misclassification rate.

Finally, the constraint requires the plane to be at a distance of more than 1 from data in the

other class. Another advantage of TSVM is that its convergence rate is four times faster than

conventional SVM (Jayadeva & Chandra, 2007).

Statistical analysis
Generalization error was obtained by K-fold CV, and K was set to 10 because of two

reasons: (1) to balance between computational cost and reliable estimates, and (2)

for fair comparison since the common convention is to set K with the value of 10

(Zhang et al., 2014a).

For a 10-fold CV, the dataset is randomly divided into 10 mutually exclusively folds of

nearly equal size. In each run, 9 subsets are used for training, and the rest for validation (see

Zhang and Wang (2015), PeerJ, DOI 10.7717/peerj.1251 11/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.1251


Figure 5 Diagram of a 10-fold cross validation.

Table 3 Evaluation indicators.

Indicator Explanation

TP True Positive

FP False Positive

TN True Negative

FN False Negative

Sensitivity (recall) TP/(FN+ TP)

Specificity TN/(FP+ TN)

Accuracy (TN+ TP)/(FN+ FP+ TN+ TP)

Precision TP/(TP+ FP)

Fig. 5). Above procedure repeats 10 runs, such that each subset is used once for validation.

The 10 results over validation set are combined together along the diagonal blocks in

Fig. 5, with the aim of producing an individual out-of-sample evaluation. The 10-fold cross

validation repeated 50 times, viz., a 50×10-fold cross validation was implemented.

Evaluation
We used four indicators to measure which algorithm performed the best. Those four

indicators consisted of sensitivity (recall), specificity, accuracy, and precision (Table 3). In

this work, a correctly detected AD was treated as TP. After the 50×10-fold cross validation,

the final evaluation results are written in the form of “mean± standard deviation (SD)”.

The whole proposed system
Remember that our aim contains two purposes. First, we need to develop a computer-

aided diagnosis (CAD) system and report its performance. Second, we need to locate
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Table 4 Pseudocode of proposed method.

Algorithm: proposed method

Step A Input the ground-truth imaging data together with their labels.

Step B Co-registration to Talairach Coordinate by Rigid Registration.

Step C Pick up the key-slices by ICV (more than half of maximum), with 10× undersampling factor.

Step D Produce displacement field for each key slice for each subject.

Step E Submit the displacement field to the classifiers.

Step F Report the classification performance based on a 50×10-fold cross validation.

Step G Report the AD-related regions with the points whose displacement magnitude is larger than five.

discriminant voxels that can detect AD from NC subjects; and (ii) The pseudocode is listed

in Table 4.

EXPERIMENTS AND RESULTS
The programs were developed in-house using MATLAB (Version 2015a; Natick, MA), and

run on an IBM laptop with 3 GHz Intel i3 dual-processor and 8 GB random access memory

(RAM).

Key-slice selection
The curve of “inter-class variance” versus coronal slice index is shown in Fig. 6A. Ten

coronal slices, from 60 to 150 with increasing steps of 10, were selected. The reason is that

their corresponding ICVs were all higher than half of the maximum value. Figures 6B–6C

shows respectively the axial and sagittal view of the selected key-slices, where the red lines

represent the key-slices. The results are coherent with our formal work (Dong et al., 2015b).

Displacement field
Figure 7 shows the displacement field of an AD over the key-slices. Each column

corresponds to a key slice. Here CI means coronal index. We show the moving image, the

reference image, the overlap of both, the rigid registration, the overlap of rigid registration

and the reference image, the non-rigid registration, the overlap of non-rigid registration

and the reference image, and the displacement field for each key slice. From the row of

displacement field, we can see how that a healthy brain is warped into an AD brain through

the displacement fields (green arrows in the bottom row).

Classification comparison
The displacement fields were transformed into polar coordinate system, and their number

was reduced by PCA as mentioned in the methodology section. Three classifiers were used:

SVM, GEPSVM, and TSVM. Classification comparison results are provided in Table 5,

together with the results of ten state-of-the-art methods.

Region detection
We implemented the AD-related region detection procedure to different AD subjects as

‘Method of region detection’ described. Figure 8 shows the related regions, which are

labelled by green points. Some areas are slightly outside of the brain, such as Fig. 8A, this
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Figure 6 Results of key-slice selection. (A) Curve of ICV against CI. (B) Key-slices from axial view. (C)
Key-slices from saggital view.

is because the algorithm may also consider the distortion of background. This does not

influence following labelling procedure.

Area labeling
Talairach Daemon software was used to provide the anatomical label information. Table 6

shows the results, where BA represented Brodmann area. Note that some areas (such

as cerebral tonsil, declive, and pyramis) move due to the expansion and shrinkage of

neighboring areas, so they are not included in Table 6. We only pick up the areas with

changed volume, which are judged manually.

DISCUSSION
The results in Table 5 compare the proposed three classifiers (SVM, GEPSVM, and TSVM)

with ten state-of-the-art methods. Plant’s results (Task 1 in Table 3 in Plant et al., 2010)

presented the means together with 95% confidence intervals. Wang’s results (Table 7 in

Wang et al., 2014) were obtained through a single K-fold cross validation analysis. Savio’s
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Figure 7 Displacement field of an AD with Coronal Index (CI). CI varies from 60 to 150 with increase
of 10. (Please zoom in to see the displacement field.)

(Table 5 in Savio & Grana, 2013) and Dong’s results (Table 9 in Dong et al., 2015b) gave the

means with SD.

Among the proposed methods, the proposed “DF+ PCA+ TSVM” yields the accuracy

of 92.75 ± 1.77, sensitivity of 90.56 ± 1.15, specificity of 93.37 ± 2.05, and precision of

79.61± 2.21. Additional to it, the proposed “DF+ PCA+GEPSVM” offers the accuracy

of 91.52 ± 1.63, sensitivity of 88.93 ± 1.80, specificity of 92.27 ± 1.79, and precision of

76.66± 2.33. The proposed “DF+ PCA+ SVM” obtains the accuracy of 88.27± 1.89,

sensitivity of 84.93± 1.21, specificity of 89.21± 1.63, and precision of 69.30± 1.91.
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Figure 7 (continued)

In terms of average accuracy, the proposed “DF+ PCA+ TSVM” result is as large as

92.75%, better than nine approaches of AD prediction, e.g., BRC+ IG+ SVM of 90.00%

(Plant et al., 2010), BRC + IG + Bayes of 92.00% (Plant et al., 2010), BRC + IG + VFI

of 78.00% (Plant et al., 2010), MGM + PEC + SVM of 92.07% (Savio & Grana, 2013),

GEODAN+ BD+ SVM of 92.09% (Savio & Grana, 2013), US+ SVD-PCA+ SVM-DT

of 90% (Wang et al., 2014), EB + WTT + SVM of 91.47% (Dong et al., 2015b),

EB+WTT+ RBF-KSVM of 86.71% (Dong et al., 2015b), and EB+WTT+ POL-KSVM

of 92.36% (Dong et al., 2015b). Nevertheless, the average accuracy of the method
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Figure 7 (continued)

Table 5 Comparison of different methods.

Existing methods Accuracy Sensitivity Specificity Precision

BRC+ IG+ SVM (Plant et al., 2010) 90.00 [77.41, 96.26] 96.88 [82.01, 99.84] 77.78 [51.92, 92.63] N/A

BRC+ IG+ Bayes (Plant et al., 2010) 92.00 [79.89, 97.41] 93.75 [77.78, 98.27] 88.89 [63.93, 98.05] N/A

BRC+ IG+ VFI (Plant et al., 2010) 78.00 [63.67, 88.01] 65.63 [46.78, 80.83] 100.00 [78.12, 100] N/A

MGM+ PEC+ SVM (Savio & Grana, 2013) 92.07± 1.12 86.67± 4.71 N/A 95.83± 5.89

GEODAN+ BD+ SVM (Savio & Grana, 2013) 92.09± 2.60 80.00± 4.00 N/A 88.09± 5.33

TJM+WTT+ SVM (Savio & Grana, 2013) 92.83± 0.91 86.33± 3.73 N/A 85.62± 0.85

US+ SVD-PCA+ SVM-DT (Wang et al., 2014) 90 94 71 N/A

EB+WTT+ SVM (Dong et al., 2015b) 91.47± 1.02 90.17± 1.66 91.84± 1.09 75.93± 2.43

EB+WTT+ RBF-KSVM (Dong et al., 2015b) 86.71± 1.93 85.71± 1.91 86.99± 2.30 66.12± 4.16

EB+WTT+ POL-KSVM (Dong et al., 2015b) 92.36± 0.94 83.48± 3.27 94.90± 1.09 82.28± 2.78

Proposed methods Accuracy Sensitivity Specificity Precision

DF+ PCA+ SVM 88.27± 1.89 84.93± 1.21 89.21± 1.63 69.30± 1.91

DF+ PCA+ GEPSVM 91.52± 1.63 88.93± 1.80 92.27± 1.79 76.66± 2.33

DF+ PCA+ TSVM 92.75± 1.77 90.56± 1.15 93.37± 2.05 79.61± 2.21

“DF+ PCA+ TSVM” is only less than one approach of “TJM+WTT+ SVM” of 92.83%

(Savio & Grana, 2013).

Why TSVM is better? There are two reasons. First, the non-parallel support vector

machines provide more flexible and complicated hyperplanes than standard support

vector machine. Second, the twin support vector machines formulate each of the two QP

problems as a standard support vector machine, which makes it superior to generalized

eigenvalue proximal support vector machine.

There were many other methods (Arbizu et al., 2013; Chaves et al., 2013; Cohen & Klunk,

2014; Dukart et al., 2013; Gray et al., 2012) proposed for detecting AD from NC, however,

they dealt with images produced by other types of modalities: PET, SPECT, DTI, etc.

Hence, it is inappropriate to compare the proposed methods with them. We will test our

methods on SPECT and PET images in the future.
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Figure 8 Related regions of AD. (A) CI = 60, (B) CI = 70, (C) CI = 80, (D) CI = 90, (E) CI = 100, (F)
CI= 110, (G) CI= 120, (H) CI= 130, (I) CI= 140, (J) CI= 150.

Table 6 shows that the displacement field finds the discriminant associated with the

following regions reported in latest references: Angular Gyrus (Carbonell et al., 2014),

Anterior Cingulate (Schultz et al., 2014), Cingulate Gyrus (Yu et al., 2014), Culmen

(Almeida et al., 2011), Cuneus (Yokoyama et al., 2015), Fusiform Gyrus (Rieck et al., 2015),

Inferior Frontal Gyrus (Eliasova et al., 2014), Inferior Occipital Gyrus (Liu et al., 2012),

Inferior Parietal Lobule (Tramutola et al., 2015), Inferior Semi-Lunar Lobule (Almeida et

al., 2011), Inferior Temporal Gyrus (Narayan et al., 2015), Insula (Fletcher et al., 2015),

Lateral Ventricle (Gonzalez-Marrero et al., 2015), Lingual Gyrus (Cooley et al., 2015),

Medial Frontal Gyrus (Jensen et al., 2015), Middle Frontal Gyrus (Yoo et al., 2015), Middle

Occipital Gyrus (Cai et al., 2015), Middle Temporal Gyrus (Han et al., 2015), Paracentral

Lobule (Kang et al., 2013), Parahippocampal Gyrus (Shimoda et al., 2015), Postcentral

Gyrus (Willette et al., 2015), Posterior Cingulate (Pekarya, Sattin & Lloyd, 2015), Precentral

Gyrus (Wang et al., 2015c), Precuneus (Villeneuve et al., 2015), Sub-Gyral (Ouyang et al.,

2014), Superior Parietal Lobule (Yamashita et al., 2014), Superior Temporal Gyrus (Ramos

et al., 2015), Supramarginal Gyrus (Redolfi et al., 2015), Uncus (Bangen et al., 2014).

Notwithstanding, some regions reported to be associated with AD are not interpreted by

displacement field. Those areas include caudate nucleus (Montagne et al., 2015), claustrum

(Pirone et al., 2015), lentiform nucleus (Dong et al., 2015b), subcallosal gyrus (Dong et al.,
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Table 6 Discriminant areas with changed volume found by Talairach Daemon software.

Regions # of voxels Reported by

Angular gyrus 33 Carbonell et al. (2014)

Anterior cingulate (BA-33, BA-32, BA-24) 81 Schultz et al. (2014)

Cingulate gyrus (BA-32, BA-23, BA-24, BA-31) 1,551 Yu et al. (2014)

Culmen 396 Almeida et al. (2011)

Cuneus (BA-18, BA-30) 143 Yokoyama et al. (2015)

Fusiform gyrus (BA-18, BA-19, BA-20, BA-37) 314 Rieck et al. (2015)

Inferior frontal gyrus (BA-13, BA-45, BA-47) 320 Eliasova et al. (2014)

Inferior occipital gyrus 24 Liu et al. (2012)

Inferior parietal lobule (BA-2, BA-40) 311 Tramutola et al. (2015)

Inferior semi-lunar lobule 144 Almeida et al. (2011)

Inferior temporal gyrus (BA-20) 58 Narayan et al. (2015)

Insula (BA-44, BA-13) 328 Fletcher et al. (2015)

Lateral ventricle 33 Gonzalez-Marrero et al. (2015)

Lingual gyrus (BA-18, BA-19) 184 Cooley et al. (2015)

Medial frontal gyrus (BA-6, BA-32) 53 Jensen et al. (2015)

Middle frontal gyrus (BA-6, BA-46) 144 Yoo et al. (2015)

Middle occipital gyrus (BA-19) 175 Cai et al. (2015)

Middle temporal gyrus (BA-19, BA-20, BA-21, BA-22, BA-37, BA-38, BA-39) 485 Han et al. (2015)

Paracentral lobule (BA-5, BA-31) 161 Kang et al. (2013)

Parahippocampal gyrus (HC, BA-19, BA-30, BA-37) 62 Shimoda et al. (2015)

Postcentral gyrus (BA-2, BA-3) 244 Willette et al. (2015)

Posterior cingulate (BA-23, BA-30) 323 Pekarya, Sattin & Lloyd (2015)

Precentral gyrus (BA-4, BA-6, BA-13, BA-43, BA-44) 627 Wang et al. (2015c)

Precuneus (BA-7, BA-19, BA-31) 530 Villeneuve et al. (2015)

Sub-Gyral (Corpus, Callosum, BA-4, BA-13) 2,358 Ouyang et al. (2014)

Superior parietal lobule 21 Yamashita et al. (2014)

Superior temporal gyrus (BA-13, BA-22, BA-38, BA-39, BA-41) 462 Ramos et al. (2015)

Supramarginal gyrus (BA-40) 135 Redolfi et al. (2015)

Uncus (BA-20, BA-28, BA-34, BA-36, BA-38) 112 Bangen et al. (2014)

2015b), and subthalamic nucleus (De Reuck et al., 2014). Why are those areas not detected

by our DF method? The reasons are tri-fold: (1) We only preserved the displacement

field with magnitude longer than 5. Reducing the value of 5 may include more potential

regions and noises. A feasible solution is to reduce from 5 to 3 and meanwhile develop

robust anti-noise method. (2) Some literature used advanced imaging modalities, such as

MRSI and fMRI for metabolism detection and function analysis. Therefore, we may also

include these imaging-modality techniques. (3) The key-slice selection procedure may

miss important regions. Hence, we will try to reduce the slice separation, although it will

increase the computation burden.

The advantages of displacement-field are two-fold. On one hand, it reaches excellent

classification performance, which was comparable to latest approaches (Dong et al., 2015b;

Plant et al., 2010; Savio & Grana, 2013; Wang et al., 2014). On the other hand, it can directly
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Table 7 List of acronyms.

Acronym Definition

(k) (GEP) (T) SVM (kernel) (generalized eigenvalue problem) (twin) support vector machine

AD Alzheimer’s disease

ANN Artificial neural network

BA Brodmann area

BD Bhattacharyya distance

BRC Brain region cluster

CAD Computer-aided diagnosis

CC Cerebral cortex

CDR Clinical dementia rating

CSF Cerebrospinal fluid

CI Coronal index

CV Cross validation

DBM Deformation-based morphometry

DF Displacement field

DWT Discrete wavelet transform

GARCH Generalized autoregressive conditional heteroscedasticity

GEODAN Geodesic anisotropy

HC Hippocampus

ICV Inter-Class variance

IG Information gain

KNN K-nearest neighbors

MGM Modulated GM

MMSE Mini-mental state examination

MR(I) Magnetic resonance (imaging)

NBC Naive Bayes classifier

NC Normal elder controls

OASIS Open access series of imaging studies

PEC Pearson’s correlation

PNN Probabilistic neural network

PSO Particle swarm optimization

QP Quadratic programming

ROI Region of interest

RQ Rayleigh quotient

SD Standard deviation

SVD Singular value decomposition

TJM Trace of Jacobian matrix

US Undersampling

VFI Voting feature intervals

WTT Welch’s t-test

locate AD-related regions. The disadvantages of displacement field are: (i) The accuracy

of displacement field estimation relies on the accuracy of rigid registration, which is a

necessary pre-processing (see Fig. 3). (ii) The estimated DF may exist in the background

(see Fig. 8A), which needs to be removed by masking technique.
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CONCLUSIONS
The contributions of this study consist of four points: (i) We proposed to use displacement

field in the application of Alzheimer’s disease detection, and we proved its effectiveness.

(ii) SVM and its two variants (GEPSVM and TSVM) were tested, and we proved TSVM

performed better than SVM and GEPSVM. (iii) The proposed system achieved comparable

sensitivity, specificity, and accuracy with ten state-of-the-art algorithms. (iv) The proposed

computer-aided diagnosis (CAD) system can locate AD-related regions in the brain, which

complies with 28 recent peer-reviewed articles.

Future research direction shall center in following aspects. First, the displacement field

will be generalized to 3D, so key-slice selection can be discarded. Second, we shall try

to embed kernels to classifiers. Third, spectroscopy method, like extracting the quantity

of Docosahexaenoic Acid (DHA) (Tan et al.), may help to increase the classification

accuracy. Forth, the proposed approach might be helpful in identifying brain mechanisms

underlying endogenously defensive mechanism to neuroinjury and neurodegeneration

(Yuan & Hou, 2015). Fifth, the least square technique (Hamedi, Salleh & Noor, 2015)

may be applied to SVM and its variants, in order to further reduce training time. Sixth,

the swarm-intelligence algorithm will be introduced to help to enhance the algorithm

performance (Wang et al., 2015b). Finally, the stress field calculates the stress at every point

within a particular region (Petit et al., 2015). It will be tested in future research.
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