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Background. Previous research suggests that firefly larvae (Coleoptera: Lampyridae) are susceptible to
commonly used insecticides. In the United States, there has been a rapid and widespread adoption of
neonicotinoid insecticides, predominantly used as seed coatings on large-acreage crops like corn, soy,
and cotton. Neonicotinoid insecticides are persistent in soil yet mobile in water, so they have potential to
contaminate firefly habitats both in and adjacent to application sites. As a result, firefly larvae may be at
high risk of exposure to neonicotinoids, possibly jeopardizing this already at-risk group of charismatic
insects.

Methods. To assess the sensitivity of firefly larvae to neonicotinoids, we exposed larvae of Photuris
versicolor complex and Photinus pyralis to multiple levels of clothianidin-contaminated soil.

Results. Compared to other soil invertebrates and beetle species, both Photuris versicolor and Photinus
pyralis were relatively tolerant to clothianidin, only exhibiting long-term intoxication and mortality at
concentrations above 1 pg g™ soil. Under sub-lethal clothianidin exposure, firefly larvae fed less and
spent less time in protective soil chambers, two behavioral changes which could decrease larval survival
in the wild.

Discussion. Coupled with other stressors such as light pollution and habitat loss, extensive
neonicotinoid contamination appears to have potential to contribute to firefly declines in the United
States.
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Abstract

Background. Previous research suggests that firefly larvae (Coleoptera: Lampyridae) are
susceptible to commonly used insecticides. In the United States, there has been a rapid and
widespread adoption of neonicotinoid insecticides, predominantly used as seed coatings on large-
acreage crops like corn, soy, and cotton. Neonicotinoid insecticides are persistent in soil yet
mobile in water, so they have potential to contaminate firefly habitats both in and adjacent to
application sites. As a result, firefly larvae may be at high risk of exposure to neonicotinoids,
possibly jeopardizing this already at-risk group of charismatic insects.

Methods. To assess the sensitivity of firefly larvae to neonicotinoids, we exposed larvae of
Photuris versicolor complex and Photinus pyralis to multiple levels of clothianidin-contaminated
soil.

Results. Compared to other soil invertebrates and beetle species, both Photuris versicolor and
Photinus pyralis were relatively tolerant to clothianidin, only exhibiting long-term intoxication
and mortality at concentrations above 1 pug g! soil. Under sub-lethal clothianidin exposure,
firefly larvae fed less and spent less time in protective soil chambers, two behavioral changes
which could decrease larval survival in the wild.

Discussion. Coupled with other stressors such as light pollution and habitat loss, extensive
neonicotinoid contamination appears to have potential to contribute to firefly declines in the

United States.

Introduction

In the United States alone, insects are estimated to provide over $50 billion in ecological

services (Losey and Vaughan, 2006). Human activities, however, have put these services at risk
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36 by triggering global insect declines (Sanchez-Bayo and Wyckhuys, 2019). Some charismatic

37 groups such as fireflies (Coleoptera: Lampyridae) are at elevated risk of at least localized

38 extinction due to ongoing human activities such as heavy pesticide use in and around their

39 habitats (Reed et al., 2020). Fireflies have great popular appeal and aesthetic and cultural value,
40 but fireflies also contribute biological control of some pest species, including slugs and snails,
41 which can be important agricultural pests (Godan, 1983; Lewis, 2016).

42 Despite broad agreement that pesticides are a serious extinction threat to fireflies (Lewis
43 etal., 2020), there is a very poor understanding of the direct toxicity of insecticides on fireflies.
44 The most commonly applied classes of insecticides (neonicotinoids, pyrethroids, or

45 organophosphates) are broadly toxic to most insect taxa (Sparks, 2013), so fireflies are unlikely
46 to be an exception. Indeed, full-strength organophosphate and neonicotinoid formulations are

47  toxic to aquatic firefly larvae (Tabaru et al., 1970; Lee et al., 2008). Unfortunately, there have
48 been no studies assessing how terrestrial firefly larvae respond to residual concentrations of these
49 insecticides in soil, a likely route of exposure. Larvae of many common firefly species in the

50 United States are soil-dwellers that intimately interact with soil as they forage for prey and form
51 protective molting chambers (Buschman, 1984; Lewis, 2016). These larvae inhabit forested,

52  suburban, and agricultural soils, where neonicotinoid insecticides are often applied directly, or
53  via coatings on crop seeds, to protect against pests (Knoepp et al., 2012; Douglas and Tooker,

54 2015; Simon-Delso et al., 2015). In these habitats, neonicotinoid concentrations in soil can range
55 from less than 5 ppb to over 4 ppm, concentrations that could plausibly influence behavior and
56 survival of firefly larvae (Lee et al., 2008; Knoepp et al., 2012; Schaafsma et al., 2015; Pearsons
57 etal., 2021). Some indirect evidence suggests that firefly larvae are susceptible to neonicotinoids

58 because adult lampyrid densities have been found to be lower where neonicotinoid-coated seeds
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were planted (Disque et al., 2019); however, to our knowledge, there have been no direct
evaluations of how terrestrial firefly larvae respond to neonicotinoid-contaminated soil.

To assess the direct sensitivity of fireflies to neonicotinoid insecticides, we measured
feeding behavior, development, and survival of larvae of two common North American firefly
species — Photuris versicolor species complex and Photinus pyralis (Linnaeus 1767) — exposed
to clothianidin-contaminated soil. We focused on clothianidin, as it is a common seed- and soil-
applied neonicotinoid and the primary metabolite of another commonly applied neonicotinoid,
thiamethoxam (Douglas and Tooker, 2015). We exposed larvae to multiple levels of
clothianidin-contaminated soil for 30 to 100 days with the expectation that they would be

sensitive to clothianidin at concentrations that have been detected in firefly habitats.

Materials & Methods

Chemicals

We acquired clothianidin from Chem Service (West Chester, PA, USA; purity > 98%),
and prepared stock solutions of 0.2, 2, 20, and 200 ppm clothianidin in acetone (Sigma Aldrich,
St. Louis, MO, USA, ACS reagent, purity > 99.5%). Pure acetone served as a control. We stored
stock solutions at 4 °C and allowed them to reach room temperature (20 “C) before applying

them to soils for the assays.

Firefly Collection and Colony Care
We ran toxicity assays on three separate cohorts of fireflies: late-instar larvae from the
Photuris versicolor species complex (hereafter referred to as Photuris), early-instar Photuris

versicolor complex, and early-instar Photinus pyralis. Both Photuris versicolor and Photinus
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82  pyralis are relatively large-bodied (6-20 mm adult body length), widespread firefly species found
83 throughout Eastern North America (Lewis, 2016). Because both species spend 1-2 years in the
84 soil as larvae and feed on soil invertebrates (Photuris versicolor are thought to feed on a
85 diversity of soil invertebrates while Photinus pyralis larvae are considered specialists on
86 earthworms; McLean et al., 1972; Buschman, 1984; Lewis, 2016), they likely experience chronic
87 contact and oral neonicotinoid exposure in contaminated habitats.
88 Five of the late-instar Photuris were reared from eggs laid by a mated female collected in
89 late July 2019 from the Bucknell University Chillisquaque Creek Natural Area (Montour Co,
90 PA;41°01" 15" N, 76° 44’ 53" W), while the majority of late-instar Photuris were wild-collected
91 in summer of 2019 from multiple locations throughout Pennsylvania: Bald Eagle State Park (5
92  August; Centre Co, 41°00'44.0"N 77°12'54.3"W), Allegheny National Forest (24-25 June; Forest
93  Co,41°3129.8"N 79°17'33.9"W), and Bucknell University Forrest D. Brown Conference Center
94 (23-24 July; Union Co, PA; 40° 57" 28" N, 77° 00" 49" W). After collection, we housed
95 individual larvae in 16-0z clear plastic deli containers (11.5-cm diameter x 8-cm tall) lined with
96 moist filter paper. Every 1-2 weeks, we provided each larva with one piece of cat food (Grain-
97 Free Real Chicken Recipe Dry Cat Food, Whole Earth Farm™, Merrick Pet Care Inc., Amarillo,
98 TX, USA), which had been softened in DI-water for 1 h. After 24 h, we removed cat food and
99 replaced the filter paper. Occasionally there was extensive fungal growth on the cat food, which
100  could be fatal to Photuris larvae; in these instances, we gently wiped larvae with DI water and a
101  delicate task wipe then transferred them to clean containers.
102 @arly-instar Photuris and Photinus cohorts were reared from eggs laid in July 2020. On the
103 evening of 10 July 2020, we collected 3 male and 2 female Photinus adults and 3 mated Photuris

104 females. Flying Photinus males were collected and identified based on their characteristic “J”
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flash pattern (Lewis, 2016) while female Photinus were collected from nearby patches of short
grass and were identified based on their flash pattern and similar morphology to the Photinus
males (Lewis, 2016). Photuris females were collected near Photinus females and identified based
on their green-shifted flash color and morphology (Lewis, 2016). Additional Photinus males
were collected to provision the mated Photuris females. We collected Photuris and Photinus in a
residential area (State College, Centre Co, PA; 40° 47" 03" N, 77° 52' 25" W) into two separate
16-0z deli container “nurseries”; each nursery contained a handful of moist sphagnum moss on
top of moist soil (2-in deep; silt loam, collected from certified organic fields at the Russell E.
Larson Agricultural Research Center at Rock Springs, PA, U.S.A.; 40° 42" 52" N, 77° 56" 46"
W). Both Photinus females mated within a few minutes of collection.

Female Photuris and Photinus laid eggs within the following 3 days (50+ Photuris eggs
and 100+ Photinus eggs; we did not attempt more accurate counts to avoid damaging eggs).
Under ambient temperatures, first-instar larvae of both species began to emerge three weeks after
eggs were laid (5 August 2020). We kept Photuris larvae in the nursery chambers for two weeks,
and then, after we observed significant cannibalism among larvae, moved them into individual
soil-lined 1-0z polypropylene portion containers. As with larvae collected and reared from 2019,
developing Photuris were fed moistened cat food (Grain-Free Real Chicken Recipe Dry Cat
Food, Whole Earth Farm™, Merrick Pet Care Inc., Amarillo, TX, USA) in addition to pieces of
freeze-killed Lumbricus terrestris (Josh’s Frogs, Owosso, MI). As evidence of the hypothesis
that Photinus pyralis larvae are specialist on earthworms, Photinus larvae did not feed on cat
food but did feed gregariously on freeze-killed L. terrestris. Unlike Photuris, Photinus failed to

thrive in isolation, so they were kept in the nursery chamber until starting toxicity assays.
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Toxicity assays with late-instar Photuris versicolor

We started toxicity assays with late-instar Photuris versicolor on 22 June 2020. We used
1-o0z polypropylene portion containers containing 8 g of soil (same soil source as nursery
chambers) for our assay containers. To the soil in each assay container, we added 0.5 mL of the
appropriate clothianidin stock solution, allowed the acetone to completely evaporate, then added
2-mL of DI water to moisten the soil.

After setting up assay containers, we weighed the late-instar Photuris and randomly
assigned each to a particular clothianidin concentration (ensuring all larvae in each dose-set were
sourced from the same location). For each concentration (0, 10 ng g*! soil, 100 ng g'! soil, 1 ug
g-1 soil, 10 pg g! soil), we ran six parallel assays with late-instar Photuris (30 larvae in total,
each in separate assay containers). We recorded firefly status at 1, 4, and 24 h, and every day for
an additional 99 d. Fireflies were categorized as dead (D), exhibiting a toxic response (T), or
apparently healthy (A). A larva was assumed dead if it did not respond to gentle prodding with
forceps. If a larva was flipped on its back and/or demonstrating repetitive twitching of its legs or
head, it was recorded as exhibiting a toxic response (T). Fireflies were recorded as apparently
healthy (A) if they exhibited a usual response to prodding from blunt forceps (Fig 1A; quickly
curled up on its side, often glowing). At each status check, we noted if a firefly had constructed a
protective soil chamber, then carefully dismantled the chamber to check larval status. During the
toxicity assays, we fed larvae once a week by carefully transferring individuals out of the assay
containers into clean containers lined with moisten filter and containing a piece of moistened cat
food. After 24 h, we returned fireflies to the assay containers and noted if the cat food had
obvious signs of feeding (Fig 1B). Assay containers were kept in a dark drawer except when

doing daily checks, and we misted containers with DI water as needed to maintain soil moisture.
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Toxicity assay with early-instar Photuris versicolor

Toxicity assays with early-instar Photuris versicolor were similar to assays with late-
instar larvae, except we added half the amount of soil (4 g) and half the volume of clothianidin
stock solutions (0.25 mL) to each assay container. On 17 Sept 2020, we started three assays with
early-instar Photuris (15 larvae in total), feeding them cat food once a week and recording their
status at 1, 4, and 24 h, and every day for 10 d, then twice a week for an additional 90 d. Unlike
for late-instar Photuris, we fed early-instars by directly placing moistened cat food in the assay

containers (we removed the food 24 h later).

Toxicity assay with early-instar Photinus pyralis

As with early-instar Photuris, all assays with Photinus pyralis were run in 1-o0z
polypropylene portion containers containing 4 g of soil with 0.25 mL doses of clothianidin stock
solutions. On 17 Sept 2020, we started fifteen assays with early-instar Photinus (three sets of five
larvae per container, 75 larvae in total), recorded their status at 1, 4, and 24 h, and every day for
10 d, then at least twice a week for an additional 20 d. We terminated Photinus assays earlier
than Photuris assays due to an acarid mite infestation, which rapidly increased larval mortality
across all doses. During the assays, we fed Photinus pieces of earthworm (L. terrestris) in the

same manner that early-instar Photuris were fed cat food.

Statistical Analysis

We performed all statistical analyses in R (v4.0.4) (R Core Team, 2021). For each firefly

cohort, we calculated median toxic concentrations (TCsy) and median lethal concentrations
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(LCsp) at 24 h, 7 d, and 30 d of exposure using probit analysis (LC_PROBIT from the “ecotox”
package; Robertson et al., 2017; Hlina et al., 2019); for TCs, estimates, we included both sub-
lethal and lethal responses, while LCs, estimates were based on mortality alone. To assess long-
term survivorship across clothianidin levels, we used the Kaplan-Meier method (“survival”
functions SURVDIFF and PAIRWISE SURVDIFF; Therneau, 2021; Therneau and Grambsch,
2000). To determine how clothianidin exposure affected firefly behavior, we used non-
parametric Mann-Whitney U tests (WILCOX.TEST) to compare feeding frequency and soil-
chamber construction across clothianidin doses; we made pairwise comparisons using Wilcoxon

rank sum tests with continuity corrections (PAIRWISE.WILCOX.TEST).

Results

24 h, 7 d, and 30 d TCsy and LCs, estimates

Dose-response curves and estimated TCs, and LCs, indicate that Photuris versicolor and
Photinus pyralis were surprisingly tolerant of exposure to clothianidin (Table 1 and Fig 2-4).
Reliable TCsy and LCs, estimates were limited by our small sample sizes and low acute mortality
within the tested concentration range. Overall, TCs, values ranged from 0.5 ppm to 2 ppm while

LCs values exceeded our test range.

Firefly Survival

Clothianidin exposure significantly reduced long-term firefly survival at high
concentrations (Fig 5). All late-instar Photuris exposed to the highest clothianidin concentrations
(1000 and 10,000 ng g'") began to exhibit toxic responses within 24 h (Fig 2A), never recovered,

and died by day 84. Photuris was somewhat tolerant to lower clothianidin concentrations (10 ng
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g or 100 ng g'") and neither late- or early-instar larvae exposed to low concentrations had
significantly lower 100 d survival probability compared to controls (Fig SA-B). All Photuris in
the control treatment either pupated (2 out of 6 late-instar larvae) or survived through day 100 (4
out of 6 late-instar larvae). For Photinus, exposure to 1 ug g'! and 10 pug g'!' clothianidin led to
marginally significant (P = 0.07) and significantly (P < 0.0001) lower survivorship within 30 d

of exposure (Fig. 5C).

Feeding Behavior

Clothianidin exposure significantly affected the feeding behavior of firefly larvae (Fig 6).
Larvae exposed to the highest clothianidin concentration (10 pg g-!' soil) never fed during the
toxicity assay. Late-instar Photuris exposed to 1 ppm (1 ug g! soil) fed significantly less than
control larvae (y?, = 16.3, P = 0.003), and early-instar Photinus larvae fed significantly less at
higher doses (1 pg g and 10 ug g'!) compared to the control or lower doses (y>1= 12.4, P =

0.0004).

Soil-Chambers, Molting, and Pupation of Late-instar Photuris versicolor

Late-instar Photuris that survived through day 100 went through 1 to 5 periods where
they regularly formed protective soil chambers (median = 2) and spent anywhere from 1 to 20
total days in soil chambers (median = 9). Larvae exposed to 10 ppm clothianidin (10 pg g! soil)
never constructed soil chambers while larvae exposed to 1 ppm clothianidin spent significantly
fewer days in soil chambers than larvae exposed to 10 ppb (P = 0.01; Fig 7).

Formation of protective soil chambers did not correspond with molting or pupation, and

all recorded molting and pupation events occurred outside soil chambers, on the soil surface.
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Late-instar Photuris larvae only molted once or twice, irrespective of how frequently or for how
long they built soil chambers (larvae that survived through 100 days; frequency: R?,; = -0.09,
F;19=0.10, P =0.76; duration: R?,4 =-0.02, F; ;o= 0.81, P = 0.39). Six of the thirty late-instar
Photuris larvae pupated; five of which successfully eclosed within 35 d of starting the assays
(two controls, one at 10 ppb, two at 100 ppb) and one which was unsuccessful (1000 ppb). At 35
d, three of the larvae exposed to the highest clothianidin concentration (10,000 ppb) were still
alive, but none of these larvae ever entered a pupal stage. Of individuals that successfully
eclosed, three were lab-reared from eggs laid in 2019 (3 out of 5) while only two were wild-

collected (2 out of 25).

Discussion

Photuris versicolor complex and Photinus pyralis larvae did not significantly respond to
clothianidin concentrations at or below 100 ng g! soils (100 ppb), but both firefly species
exhibited significant toxic responses to higher concentrations. Compared to other soil
invertebrates, larvae of these two firefly species were relatively tolerant to clothianidin-
contaminated soil, with over 2x and 30x the TCs, values for the earthworm Eisenia andrei and
the collembolan Folsomia candida, respectively (de Lima e Silva et al., 2020), and higher
tolerance compared to other soil-dwelling beetles (Agriotes spp. [Elateridae] and Atheta coriaria
[Staphylinidae]; van Herk et al., 2007; Cloyd et al., 2009). Although we did not explicitly
explore any mechanisms for why firefly larvae may be tolerant to clothianidin exposure, there
are multiple behavioral, morphological, and biochemical processes could be limiting their

sensitivity to clothianidin (Alyokhin et al., 2008).
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Behavioral avoidance of neonicotinoids has been observed across insect orders and beetle
families (Easton and Goulson, 2013; Fernandes et al., 2016; Pisa et al., 2021; Korenko et al.,
2019), and the results of this current study provide some support for behavioral avoidance of
neonicotinoids by Lampyridae. Although firefly larvae could not completely avoid the
contaminated soil in our arenas, they could decrease oral exposure by limiting construction of
their soil chambers. To form soil chambers, Photuris larvae manipulate soil with their
mouthparts (Buschman, 1984), providing a potentially more toxic pathway for neonicotinoid
exposure (Decourtye and Devillers, 2010). As neonicotinoids are repellant to other beetle species
(Easton and Goulson, 2013), neonicotinoid-contaminated soil could have repulsed firefly larvae,
possibly explaining reduced chamber formation above 1000 ng clothianidin g! soil.
Alternatively, sub-lethal neonicotinoid exposure may simply decrease the ability of fireflies to
construct soil chambers. Choice-based avoidance studies could be used to test if avoidance or
toxicity at high clothianidin concentrations drove the decreased time late-instar Photuris spent
constructing and inhabiting soil chambers.

In addition to behavioral avoidance, specific morphological and metabolic characteristics
of fireflies may protect Photuris and Photinus larvae from toxic clothianidin exposure. Unlike
many other soil invertebrates (e.g., earthworms and mollusks), firefly larvae have a comparably
protective waxy cuticle that may act as an effective barrier against neonicotinoid uptake
(Decourtye and Devillers, 2010; Wang et al., 2012). And even when clothianidin is absorbed,
insects can resist target-site exposure by quickly detoxify and/or excrete neonicotinoids (Olson et
al., 2000; Alyokhin et al., 2008). Although there has been no work on neonicotinoid metabolism
by fireflies, Photuris and Photinus may upregulate detoxification enzymes after clothianidin

exposure, similar to an aquatic firefly species after exposure to benzo[a]pyrene (Zhang et al.,
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2021). Additionally, Photuris and Photinus may be tolerant to clothianidin if neonicotinoids have
a low binding affinity to nicotinic acetylcholine receptors of fireflies; however, this mechanism
seems unlikely due to the broad affinity of neonicotinoids for nicotinic acetylcholine receptors
across insect orders (Matsuda et al., 2020).

There is also the unlikely possibility that extensive neonicotinoid use has exerted
selection pressure on the firefly populations in central Pennsylvania to evolve resistance to
clothianidin. The way neonicotinoids are currently used is a perfect storm for developing
insecticide resistance (Tooker et al., 2017), and while most concern has focused on resistance-
development in herbivorous pest species, biocontrol agents and other predatory arthropods
(Bielza, 2016; Mota-Sanchez and Wise, 2021) can develop insecticide tolerance and resistance in
response to heavy insecticide use. Although insecticide-resistance is thought to be rare among
biocontrol agents, lady beetles (Coleoptera: Coccinellidae) in particular, have been found to
develop resistance to a variety of broad-spectrum insecticides, including neonicotinoids (Tang et
al., 2015). Insecticide resistance has not been studied in many non-pest species (including
lampyrids), but if the selection pressure is high enough, firefly populations could evolve
increased tolerance or even resistance to neonicotinoid insecticides.

Differences among any of these potential mechanisms are likely driving differences in
tolerance between the two firefly species, namely, the dramatically reduced feeding response of
Photinus pyralis to clothianidin exposure. Although this difference could have been exacerbated
by mite pressure and the smaller body size of early-instar Photinus pyralis, it is possible that
Photinus pyralis has higher uptake, higher active-site affinity, or lower metabolism of

clothianidin as compared to Photuris.
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Despite their relative tolerance to clothianidin exposure, field-realistic neonicotinoid
contamination may still pose a threat to Photuris and Photinus. Although residual neonicotinoid
concentrations in soil are usually below 100 ppb (Schaafsma et al., 2016; Radolinski et al., 2019;
Pearsons et al., 2021), concentrations can regularly exceed these levels after agricultural
applications (as high as 594 ppb 23 days after planting neonicotinoid-coated seeds; Radolinski et
al., 2019), after turf applications ( 3 x higher than in agronomic settings; Armbrust and Peeler,
2002) and after soil drenches to manage hemlock wooly adelgid (over 4000 ng Al g! soil;
Knoepp et al., 2012). Such high concentrations are well within the acutely toxic and chronically
lethal range for Photuris and Photinus (Table 1). Encountering such high concentrations are
likely be even more lethal under field conditions, as firefly larvae that exhibited toxic responses
in the laboratory would be vulnerable to predation and starvation, two risks that can increase
mortality from insecticides (Kunkel et al., 2001).

As observed with other predatory beetle species (Cycloneda sanguinea [Coccinellidae]
and Chauliognathus flavipes [Cantharidae]; Fernandes et al., 2016), firefly larvae exhibited
reduced feeding activity in response to high neonicotinoid exposure. Firefly larvae that feed less
frequently may have less successful eclosion rates, and those that do eclose may have lower
reproductive success. Additionally, the prey that fireflies encounter in neonicotinoid-
contaminated environments likely provide an additional neonicotinoid exposure route. Photinus
larvae primarily feed on earthworms (Lewis et al., 2020), which have been found to contain
neonicotinoid concentrations above 200 ppb when collected from soybean fields that were
planted with neonicotinoid-coated seeds (Douglas et al., 2015) and 700 ppb when collected from
treated cereal fields (Pelosi et al., 2021). Firefly larvae of other species are known to feed on

slugs (Barker, 2004), which can also contain high doses of neonicotinoids (500 ppb), leading to
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disrupted biological control provided by carabid beetles (Douglas et al. 2015). Compounded with
reduced prey availability in habitats where neonicotinoids are used (Ritchie et al., 2019; Tooker
and Pearsons, 2021), decreased feeding activity and high risks of further neonicotinoid exposure
through contaminated prey may explain why adult lampyrid densities are significantly lower
where clothianidin has been used as a seed coating (Disque et al., 2019), despite low acute
mortality in our laboratory assays.

Despite low acute mortality, the sublethal effects of clothianidin were surprising, as some
Photuris larvae survived in a severely intoxicated state (not feeding, not building protective soil
chambers, only occasionally moving legs and/or mandibles) for over two months. A similar
phenomenon has been observed in European wireworms (Agriotes spp. [Coleoptera: Elateridae])
after exposure to clothianidin, with individuals surviving and even recovering from a severely
intoxicated state that can last months (van Herk et al., 2007; Vernon et al., 2007). For pests like
Agriotes spp., such sub-lethal effects of clothianidin exposure could still decrease crop damage
but may exacerbate the risk of Agriotes spp. developing neonicotinoid resistance. For predators
like Photuris, this long-term intoxication may limit their potential to provide biological control

beyond what would be expected based on population declines.

Conclusions

As larvae of the two firefly species that we studied appear to be somewhat tolerant to
clothianidin-contaminated soil, neonicotinoids alone are unlikely to be significant direct factors
in firefly declines in North America. Nevertheless, firefly populations around the world appear to

be suffering from other stressors (e.g., habitat loss, reduced prey availability, light pollution), and
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ecological research has demonstrated that animal populations exposed to multiple stresses can
suffer disproportionally more than what is suffered from a single stress (Relyea and Mills 2001).
Therefore, continued widespread contamination of larval firefly habitats with neonicotinoids
may hold potential to exacerbate the influence of other stressors on firefly-population declines

(Lewis et al., 2020).
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Figure 1

Healthy late-instar Photuris versicolor larvae (A) demonstrating the typical “curl and
glow” response after being prodded with blunt forceps and (B) feeding on moistened cat

food.
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Figure 2

Dose-response curves for late-instar Photuris versicolor exposed to clothianidin-
contaminated soil at 10, 100, 1000, and 10,000 ng clothianidin per gram of soil (n = 6

larvae fo

r each dose).

Toxic responses after (A) 24 h, (B) 7 d, and (C) 30 d, and lethal response after (D) 24 h, (E) 7

d, and (F) 30 d. Dots in each panel represent mean responses at each insecticide

concentration; the shaded area represents the 95% confidence interval for each curve.

Dotted lines in each panel marks the 50% toxic response or mortality threshold.
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Figure 3

Dose-response curves for early-instar Photuris versicolor exposed to clothianidin-
contaminated soil at 10, 100, 1000, and 10,000 ng clothianidin per gram of soil (n = 3

larvae for each dose).

Toxic responses after (A) 24 h, (B) 7 d, and (C) 30 d, and lethal response after (D) 24 h, (E) 7

d, and (F) 30 d. Dots in each panel represent mean responses at each insecticide

concentration; the shaded area represents the 95% confidence interval for each curve.

Dotted lines in each panel marks the 50% toxic response or mortality threshold.
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Figure 4

Dose-response curves for early-instar Photinus pyralis exposed to clothianidin-
contaminated soil at 10, 100, 1000, and 10,000 ng clothianidin per gram of soil (n = 3
sets of 5 larvae for each dose).

Toxic responses after (A) 24 h, (B) 7 d, and (C) 30 d, and lethal response after (D) 24 h, (E) 7
d, and (F) 30 d. Dots in each panel represent mean responses at each insecticide
concentration; the shaded area represents the 95% confidence interval for each curve.

Dotted lines in each panel marks the 50% toxic response or mortality threshold.
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Figure 5

Survivorship curves.

(A) late-instar Photuris (n=6), (B) early-instar Photuris (n=3), and (C) early-instar Photinus
(n=15) at different clothianidin concentrations. P-values next to each line indicate the
significance of reduced survivorship the control (with a Benjamini-Hochberg correction for
multiple comparisons). Lines and P-values were excluded where survivorship was 100% and

perfectly overlapped with control values (100 ppb in panel B, 10 and 100 ppb in panel C).

Survival was significantly affected by clothianidin exposure (late-instar Photuris: x°, = 18, P =

0.001; early-instar Photuris: ¥°, = 12.5, P = 0.01; early-instar Photinus: x°, = 58.3, P <
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Figure 6

Percent of feeding opportunities taken by firefly larvae.

(A) late-instar Photuris larvae (x°, = 16.3, P = 0.003), (B) early-instar Photuris larvae (x°, =

8.2, P = 0.08), and (C) early-instar Photinus larvae (x°,= 12.4, P = 0.0004). Different letters
indicate significant differences in late-instar Photuris feeding activity at P < 0.05 (Benjamini-
Hochberg correction for multiple comparisons). The asterisk indicates significantly lower

feeding activity by Photinus at P < 0.05 (Tukey HSD adjustment).
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Figure 7

Amount of time that late-instar Photuris spent in soil chambers at different clothianidin-

exposure levels (x°, = 18.4, P = 0.001).

Different letters indicate significant differences at P < 0.05 (Benjamini-Hochberg correction

for multiple comparisons).

50% 1

40% 1

W
-,
X

% of surviving days
in soil chamber
N
(-]
°

100/0'
C

0% 1

Control 10 100 1000 10000
Clothianidin, ng g‘1

Peer] reviewing PDF | (2021:09:65786:0:0:NEW 15 Sep 2021)



PeerJ

Table 1l(on next page)

Estimated median toxic concentrations (TC,,) and lethal concentrations (LCs,) for

Photuris versicolor and Photinus pyralis exposure to clothianidin-contaminated soil.

95% confidence intervals (Cl) are based on probit analyses. Cls are not shown where data did

not fit a cumulative standard normal distribution. n.r. = no response in tested range.
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TCsg LCs

Species timeframe R 95% CI R 95% CI
(ng g! soil) (ng g! soil)
Photuris, 24 h 1882 136-10,000+ > 10,000 -
late-instar, 7d 648 144-3047 > 10,000 -
6 larvae / dose 30d 574 46-9895 > 10,000 -
Photuris, 24 h >10,000 - n.r. -
early-instar, 7d 1169 - > 10,000 -
3 larvae / dose 30d 1169 - 1169 -
Photinus, 24 h 1726 8363486 n.r. -
early-instar, 7d 704 - n.r. -
3 sets of 5 / dose 30d 316 - 1591 246-10,000+
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