Toxicity of clothianidin to common Eastern North American fireflies (#65786)

First submission

Guidance from your Editor

Please submit by 2 Oct 2021 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

7 Figure file(s)

1 Table file(s)

1 Raw data file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

-	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Toxicity of clothianidin to common Eastern North American fireflies

Kirsten Ann Pearsons Corresp., 1, Sarah Lower 2, John F Tooker 1

Corresponding Author: Kirsten Ann Pearsons Email address: kfp5094@psu.edu

Background. Previous research suggests that firefly larvae (Coleoptera: Lampyridae) are susceptible to commonly used insecticides. In the United States, there has been a rapid and widespread adoption of neonicotinoid insecticides, predominantly used as seed coatings on large-acreage crops like corn, soy, and cotton. Neonicotinoid insecticides are persistent in soil yet mobile in water, so they have potential to contaminate firefly habitats both in and adjacent to application sites. As a result, firefly larvae may be at high risk of exposure to neonicotinoids, possibly jeopardizing this already at-risk group of charismatic insects.

Methods. To assess the sensitivity of firefly larvae to neonicotinoids, we exposed larvae of *Photuris versicolor* complex and *Photinus pyralis* to multiple levels of clothianidin-contaminated soil.

Results. Compared to other soil invertebrates and beetle species, both *Photuris versicolor* and *Photinus pyralis* were relatively tolerant to clothianidin, only exhibiting long-term intoxication and mortality at concentrations above 1 μ g g⁻¹ soil. Under sub-lethal clothianidin exposure, firefly larvae fed less and spent less time in protective soil chambers, two behavioral changes which could decrease larval survival in the wild.

Discussion. Coupled with other stressors such as light pollution and habitat loss, extensive neonicotinoid contamination appears to have potential to contribute to firefly declines in the United States.

 $^{^{1} \ \}mathsf{Department} \ \mathsf{of} \ \mathsf{Entomology}, \ \mathsf{Pennsylvania} \ \mathsf{State} \ \mathsf{University}, \ \mathsf{University} \ \mathsf{Park}, \ \mathsf{Pennsylvania}, \ \mathsf{United} \ \mathsf{States}$

² Biology Department, Bucknell University, Lewisburg, Pennsylvania, United States

Toxicity of clothianidin to common Eastern North American fireflies

3

4 Kirsten A. Pearsons¹, Sarah Lower², John F. Tooker¹

5

- 6 Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- 7 ² Biology Department, Bucknell University, Lewisburg, PA, USA

8

- 9 Corresponding Author:
- 10 Kirsten Pearsons¹
- 11 101 Merkle Lab, University Park, PA, 16802 USA
- 12 Email address: pearsons.kirsten@gmail.com

Abstract

14	Background. Previous research suggests that firefly larvae (Coleoptera: Lampyridae) are
15	susceptible to commonly used insecticides. In the United States, there has been a rapid and
16	widespread adoption of neonicotinoid insecticides, predominantly used as seed coatings on large-
17	acreage crops like corn, soy, and cotton. Neonicotinoid insecticides are persistent in soil yet
18	mobile in water, so they have potential to contaminate firefly habitats both in and adjacent to
19	application sites. As a result, firefly larvae may be at high risk of exposure to neonicotinoids,
20	possibly jeopardizing this already at-risk group of charismatic insects.
21	Methods. To assess the sensitivity of firefly larvae to neonicotinoids, we exposed larvae of
22	Photuris versicolor complex and Photinus pyralis to multiple levels of clothianidin-contaminated
23	soil.
24	Results. Compared to other soil invertebrates and beetle species, both <i>Photuris versicolor</i> and
25	Photinus pyralis were relatively tolerant to clothianidin, only exhibiting long-term intoxication
26	and mortality at concentrations above 1 $\mu g \ g^{\text{-1}}$ soil. Under sub-lethal clothianidin exposure,
27	firefly larvae fed less and spent less time in protective soil chambers, two behavioral changes
28	which could decrease larval survival in the wild.
29	Discussion. Coupled with other stressors such as light pollution and habitat loss, extensive
30	neonicotinoid contamination appears to have potential to contribute to firefly declines in the
31	United States.
32	

33

34

35

Introduction

In the United States alone, insects are estimated to provide over \$50 billion in ecological services (Losey and Vaughan, 2006). Human activities, however, have put these services at risk

36	by triggering global insect declines (Sánchez-Bayo and Wyckhuys, 2019). Some charismatic
37	groups such as fireflies (Coleoptera: Lampyridae) are at elevated risk of at least localized
38	extinction due to ongoing human activities such as heavy pesticide use in and around their
39	habitats (Reed et al., 2020). Fireflies have great popular appeal and aesthetic and cultural value,
40	but fireflies also contribute biological control of some pest species, including slugs and snails,
41	which can be important agricultural pests (Godan, 1983; Lewis, 2016).
42	Despite broad agreement that pesticides are a serious extinction threat to fireflies (Lewis
43	et al., 2020), there is a very poor understanding of the direct toxicity of insecticides on fireflies.
44	The most commonly applied classes of insecticides (neonicotinoids, pyrethroids, or
45	organophosphates) are broadly toxic to most insect taxa (Sparks, 2013), so fireflies are unlikely
46	to be an exception. Indeed, full-strength organophosphate and neonicotinoid formulations are
47	toxic to aquatic firefly larvae (Tabaru et al., 1970; Lee et al., 2008). Unfortunately, there have
48	been no studies assessing how terrestrial firefly larvae respond to residual concentrations of these
49	insecticides in soil, a likely route of exposure. Larvae of many common firefly species in the
50	United States are soil-dwellers that intimately interact with soil as they forage for prey and form
51	protective molting chambers (Buschman, 1984; Lewis, 2016). These larvae inhabit forested,
52	suburban, and agricultural soils, where neonicotinoid insecticides are often applied directly, or
53	via coatings on crop seeds, to protect against pests (Knoepp et al., 2012; Douglas and Tooker,
54	2015; Simon-Delso et al., 2015). In these habitats, neonicotinoid concentrations in soil can range
55	from less than 5 ppb to over 4 ppm, concentrations that could plausibly influence behavior and
56	survival of firefly larvae (Lee et al., 2008; Knoepp et al., 2012; Schaafsma et al., 2015; Pearsons
57	et al., 2021). Some indirect evidence suggests that firefly larvae are susceptible to neonicotinoids
58	because adult lampyrid densities have been found to be lower where neonicotinoid-coated seeds

were planted (Disque et al., 2019); however, to our knowledge, there have been no direct
evaluations of how terrestrial firefly larvae respond to neonicotinoid-contaminated soil.

To assess the direct sensitivity of fireflies to neonicotinoid insecticides, we measured feeding behavior, development, and survival of larvae of two common North American firefly species – *Photuris versicolor* species complex and *Photinus pyralis* (Linnaeus 1767) – exposed to clothianidin-contaminated soil. We focused on clothianidin, as it is a common seed- and soil-applied neonicotinoid and the primary metabolite of another commonly applied neonicotinoid, thiamethoxam (Douglas and Tooker, 2015). We exposed larvae to multiple levels of clothianidin-contaminated soil for 30 to 100 days with the expectation that they would be sensitive to clothianidin at concentrations that have been detected in firefly habitats.

Materials & Methods

Chemicals

We acquired clothianidin from Chem Service (West Chester, PA, USA; purity \geq 98%), and prepared stock solutions of 0.2, 2, 20, and 200 ppm clothianidin in acetone (Sigma Aldrich, St. Louis, MO, USA, ACS reagent, purity \geq 99.5%). Pure acetone served as a control. We stored stock solutions at 4 °C and allowed them to reach room temperature (20 °C) before applying them to soils for the assays.

Firefly Collection and Colony Care

We ran toxicity assays on three separate cohorts of fireflies: late-instar larvae from the *Photuris versicolor* species complex (hereafter referred to as *Photuris*), early-instar *Photuris* versicolor complex, and early-instar *Photinus pyralis*. Both *Photuris versicolor* and *Photinus*

pyralis are relatively large-bodied (6-20 mm adult body length), widespread firefly species found
throughout Eastern North America (Lewis, 2016). Because both species spend 1-2 years in the
soil as larvae and feed on soil invertebrates (Photuris versicolor are thought to feed on a
diversity of soil invertebrates while Photinus pyralis larvae are considered specialists on
earthworms; McLean et al., 1972; Buschman, 1984; Lewis, 2016), they likely experience chronic
contact and oral neonicotinoid exposure in contaminated habitats.
Five of the late-instar <i>Photuris</i> were reared from eggs laid by a mated female collected in
late July 2019 from the Bucknell University Chillisquaque Creek Natural Area (Montour Co,
PA; 41° 01′ 15″ N, 76° 44′ 53″ W), while the majority of late-instar <i>Photuris</i> were wild-collected
in summer of 2019 from multiple locations throughout Pennsylvania: Bald Eagle State Park (5
August; Centre Co, 41°00'44.0"N 77°12'54.3"W), Allegheny National Forest (24-25 June; Forest
Co, 41°31'29.8"N 79°17'33.9"W), and Bucknell University Forrest D. Brown Conference Center
(23-24 July; Union Co, PA; 40° 57′ 28" N, 77° 00′ 49" W). After collection, we housed
(23-24 July; Union Co, PA; 40° 57′ 28″ N, 77° 00′ 49″ W). After collection, we housed individual larvae in 16-oz clear plastic deli containers (11.5-cm diameter × 8-cm tall) lined with
individual larvae in 16-oz clear plastic deli containers (11.5-cm diameter × 8-cm tall) lined with
individual larvae in 16-oz clear plastic deli containers (11.5-cm diameter × 8-cm tall) lined with moist filter paper. Every 1-2 weeks, we provided each larva with one piece of cat food (Grain-
individual larvae in 16-oz clear plastic deli containers (11.5-cm diameter × 8-cm tall) lined with moist filter paper. Every 1-2 weeks, we provided each larva with one piece of cat food (Grain-Free Real Chicken Recipe Dry Cat Food, Whole Earth Farm TM , Merrick Pet Care Inc., Amarillo,
individual larvae in 16-oz clear plastic deli containers (11.5-cm diameter × 8-cm tall) lined with moist filter paper. Every 1-2 weeks, we provided each larva with one piece of cat food (Grain-Free Real Chicken Recipe Dry Cat Food, Whole Earth Farm TM , Merrick Pet Care Inc., Amarillo, TX, USA), which had been softened in DI-water for 1 h. After 24 h, we removed cat food and
individual larvae in 16-oz clear plastic deli containers (11.5-cm diameter × 8-cm tall) lined with moist filter paper. Every 1-2 weeks, we provided each larva with one piece of cat food (Grain-Free Real Chicken Recipe Dry Cat Food, Whole Earth Farm TM , Merrick Pet Care Inc., Amarillo, TX, USA), which had been softened in DI-water for 1 h. After 24 h, we removed cat food and replaced the filter paper. Occasionally there was extensive fungal growth on the cat food, which
individual larvae in 16-oz clear plastic deli containers (11.5-cm diameter × 8-cm tall) lined with moist filter paper. Every 1-2 weeks, we provided each larva with one piece of cat food (Grain-Free Real Chicken Recipe Dry Cat Food, Whole Earth Farm™, Merrick Pet Care Inc., Amarillo, TX, USA), which had been softened in DI-water for 1 h. After 24 h, we removed cat food and replaced the filter paper. Occasionally there was extensive fungal growth on the cat food, which could be fatal to <i>Photuris</i> larvae; in these instances, we gently wiped larvae with DI water and a
individual larvae in 16-oz clear plastic deli containers (11.5-cm diameter × 8-cm tall) lined with moist filter paper. Every 1-2 weeks, we provided each larva with one piece of cat food (Grain-Free Real Chicken Recipe Dry Cat Food, Whole Earth Farm TM , Merrick Pet Care Inc., Amarillo, TX, USA), which had been softened in DI-water for 1 h. After 24 h, we removed cat food and replaced the filter paper. Occasionally there was extensive fungal growth on the cat food, which could be fatal to <i>Photuris</i> larvae; in these instances, we gently wiped larvae with DI water and a delicate task wipe then transferred them to clean containers.

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

flash pattern (Lewis, 2016) while female *Photinus* were collected from nearby patches of short grass and were identified based on their flash pattern and similar morphology to the *Photinus* males (Lewis, 2016). Photuris females were collected near Photinus females and identified based on their green-shifted flash color and morphology (Lewis, 2016). Additional *Photinus* males were collected to provision the mated *Photuris* females. We collected *Photuris* and *Photinus* in a residential area (State College, Centre Co, PA; 40° 47′ 03" N, 77° 52′ 25" W) into two separate 16-oz deli container "nurseries"; each nursery contained a handful of moist sphagnum moss on top of moist soil (2-in deep; silt loam, collected from certified organic fields at the Russell E. Larson Agricultural Research Center at Rock Springs, PA, U.S.A.: 40° 42′ 52″ N, 77° 56′ 46″ W). Both *Photinus* females mated within a few minutes of collection. Female *Photuris* and *Photinus* laid eggs within the following 3 days (50+ *Photuris* eggs and 100+ Photinus eggs; we did not attempt more accurate counts to avoid damaging eggs). Under ambient temperatures, first-instar larvae of both species began to emerge three weeks after eggs were laid (5 August 2020). We kept *Photuris* larvae in the nursery chambers for two weeks. and then, after we observed significant cannibalism among larvae, moved them into individual soil-lined 1-oz polypropylene portion containers. As with larvae collected and reared from 2019, developing *Photuris* were fed moistened cat food (Grain-Free Real Chicken Recipe Dry Cat Food, Whole Earth FarmTM, Merrick Pet Care Inc., Amarillo, TX, USA) in addition to pieces of freeze-killed *Lumbricus terrestris* (Josh's Frogs, Owosso, MI). As evidence of the hypothesis that *Photinus pyralis* larvae are specialist on earthworms, *Photinus* larvae did not feed on cat food but did feed gregariously on freeze-killed L. terrestris. Unlike Photuris, Photinus failed to

thrive in isolation, so they were kept in the nursery chamber until starting toxicity assays.

127

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

Toxicity assays with late-instar Photuris versicolor

We started toxicity assays with late-instar *Photuris versicolor* on 22 June 2020. We used 1-oz polypropylene portion containers containing 8 g of soil (same soil source as nursery chambers) for our assay containers. To the soil in each assay container, we added 0.5 mL of the appropriate clothianidin stock solution, allowed the acetone to completely evaporate, then added 2-mL of DI water to moisten the soil.

After setting up assay containers, we weighed the late-instar *Photuris* and randomly assigned each to a particular clothianidin concentration (ensuring all larvae in each dose-set were sourced from the same location). For each concentration (0, 10 ng g⁻¹ soil, 100 ng g⁻¹ soil, 1 µg g-1 soil, 10 µg g⁻¹ soil), we ran six parallel assays with late-instar *Photuris* (30 larvae in total, each in separate assay containers). We recorded firefly status at 1, 4, and 24 h, and every day for an additional 99 d. Fireflies were categorized as dead (D), exhibiting a toxic response (T), or apparently healthy (A). A larva was assumed dead if it did not respond to gentle prodding with forceps. If a larva was flipped on its back and/or demonstrating repetitive twitching of its legs or head, it was recorded as exhibiting a toxic response (T). Fireflies were recorded as apparently healthy (A) if they exhibited a usual response to prodding from blunt forceps (Fig 1A; quickly curled up on its side, often glowing). At each status check, we noted if a firefly had constructed a protective soil chamber, then carefully dismantled the chamber to check larval status. During the toxicity assays, we fed larvae once a week by carefully transferring individuals out of the assay containers into clean containers lined with moisten filter and containing a piece of moistened cat food. After 24 h, we returned fireflies to the assay containers and noted if the cat food had obvious signs of feeding (Fig 1B). Assay containers were kept in a dark drawer except when doing daily checks, and we misted containers with DI water as needed to maintain soil moisture.

Toxicity assay with early-instar Photuris versicolor

Toxicity assays with early-instar *Photuris versicolor* were similar to assays with late-instar larvae, except we added half the amount of soil (4 g) and half the volume of clothianidin stock solutions (0.25 mL) to each assay container. On 17 Sept 2020, we started three assays with early-instar *Photuris* (15 larvae in total), feeding them cat food once a week and recording their status at 1, 4, and 24 h, and every day for 10 d, then twice a week for an additional 90 d. Unlike for late-instar *Photuris*, we fed early-instars by directly placing moistened cat food in the assay containers (we removed the food 24 h later).

Toxicity assay with early-instar Photinus pyralis

As with early-instar *Photuris*, all assays with *Photinus pyralis* were run in 1-oz polypropylene portion containers containing 4 g of soil with 0.25 mL doses of clothianidin stock solutions. On 17 Sept 2020, we started fifteen assays with early-instar *Photinus* (three sets of five larvae per container, 75 larvae in total), recorded their status at 1, 4, and 24 h, and every day for 10 d, then at least twice a week for an additional 20 d. We terminated *Photinus* assays earlier than *Photuris* assays due to an acarid mite infestation, which rapidly increased larval mortality across all doses. During the assays, we fed *Photinus* pieces of earthworm (*L. terrestris*) in the same manner that early-instar *Photuris* were fed cat food.

Statistical Analysis

We performed all statistical analyses in R (v4.0.4) (R Core Team, 2021). For each firefly cohort, we calculated median toxic concentrations (TC_{50}) and median lethal concentrations

(LC₅₀) at 24 h, 7 d, and 30 d of exposure using probit analysis (LC_PROBIT from the "ecotox" package; Robertson et al., 2017; Hlina et al., 2019); for TC₅₀ estimates, we included both sublethal and lethal responses, while LC₅₀ estimates were based on mortality alone. To assess long-term survivorship across clothianidin levels, we used the Kaplan-Meier method ("survival" functions SURVDIFF and PAIRWISE_SURVDIFF; Therneau, 2021; Therneau and Grambsch, 2000). To determine how clothianidin exposure affected firefly behavior, we used non-parametric Mann-Whitney U tests (WILCOX.TEST) to compare feeding frequency and soil-chamber construction across clothianidin doses; we made pairwise comparisons using Wilcoxon rank sum tests with continuity corrections (PAIRWISE.WILCOX.TEST).

Results

24 h, 7 d, and 30 d TC_{50} and LC_{50} estimates

Dose-response curves and estimated TC_{50} and LC_{50} indicate that *Photuris versicolor* and *Photinus pyralis* were surprisingly tolerant of exposure to clothianidin (Table 1 and Fig 2-4). Reliable TC_{50} and LC_{50} estimates were limited by our small sample sizes and low acute mortality within the tested concentration range. Overall, TC_{50} values ranged from 0.5 ppm to 2 ppm while LC_{50} values exceeded our test range.

Firefly Survival

Clothianidin exposure significantly reduced long-term firefly survival at high concentrations (Fig 5). All late-instar *Photuris* exposed to the highest clothianidin concentrations (1000 and 10,000 ng g⁻¹) began to exhibit toxic responses within 24 h (Fig 2A), never recovered, and died by day 84. *Photuris* was somewhat tolerant to lower clothianidin concentrations (10 ng

g⁻¹ or 100 ng g⁻¹) and neither late- or early-instar larvae exposed to low concentrations had significantly lower 100 d survival probability compared to controls (Fig 5A-B). All *Photuris* in the control treatment either pupated (2 out of 6 late-instar larvae) or survived through day 100 (4 out of 6 late-instar larvae). For *Photinus*, exposure to 1 μ g g⁻¹ and 10 μ g g⁻¹ clothianidin led to marginally significant (P = 0.07) and significantly (P < 0.0001) lower survivorship within 30 d of exposure (Fig. 5C).

Feeding Behavior

Clothianidin exposure significantly affected the feeding behavior of firefly larvae (Fig 6). Larvae exposed to the highest clothianidin concentration (10 μ g g⁻¹ soil) never fed during the toxicity assay. Late-instar *Photuris* exposed to 1 ppm (1 μ g g⁻¹ soil) fed significantly less than control larvae ($\chi^2_4 = 16.3$, P = 0.003), and early-instar *Photinus* larvae fed significantly less at higher doses (1 μ g g⁻¹ and 10 μ g g⁻¹) compared to the control or lower doses ($\chi^2_1 = 12.4$, P = 0.0004).

Soil-Chambers, Molting, and Pupation of Late-instar *Photuris versicolor*

Late-instar *Photuris* that survived through day 100 went through 1 to 5 periods where they regularly formed protective soil chambers (median = 2) and spent anywhere from 1 to 20 total days in soil chambers (median = 9). Larvae exposed to 10 ppm clothianidin (10 μ g/g⁻¹ soil) never constructed soil chambers while larvae exposed to 1 ppm clothianidin spent significantly fewer days in soil chambers than larvae exposed to 10 ppb (P = 0.01; Fig 7).

Formation of protective soil chambers did not correspond with molting or pupation, and all recorded molting and pupation events occurred outside soil chambers, on the soil surface.

Late-instar *Photuris* larvae only molted once or twice, irrespective of how frequently or for how long they built soil chambers (larvae that survived through 100 days; frequency: $R^2_{adj} = -0.09$, $F_{1,10} = 0.10$, P = 0.76; duration: $R^2_{adj} = -0.02$, $F_{1,10} = 0.81$, P = 0.39). Six of the thirty late-instar *Photuris* larvae pupated; five of which successfully eclosed within 35 d of starting the assays (two controls, one at 10 ppb, two at 100 ppb) and one which was unsuccessful (1000 ppb). At 35 d, three of the larvae exposed to the highest clothianidin concentration (10,000 ppb) were still alive, but none of these larvae ever entered a pupal stage. Of individuals that successfully eclosed, three were lab-reared from eggs laid in 2019 (3 out of 5) while only two were wild-collected (2 out of 25).

Discussion

Photuris versicolor complex and Photinus pyralis larvae did not significantly respond to clothianidin concentrations at or below 100 ng g⁻¹ soils (100 ppb), but both firefly species exhibited significant toxic responses to higher concentrations. Compared to other soil invertebrates, larvae of these two firefly species were relatively tolerant to clothianidin-contaminated soil, with over 2× and 30× the TC₅₀ values for the earthworm Eisenia andrei and the collembolan Folsomia candida, respectively (de Lima e Silva et al., 2020), and higher tolerance compared to other soil-dwelling beetles (Agriotes spp. [Elateridae] and Atheta coriaria [Staphylinidae]; van Herk et al., 2007; Cloyd et al., 2009). Although we did not explicitly explore any mechanisms for why firefly larvae may be tolerant to clothianidin exposure, there are multiple behavioral, morphological, and biochemical processes could be limiting their sensitivity to clothianidin (Alyokhin et al., 2008).

Behavioral avoidance of neonicotinoids has been observed across insect orders and beetle
families (Easton and Goulson, 2013; Fernandes et al., 2016; Pisa et al., 2021; Korenko et al.,
2019), and the results of this current study provide some support for behavioral avoidance of
neonicotinoids by Lampyridae. Although firefly larvae could not completely avoid the
contaminated soil in our arenas, they could decrease oral exposure by limiting construction of
their soil chambers. To form soil chambers, <i>Photuris</i> larvae manipulate soil with their
mouthparts (Buschman, 1984), providing a potentially more toxic pathway for neonicotinoid
exposure (Decourtye and Devillers, 2010). As neonicotinoids are repellant to other beetle species
(Easton and Goulson, 2013), neonicotinoid-contaminated soil could have repulsed firefly larvae,
possibly explaining reduced chamber formation above 1000 ng clothianidin g-1 soil.
Alternatively, sub-lethal neonicotinoid exposure may simply decrease the ability of fireflies to
construct soil chambers. Choice-based avoidance studies could be used to test if avoidance or
toxicity at high clothianidin concentrations drove the decreased time late-instar <i>Photuris</i> spent
constructing and inhabiting soil chambers.
In addition to behavioral avoidance, specific morphological and metabolic characteristics
of fireflies may protect <i>Photuris</i> and <i>Photinus</i> larvae from toxic clothianidin exposure. Unlike
many other soil invertebrates (e.g., earthworms and mollusks), firefly larvae have a comparably
protective waxy cuticle that may act as an effective barrier against neonicotinoid uptake
(Decourtye and Devillers, 2010; Wang et al., 2012). And even when clothianidin is absorbed,
insects can resist target-site exposure by quickly detoxify and/or excrete neonicotinoids (Olson et
al., 2000; Alyokhin et al., 2008). Although there has been no work on neonicotinoid metabolism
by fireflies, <i>Photuris</i> and <i>Photinus</i> may upregulate detoxification enzymes after clothianidin
exposure, similar to an aquatic firefly species after exposure to benzo[a]pyrene (Zhang et al.,

2021). Additionally, *Photuris* and *Photinus* may be tolerant to clothianidin if neonicotinoids have a low binding affinity to nicotinic acetylcholine receptors of fireflies; however, this mechanism seems unlikely due to the broad affinity of neonicotinoids for nicotinic acetylcholine receptors across insect orders (Matsuda et al., 2020).

There is also the unlikely possibility that extensive neonicotinoid use has exerted selection pressure on the firefly populations in central Pennsylvania to evolve resistance to clothianidin. The way neonicotinoids are currently used is a perfect storm for developing insecticide resistance (Tooker et al., 2017), and while most concern has focused on resistance-development in herbivorous pest species, biocontrol agents and other predatory arthropods (Bielza, 2016; Mota-Sanchez and Wise, 2021) can develop insecticide tolerance and resistance in response to heavy insecticide use. Although insecticide-resistance is thought to be rare among biocontrol agents, lady beetles (Coleoptera: Coccinellidae) in particular, have been found to develop resistance to a variety of broad-spectrum insecticides, including neonicotinoids (Tang et al., 2015). Insecticide resistance has not been studied in many non-pest species (including lampyrids), but if the selection pressure is high enough, firefly populations could evolve increased tolerance or even resistance to neonicotinoid insecticides.

Differences among any of these potential mechanisms are likely driving differences in tolerance between the two firefly species, namely, the dramatically reduced feeding response of *Photinus pyralis* to clothianidin exposure. Although this difference could have been exacerbated by mite pressure and the smaller body size of early-instar *Photinus pyralis*, it is possible that *Photinus pyralis* has higher uptake, higher active-site affinity, or lower metabolism of clothianidin as compared to *Photuris*.

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

Despite their relative tolerance to clothianidin exposure, field-realistic neonicotinoid contamination may still pose a threat to *Photuris* and *Photinus*. Although residual neonicotinoid concentrations in soil are usually below 100 ppb (Schaafsma et al., 2016; Radolinski et al., 2019; Pearsons et al., 2021), concentrations can regularly exceed these levels after agricultural applications (as high as 594 ppb 23 days after planting neonicotinoid-coated seeds; Radolinski et al., 2019), after turf applications (3 × higher than in agronomic settings; Armbrust and Peeler, 2002) and after soil drenches to manage hemlock wooly adelgid (over 4000 ng AI g⁻¹ soil; Knoepp et al., 2012). Such high concentrations are well within the acutely toxic and chronically lethal range for *Photuris* and *Photinus* (Table 1). Encountering such high concentrations are likely be even more lethal under field conditions, as firefly larvae that exhibited toxic responses in the laboratory would be vulnerable to predation and starvation, two risks that can increase mortality from insecticides (Kunkel et al., 2001). As observed with other predatory beetle species (*Cycloneda sanguinea* [Coccinellidae] and Chauliognathus flavipes [Cantharidae]; Fernandes et al., 2016), firefly larvae exhibited reduced feeding activity in response to high neonicotinoid exposure. Firefly larvae that feed less frequently may have less successful eclosion rates, and those that do eclose may have lower reproductive success. Additionally, the prey that fireflies encounter in neonicotinoidcontaminated environments likely provide an additional neonicotinoid exposure route. Photinus larvae primarily feed on earthworms (Lewis et al., 2020), which have been found to contain neonicotinoid concentrations above 200 ppb when collected from soybean fields that were planted with neonicotinoid-coated seeds (Douglas et al., 2015) and 700 ppb when collected from

treated cereal fields (Pelosi et al., 2021). Firefly larvae of other species are known to feed on

slugs (Barker, 2004), which can also contain high doses of neonicotinoids (500 ppb), leading to

disrupted biological control provided by carabid beetles (Douglas et al. 2015). Compounded with reduced prey availability in habitats where neonicotinoids are used (Ritchie et al., 2019; Tooker and Pearsons, 2021), decreased feeding activity and high risks of further neonicotinoid exposure through contaminated prey may explain why adult lampyrid densities are significantly lower where clothianidin has been used as a seed coating (Disque et al., 2019), despite low acute mortality in our laboratory assays.

Despite low acute mortality, the sublethal effects of clothianidin were surprising, as some *Photuris* larvae survived in a severely intoxicated state (not feeding, not building protective soil chambers, only occasionally moving legs and/or mandibles) for over two months. A similar phenomenon has been observed in European wireworms (*Agriotes* spp. [Coleoptera: Elateridae]) after exposure to clothianidin, with individuals surviving and even recovering from a severely intoxicated state that can last months (van Herk et al., 2007; Vernon et al., 2007). For pests like *Agriotes* spp., such sub-lethal effects of clothianidin exposure could still decrease crop damage but may exacerbate the risk of *Agriotes* spp. developing neonicotinoid resistance. For predators like *Photuris*, this long-term intoxication may limit their potential to provide biological control beyond what would be expected based on population declines.

Conclusions

As larvae of the two firefly species that we studied appear to be somewhat tolerant to clothianidin-contaminated soil, neonicotinoids alone are unlikely to be significant direct factors in firefly declines in North America. Nevertheless, firefly populations around the world appear to be suffering from other stressors (e.g., habitat loss, reduced prey availability, light pollution), and

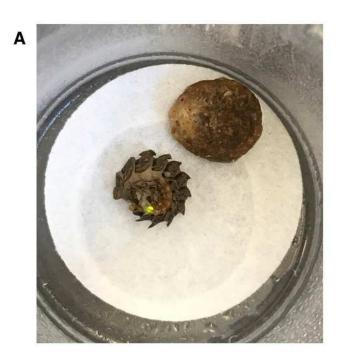
333	ecological research has demonstrated that animal populations exposed to multiple stresses can
334	suffer disproportionally more than what is suffered from a single stress (Relyea and Mills 2001).
335	Therefore, continued widespread contamination of larval firefly habitats with neonicotinoids
336	may hold potential to exacerbate the influence of other stressors on firefly-population declines
337	(Lewis et al., 2020).
338	
339	Acknowledgements
340	We would like to thank Cheyenne McKinley and Nellie Heitzman for assistance with
341	specimen collection and rearing. Specimens were collected in Bald Eagle State Park,
342	Pennsylvania under permit SFRA-1907 to S. Lower and in Allegheny National Forest under
343	firefly monitoring permit to the Pennsylvania Firefly Festival. We would also like to thank Larry
344	Buschman for his advice on firefly collection and rearing.
345	
346	References
347	
348	Alyokhin A, Baker M, Mota-Sanchez D, Dively G, Grafius E. 2008. Colorado Potato Beetle
349	resistance to insecticides. American Journal of Potato Research 85:395-413. DOI:
350	<u>10.1007/s12230-008-9052-0</u> .
351	Armbrust KL, Peeler HB. 2002. Effects of formulation on the run-off of imidacloprid from turf.
352	Pest Management Science 58:702–706. DOI: <u>10.1002/ps.518</u> .
353	Barker GM. 2004. Natural Enemies of Terrestrial Molluscs. Oxford, United Kingdom: CABI
354	Publishing.

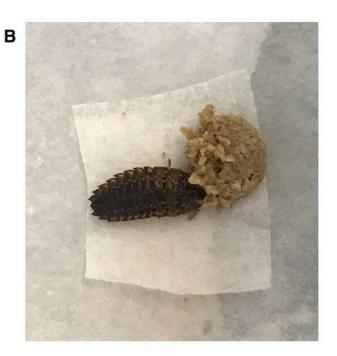
355	Bielza P. 2016. Insecticide Resistance in Natural Enemies. In: Horowitz AR, Ishaaya I eds.
356	Advances in Insect Control and Resistance Management. Switzerland: Springer
357	International Publishing, 313–329. DOI: <u>10.1007/978-3-319-31800-4</u> .
358	Buschman LL. 1984. Larval biology and ecology of <i>Photuris</i> Fireflies (Lampyridae: Coleoptera)
359	in Northcentral Florida. Journal of the Kansas Entomological Society 57:7-16.
360	Cloyd RA, Timmons NR, Goebel JM, Kemp KE. 2009. Effect of pesticides on adult rove beetle
361	Atheta coriaria (Coleoptera: Staphylinidae) survival in growing medium. Journal of
362	Economic Entomology 102:1750–1758. DOI: <u>10.1603/029.102.0504</u> .
363	Decourtye A, Devillers J. 2010. Ecotoxicity of Neonicotinoid Insecticides to Bees. In: Thany SH
364	ed. Insect Nicotinic Acetylcholine Receptors. Advances in Experimental Medicine and
365	Biology. New York, NY: Springer New York, 85–95. DOI: <u>10.1007/978-1-4419-6445-8_8</u> .
366	Disque HH, Hamby KA, Dubey A, Taylor C, Dively GP. 2019. Effects of clothianidin-treated
367	seed on the arthropod community in a mid-Atlantic no-till corn agroecosystem. Pest
368	Management Science 75:969–978. DOI: <u>10.1002/ps.5201</u> .
369	Douglas MR, Rohr JR, Tooker JF. 2015. Neonicotinoid insecticide travels through a soil food
370	chain, disrupting biological control of non-target pests and decreasing soya bean yield.
371	Journal of Applied Ecology 52:250–260. DOI: <u>10.1111/1365-2664.12372</u> .
372	Douglas MR, Tooker JF. 2015. Large-scale deployment of seed treatments has driven rapid
373	increase in use of neonicotinoid insecticides and preemptive pest management in U.S. field
374	crops. Environmental Science & Technology 49:5088–5097. DOI: 10.1021/es506141g.
375	Easton AH, Goulson D. 2013. The neonicotinoid insecticide imidacloprid repels pollinating flies
376	and beetles at field-realistic concentrations. <i>PLoS ONE</i> 8:e54819. DOI:
377	10.1371/journal.pone.0054819.

3/8	Fernandes MES, Alves FM, Pereira RC, Aquino LA, Fernandes FL, Zanuncio JC. 2016. Lethal
379	and sublethal effects of seven insecticides on three beneficial insects in laboratory assays
380	and field trials. <i>Chemosphere</i> 156:45–55. DOI: <u>10.1016/j.chemosphere.2016.04.115</u> .
381	Godan D. 1983. Pest slugs and snails: biology and control. New York: Springer.
382	van Herk WG, Vernon RS, Clodius M, Harding C, Tolman JH. 2007. Mortality of five wireworm
383	species (Coleoptera: Elateridae), following topical application of clothianidin and
384	chlorpyrifos. J. Entomol. Soc. Brit. Columbia 103:55-64.
385	Hlina BL, Birceanu O, Robinson CS, Dhiyebi H, Wilkie MP. 2019. Changes in the sensitivity of
386	piscicide in an invasive species. North American Journal of Fisheries Management.
387	Knoepp JD, Vose JM, Michael JL, Reynolds BC. 2012. Imidacloprid movement in soils and
388	impacts on soil microarthropods in southern Appalachian eastern hemlock stands. Journal of
389	Environmental Quality 41:469–478. DOI: <u>10.2134/jeq2011.0306</u> .
390	Korenko S, Saska P, Kysilková K, Řezáč M, Heneberg P. 2019. Prey contaminated with
391	neonicotinoids induces feeding deterrent behavior of a common farmland spider. Scientific
392	Reports 9:15895. DOI: 10.1038/s41598-019-52302-6.
393	Kunkel BA, Held DW, Potter DA. 2001. Lethal and sublethal effects of bendiocarb,
394	halofenozide, and imidacloprid on Harpalus pennsylvanicus (Coleoptera: Carabidae)
395	following different modes of exposure in turfgrass. Journal of Economic Entomology
396	94:60–67. DOI: <u>10.1603/0022-0493-94.1.60</u> .
397	Lee K-Y, Kim Y-H, Lee J-W, Song M-K, Nam S-H. 2008. Toxicity of firefly, Luciola lateralis
398	(Coleoptera Lampyridae) to commercially registered insecticides and fertilizers. Korean
399	Jouranl of Applied Entomology 47:265–272.

400	Lewis S. 2016. Silent Sparks: The Wondrous World of Fireflies. Princeton, NJ: Princeton
401	University Press. DOI: <u>10.2307/j.ctv7h0sxp</u> .
402	Lewis SM, Wong CH, Owens ACS, Fallon C, Jepsen S, Thancharoen A, Wu C, De Cock R,
403	Novák M, López-Palafox T, Khoo V, Reed JM. 2020. A global perspective on firefly
404	extinction threats. <i>BioScience</i> 70:157–167. DOI: <u>10.1093/biosci/biz157</u> .
405	de Lima e Silva C, Rooij W, Verweij RA, Gestel CAM. 2020. Toxicity in neonicotinoids to
406	Folsomia candida and Eisenia andrei. Environmental Toxicology and Chemistry 39:548–
407	555. DOI: <u>10.1002/etc.4634</u> .
408	Losey JE, Vaughan M. 2006. The economic value of ecological services provided by insects.
409	BioScience 56:311. DOI: <u>10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2</u> .
410	Matsuda K, Ihara M, Sattelle DB. 2020. Neonicotinoid insecticides: molecular targets, resistance,
411	and toxicity. Annual Review of Pharmacology and Toxicology 60:241-255. DOI:
412	10.1146/annurev-pharmtox-010818-021747.
413	McLean M, Buck J, Hanson FE. 1972. Culture and Larval Behavior of Photurid Fireflies.
414	American Midland Naturalist 87:133. DOI: 10.2307/2423887.
415	Mota-Sanchez D, Wise JC. 2021. Arthropod pesticide resistance database.
416	Olson ER, Dively GP, Nelson JO. 2000. Baseline Susceptibility to Imidacloprid and Cross
417	Resistance Patterns in Colorado Potato Beetle (Coleoptera: Chrysomelidae) Populations.
418	Journal of Economic Entomology 93:447–458. DOI: <u>10.1603/0022-0493-93.2.447</u> .
419	Pearsons KA, Rowen EK, Elkin KR, Wickings K, Smith RG, Tooker JF. 2021. Small-grain cover
420	crops have limited effect on neonicotinoid contamination from seed coatings.
421	Environmental Science & Technology 55:4679–4687. DOI: 10.1021/acs.est.0c05547.

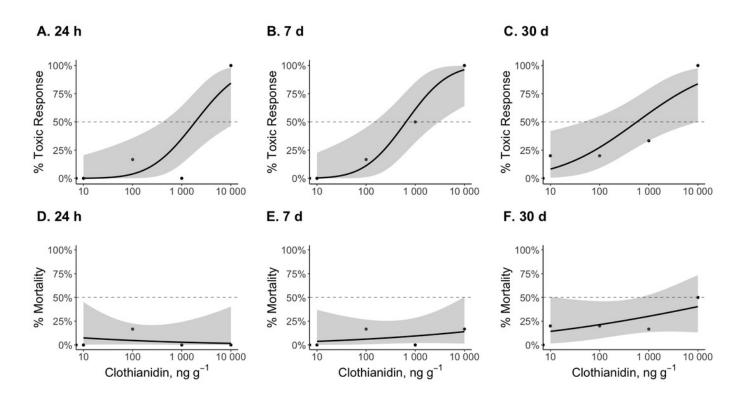
422	Pelosi C, Bertrand C, Daniele G, Coeurdassier M, Benoit P, Nélieu S, Lafay F, Bretagnolle V,
423	Gaba S, Vulliet E, Fritsch C. 2021. Residues of currently used pesticides in soils and
424	earthworms: A silent threat? Agriculture, Ecosystems & Environment 305:107167. DOI:
425	10.1016/j.agee.2020.107167.
426	Pisa L, Goulson D, Yang E-C, Gibbons D, Sánchez-Bayo F, Mitchell E, Aebi A, van der Sluijs J
427	MacQuarrie CJK, Giorio C, Long EY, McField M, Bijleveld van Lexmond M, Bonmatin J-
428	M. 2021. An update of the Worldwide Integrated Assessment (WIA) on systemic
429	insecticides. Part 2: impacts on organisms and ecosystems. Environmental Science and
430	Pollution Research 28:11749–11797. DOI: <u>10.1007/s11356-017-0341-3</u> .
431	R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria
432	R Foundation for Statistical Computing.
433	Radolinski J, Wu J, Xia K, Hession WC, Stewart RD. 2019. Plants mediate precipitation-driven
434	transport of a neonicotinoid pesticide. Chemosphere 222:445–452. DOI:
435	10.1016/j.chemosphere.2019.01.150.
436	Reed JM, Nguyen A, Owens ACS, Lewis SM. 2020. Linking the seven forms of rarity to
437	extinction threats and risk factors: an assessment of North American fireflies. Biodiversity
438	and Conservation 29:57–75. DOI: <u>10.1007/s10531-019-01869-7</u> .
439	Relyea RA, Mills N. 2001. Predator-induced stress makes the pesticide carbaryl more deadly to
440	gray treefrog tadpoles (Hyla versicolor). Proceedings of the National Academy of Sciences
441	98:2491–2496.
442	Ritchie EE, Maisonneuve F, Scroggins RP, Princz JI. 2019. Lethal and sublethal toxicity of
443	thiamethoxam and clothianidin commercial formulations to soil invertebrates in a natural
444	soil. Environmental Toxicology and Chemistry 38:2111–2120. DOI: 10.1002/etc.4521.



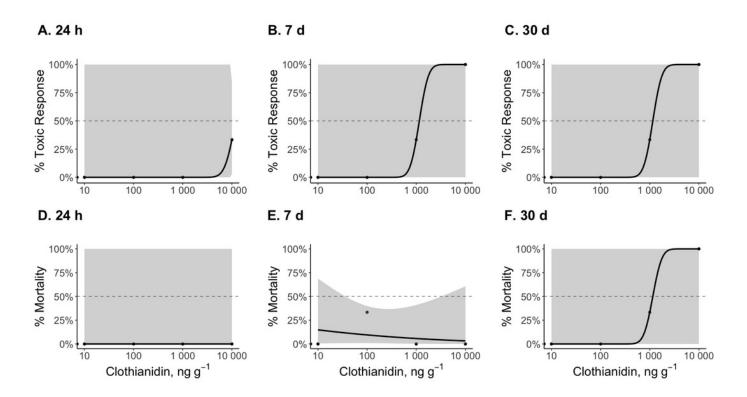

445	Robertson JL, Jones MM, Olguin E, Alberts B. 2017. Bioassays with Arthropods. Boca Raton,
446	FL, USA: CRC Press, Inc.
447	Sánchez-Bayo F, Wyckhuys KAG. 2019. Worldwide decline of the entomofauna: A review of its
448	drivers. Biological Conservation 232:8–27. DOI: 10.1016/j.biocon.2019.01.020.
449	Schaafsma A, Limay-Rios V, Baute T, Smith J, Xue Y. 2015. Neonicotinoid insecticide residues
450	in surface water and soil associated with commercial maize (corn) fields in southwestern
451	Ontario. PLOS ONE 10:e0118139. DOI: <u>10.1371/journal.pone.0118139</u> .
452	Schaafsma A, Limay-Rios V, Xue Y, Smith J, Baute T. 2016. Field-scale examination of
453	neonicotinoid insecticide persistence in soil as a result of seed treatment use in commercial
454	maize (corn) fields in southwestern Ontario: Neonicotinoid persistence in cultivated field
455	soil. Environmental Toxicology and Chemistry 35:295–302. DOI: 10.1002/etc.3231.
456	Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan
457	L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M,
458	Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J,
459	Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR,
460	Wiemers M. 2015. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of
461	action and metabolites. Environmental Science and Pollution Research 22:5–34. DOI:
462	<u>10.1007/s11356-014-3470-y</u> .
463	Sparks TC. 2013. Insecticide discovery: An evaluation and analysis. Pesticide Biochemistry and
464	Physiology 107:8–17. DOI: <u>10.1016/j.pestbp.2013.05.012</u> .
465	Tabaru Y, Kouketsu T, Oba M, Okafuji S. 1970. Effects of some organophosphorus insecticides
466	against the larvae of Genji firefly, Luciola cruciata and their prey, Japanese melanial snail
467	Semisulcospira bensoni. Medical Entomology and Zoology 21:178–181.

468	Tang L-D, Qiu B-L, Cuthbertson AGS, Ren S-X. 2015. Status of insecticide resistance and
469	selection for imidacloprid resistance in the ladybird beetle Propylaea japonica (Thunberg).
470	Pesticide Biochemistry and Physiology 123:87–92. DOI: 10.1016/j.pestbp.2015.03.008.
471	Therneau TM. 2021. A Package for Survival Analysis in R.
472	Therneau TM, Grambsch PM. 2000. Modeling Survival Data: Extending the Cox Model. New
473	York: Springer.
474	Tooker JF, Douglas MR, Krupke CH. 2017. Neonicotinoid seed treatments: Limitations and
475	compatibility with integrated pest management. Agricultural & Environmental Letters 2:1-
476	5. DOI: <u>10.2134/ael2017.08.0026</u> .
477	Tooker JF, Pearsons KA. 2021. Newer characters, same story: neonicotinoid insecticides disrupt
478	food webs through direct and indirect effects. Current Opinion in Insect Science 46:50–56.
479	DOI: 10.1016/j.cois.2021.02.013.
480	Vernon RS, Van Herk W, Moffat C, Harding C. 2007. European wireworms (Agriotes spp.) in
481	North America: toxicity and repellency of novel insecticides in the laboratory and field.
482	IOBC/wprs Bulletin 30:35–41.
483	Wang Y, Cang T, Zhao X, Yu R, Chen L, Wu C, Wang Q. 2012. Comparative acute toxicity of
484	twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicology and Environmental
485	Safety 79:122–128. DOI: 10.1016/j.ecoenv.2011.12.016.
486	Zhang Q-L, Jiang Y-H, Dong Z-X, Li H-W, Lin L-B. 2021. Exposure to benzo[a]pyrene triggers
487	distinct patterns of microRNA transcriptional profiles in aquatic firefly Aquatica wuhana
488	(Coleoptera: Lampyridae). Journal of Hazardous Materials 401:123409. DOI:
489	10.1016/j.jhazmat.2020.123409.

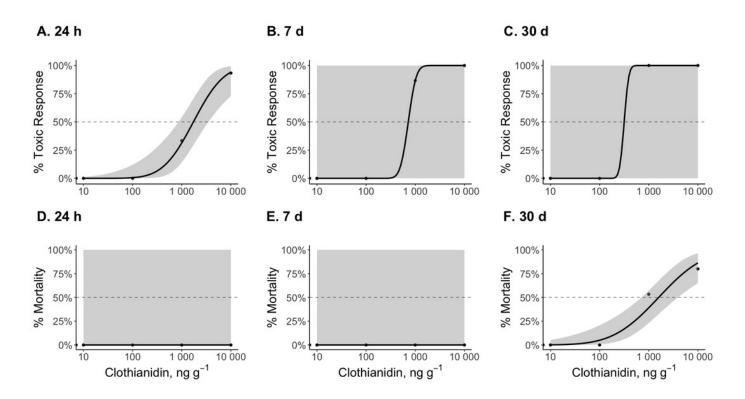
Healthy late-instar *Photuris versicolor* larvae (A) demonstrating the typical "curl and glow" response after being prodded with blunt forceps and (B) feeding on moistened cat food.



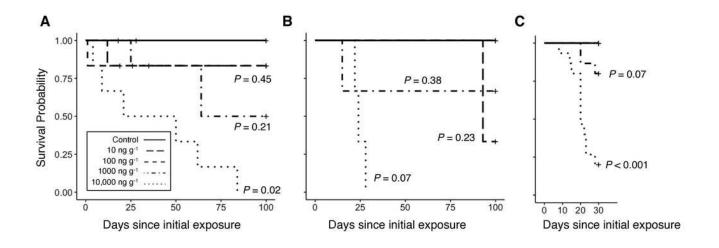
Dose-response curves for late-instar *Photuris versicolor* exposed to clothianidin-contaminated soil at 10, 100, 1000, and 10,000 ng clothianidin per gram of soil (n = 6 larvae for each dose).


Toxic responses after (A) 24 h, (B) 7 d, and (C) 30 d, and lethal response after (D) 24 h, (E) 7 d, and (F) 30 d. Dots in each panel represent mean responses at each insecticide concentration; the shaded area represents the 95% confidence interval for each curve. Dotted lines in each panel marks the 50% toxic response or mortality threshold.

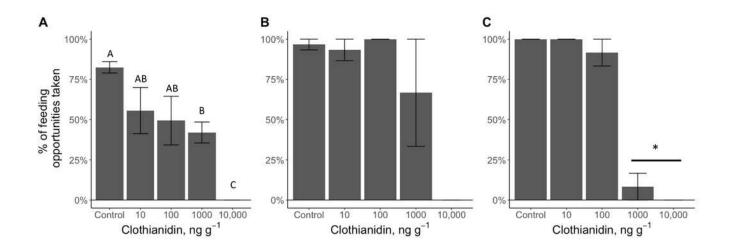
Dose-response curves for early-instar *Photuris versicolor* exposed to clothianidin-contaminated soil at 10, 100, 1000, and 10,000 ng clothianidin per gram of soil (n = 3 larvae for each dose).

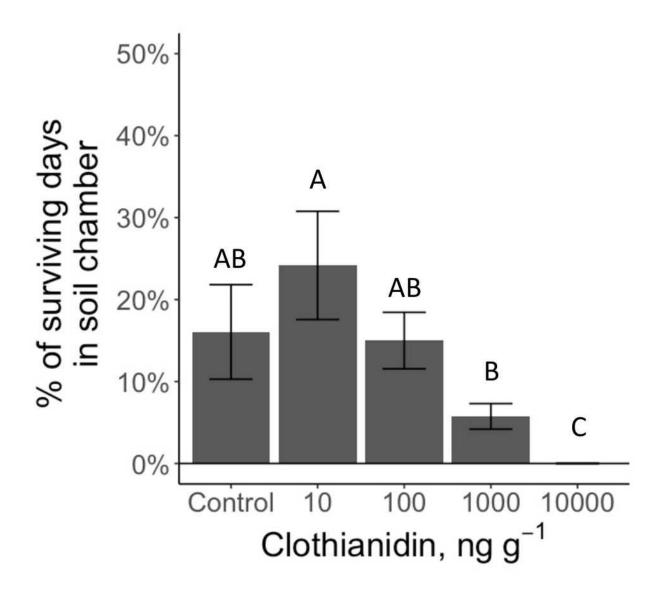

Toxic responses after (A) 24 h, (B) 7 d, and (C) 30 d, and lethal response after (D) 24 h, (E) 7 d, and (F) 30 d. Dots in each panel represent mean responses at each insecticide concentration; the shaded area represents the 95% confidence interval for each curve. Dotted lines in each panel marks the 50% toxic response or mortality threshold.

Dose-response curves for early-instar *Photinus pyralis* exposed to clothianidin-contaminated soil at 10, 100, 1000, and 10,000 ng clothianidin per gram of soil (n = 3 sets of 5 larvae for each dose).


Toxic responses after (A) 24 h, (B) 7 d, and (C) 30 d, and lethal response after (D) 24 h, (E) 7 d, and (F) 30 d. Dots in each panel represent mean responses at each insecticide concentration; the shaded area represents the 95% confidence interval for each curve. Dotted lines in each panel marks the 50% toxic response or mortality threshold.

Survivorship curves.


(A) late-instar *Photuris* (n=6), (B) early-instar *Photuris* (n=3), and (C) early-instar *Photinus* (n=15) at different clothianidin concentrations. *P*-values next to each line indicate the significance of reduced survivorship the control (with a Benjamini-Hochberg correction for multiple comparisons). Lines and *P*-values were excluded where survivorship was 100% and perfectly overlapped with control values (100 ppb in panel B, 10 and 100 ppb in panel C). Survival was significantly affected by clothianidin exposure (late-instar *Photuris*: $\chi^2_4 = 18$, P = 0.001; early-instar Photuris: $\chi^2_4 = 12.5$, P = 0.01; early-instar *Photinus*: $\chi^2_4 = 58.3$, P < 0.0001).


Percent of feeding opportunities taken by firefly larvae.

(A) late-instar *Photuris* larvae (χ^2_4 = 16.3, P = 0.003), (B) early-instar *Photuris* larvae (χ^2_4 = 8.2, P = 0.08), and (C) early-instar *Photinus* larvae (χ^2_1 = 12.4, P = 0.0004). Different letters indicate significant differences in late-instar *Photuris* feeding activity at P < 0.05 (Benjamini-Hochberg correction for multiple comparisons). The asterisk indicates significantly lower feeding activity by *Photinus* at P < 0.05 (Tukey HSD adjustment).

Amount of time that late-instar *Photuris* spent in soil chambers at different clothianidinexposure levels ($\chi^2_4 = 18.4$, P = 0.001).

Different letters indicate significant differences at P < 0.05 (Benjamini-Hochberg correction for multiple comparisons).

Table 1(on next page)

Estimated median toxic concentrations (TC_{50}) and lethal concentrations (LC_{50}) for *Photuris versicolor* and *Photinus pyralis* exposure to clothianidin-contaminated soil.

95% confidence intervals (CI) are based on probit analyses. CIs are not shown where data did not fit a cumulative standard normal distribution. n.r. = no response in tested range.

Species	timeframe	TC ₅₀ (ng g ⁻¹ soil)	95% CI	LC ₅₀ (ng g ⁻¹ soil)	95% CI
Photuris,	24 h	1882	136-10,000+	> 10,000	-
late-instar,	7 d	648	144-3047	> 10,000	-
6 larvae / dose	30 d	574	46–9895	> 10,000	-
Photuris,	24 h	> 10,000	-	n.r.	-
early-instar,	7 d	1169	-	> 10,000	-
3 larvae / dose	30 d	1169	-	1169	-
Photinus,	24 h	1726	836–3486	n.r.	_
early-instar,	7 d	704	-	n.r.	-
3 sets of 5 / dose	30 d	316	-	1591	246-10,000+