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Enhanced soluble sugar content in tomato fruit by
CRISPR/Cas9-mediated two genes editing
Baike Wang Corresp., 1 , Ning Li 1, 2 , Shaoyong Huang 2 , Jiahui Hu 1, 3 , Qiang Wang 1, 2 , Yaping Tang 1 , Tao Yang 1 , Patiguli
Asmutola 1 , Juan Wang 1 , Qinghui Yu 1

1 Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
2 College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
3 Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Urumqi, China

Corresponding Author: Baike Wang
Email address: 46367247@qq.com

Due to the importance of soluble sugar in improving the flavor and increasing the yield of
tomato sauce, several studies have focused on improving the content of soluble sugar in
tomato fruits. However, previous studies commonly increased the soluble sugar content by
promoting the functional genes or activating the key protein kinases. In this study, two
genes (SlINVINH1 and SlVPE5) that inhibited the accumulation of soluble sugar in tomato
fruits were identified. We obtained the knocked-out lines of two genes by CRISPR/Cas9,
respectively. Then, the aggregated lines with both CRISPR-invinh1 and CRISPR-vpe5 were
gained by hybridization and self-pollinating. Compared to the wild-type lines, the glucose,
fructose and total soluble solids (TSS) contents of CRISPR-invinh1 or CRISPR-vpe5 were
significantly increased. In addition, the levels of glucose, fructose and TSS showed a
further improved in the lines with CRISPR-invinh1 and CRISPR-vpe5 simultaneously than
that of the single gene knock-out lines, which indicated that the two genes had a
synergistic effect in increasing the content of these soluble sugars. Thus, knock-out the
SlINVINH1 and SlVPE5 could effectively increase the content of soluble sugars and might
provides an important theoretical guidance and practical basis for improving the flavor of
tomato fruits and processing quality.
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28 ABSTRACT

29 Due to the importance of soluble sugar in improving the flavor and increasing the yield of tomato 

30 sauce, several studies have focused on improving the content of soluble sugar in tomato fruits. 

31 However, previous studies commonly increased the soluble sugar content by promoting the 

32 functional genes or activating the key protein kinases. In this study, two genes (SlINVINH1 and 

33 SlVPE5) that inhibited the accumulation of soluble sugar in tomato fruits were identified. We 

34 obtained the knocked-out lines of two genes by CRISPR/Cas9, respectively. Then, the aggregated 

35 lines with both CRISPR-invinh1 and CRISPR-vpe5 were gained by hybridization and self-

36 pollinating. Compared to the wild-type lines, the glucose, fructose and total soluble solids (TSS) 

37 contents of CRISPR-invinh1 or CRISPR-vpe5 were significantly increased. In addition, the levels 

38 of glucose, fructose and TSS showed a further improved in the lines with CRISPR-invinh1 and 

39 CRISPR-vpe5 simultaneously than that of the single gene knock-out lines, which indicated that 

40 the two genes had a synergistic effect in increasing the content of these soluble sugars. Thus, 

41 knock-out the SlINVINH1 and SlVPE5 could effectively increase the content of soluble sugars and 

42 might provides an important theoretical guidance and practical basis for improving the flavor of 

43 tomato fruits and processing quality.

44
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52 INTRODUCTION

53 Tomato (Solanum lycopersicum) is an important vegetable and commercial crop that enjoys great 

54 popularity worldwide. However, modern methods for the cultivation of tomatoes have been 

55 criticized for unsatisfactory fruit flavors. Sweetness, as an important flavor characteristic of tomato 

56 fruits, is mainly determined by the content of soluble sugars in the fruits (Tieman et al., 2017). In 

57 addition to influencing the flavor, soluble sugar is also the most important component of the total 

58 soluble solids (TSS), which is also a major factor affecting the cost of production of processed 

59 tomato and tomato sauce. Studies have reported that while producing tomato sauce at a 

60 concentration of 28%, an increase in the TSS content of processed tomatoes from 4% to 5% could 

61 reduce the raw material consumption by up to 25% (Gur & Zamir, 2015). Therefore, increasing 

62 the content of soluble sugar in tomatoes can not only improve the flavor quality of fresh tomatoes 

63 but also increase the efficiency of the production of tomato sauce.

64 Several factors play roles in influencing the content of soluble sugar in tomato fruits, including 

65 genetic factors and environmental factors (temperature, light, moisture, air, fertilizer, plant 

66 hormones, etc.) that play a direct role, as well as the technical factors of cultivation and 

67 management that play an indirect role through the environmental factors (Beckles, 2012). Among 

68 these factors, genetic factors are fundamental, based on which other factors exert their effects. 

69 Although some studies have investigated genes related to soluble sugars, the corresponding 

70 biological functions of most of these genes are not fully understood (Lupi et al., 2019). Therefore, 

71 the immense potential economic value associated with tomatoes makes it necessary to conduct in-

72 depth research and exploration of these genes, and further combine the knowledge with molecular 

73 marker-assisted selection or genetic engineering techniques to increase the content of soluble 

74 sugars in cultivated tomatoes (Gur & Zamir, 2015; Vallarino et al., 2017). Meanwhile, the 

75 investigation of the genes related to soluble sugars also helps in further analysis of the molecular 

76 mechanisms of the accumulation of soluble sugars in tomato and provides a reference for 

77 understanding the quality of other fruit types, which has substantial theoretical significance.
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78 Plants have a set of complex sugar metabolic mechanisms, including the sensing of sugar 

79 signals, sugar synthesis, loading, transportation, unloading, transformation, storage, accumulation, 

80 and regulation of several physiological and biochemical processes. Several studies have largely 

81 focused on enzymes and proteins related to the processes of sugar synthesis, transportation, and 

82 decomposition, including invertase, sucrose synthase (SUS), sucrose phosphate synthase (SPS), 

83 hexose kinases (Hexokinase, HXK), fructokinases (FRKs), sucrose phosphatase (Sucrose 

84 Phosphate Phosphatase, SPP), sugar transporters, and some transcription factor (Beckles et al., 

85 2012; Patrick, Botha & Birch, 2013). These studies have facilitated a deeper understanding of the 

86 molecular mechanisms of sugar accumulation.

87 Invertase has a significant effect on sugar accumulation. Beets (Beta vulgaris) mainly 

88 accumulate sucrose, while tomatoes largely accumulate hexose. During the early stage of sugar 

89 accumulation in beets, the activity of insoluble acid invertase in the cell wall decreased 

90 dramatically, while in tomatoes, the activity of acid invertase increased significantly at the same 

91 stage (Patrick, Botha & Birch, 2013). A cloned QTL (Brix9–2–5) that relates to the accumulation 

92 of soluble sugar is the Lin5 gene. The content of soluble sugar in the introgression line (IL) 

93 containing this site is significantly higher than in the IL without this site (Baxter et al., 2005), and 

94 the specific silencing of Lin5 reduced the concentration of soluble sugar in the pulp (Zanor et al., 

95 2009). Accumulation of sugar can also be regulated by controlling the metabolic flow. The 

96 accumulation of sucrose in sugarcane can generate feedback inhibition. When the conversion of 

97 sucrose to maltulose and kestose is promoted by transgenic manipulations, it not only increases 

98 the demand for carbon, but also reduces the feedback inhibition of sucrose, increases the rate of 

99 photosynthesis of leaves, and elevates the content of total sugars (Wu & Birch, 2007). 

100 Manipulation of the genes regulating sucrose isomerase (SI) and ADP-glucose pyrophosphorylase 

101 (AGPase) promotes the conversion of sucrose to its isomers and starch and increases the sugar 

102 content of transgenic tomatoes (Petreikov et al., 2009). Some transcription factors are also 

103 involved in the regulation of the metabolism of fruit sugars. For example, the transcription factor 

104 RIN, which is related to fruit maturation, can directly bind to the promoter regions of the vacuolar 
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105 invertase (SlVI) gene and vacuolar invertase inhibitor (SlVIF) gene, and regulate their expression, 

106 thereby affecting sugar metabolism and maturation (Qin et al., 2016). ABA is essential for the 

107 accumulation of sugar in tomato fruits (Li et al., 2019). ABA induces the expression of the NAC 

108 transcription factor gene SlNAP2, which in turn can regulate the synthesis of ABA and influence 

109 tomato senescence, which further influences sugar metabolism. Transgenic tomato with RNA 

110 interference exhibited delayed senescence of leaves, increased yield, and higher content of soluble 

111 sugar in fruits (Ma et al., 2018). The gene SlGLK, which controls the shoulder development of 

112 tomato fruits, also affects the accumulation of sugar in the fruit. The overexpression of this gene 

113 turns the fruit color into dark green and significantly increases the content of starch, sugar, and 

114 TSS, which indicates a potential relationship between increased fruit chlorophyll content and 

115 enhanced photosynthetic efficiency (Powell et al., 2012).

116 The gene INVINH1 (invertase inhibitor) is an inhibitor of the acid invertase gene Lin5, which 

117 specifically inhibits the activity of cell wall invertase. Studies have reported that the silencing of 

118 the invertase inhibitor corresponding to the Lin5 gene can increase the activity of invertase and 

119 significantly increase the content of soluble sugar in the fruit, which in turn increases the TSS 

120 content of the fruit (Jin, Ni & Ruan, 2009; Ruan, Jin & Huang, 2009). The gene SlVPE5 belongs 

121 to the family of VPE (vacuolar processing enzyme) genes. SlVPE5 negatively regulates the 

122 accumulation of sugar (Ariizumi et al., 2011; Wang et al., 2016). However, the mechanism by 

123 which INVINH1 and SlVPE5 negatively regulate sugar accumulation has not been elucidated, and 

124 the interactive relationship between INVINH1 and SlVPE5 has not been studied before.

125 Therefore, to study and increase the content of soluble sugar in tomato fruits, this study analyzed 

126 the structural types and genetic relationship of two genes (INVINH1 and SlVPE5) that could inhibit 

127 the accumulation of soluble sugar. Using CRISPR/Cas9 technology, both the genes were knocked-

128 out separately to obtain mutants with the loss of function of each gene, and the influence of each 

129 gene on each type of glucose, fructose and TSS during fruit ripening was analyzed. Through 

130 hybridization and self-pollinating, the lines with loss of function of both genes was obtained. We 

131 have further explained the regulatory relationship between these genes and the accumulation of 
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132 soluble sugar, and have provided significant theoretical guidance and practical basis for the 

133 improvement of the flavor of tomato fruits and trait processing.

134 MATERIALS & METHODS

135 Plant material and growth cnditions

136 Cultivated tomato M82 was used as the experimental material. All the tomato materials were 

137 grown in the greenhouse at the seedling stage (Environmental conditions: 14 h light/10 h dark, the 

138 daytime temperature of 25 °C, and night temperature of 18 °C). The seedlings were transplanted 

139 to the field before entering the flowering stage, wherein the management of the test field was the 

140 same as that of the general field. The testing field was located at the Comprehensive Testing Field 

141 (87°47′ E, 43°95′ N) of Xinjiang Academy of Agricultural Sciences in Urumqi, China.

142 Sample preparation

143 The genotypes of transgenic seedlings and wild-type seedlings were identified when the plants 

144 grew relatively stronger (at least four leaves), and genomic DNA from the leaves was extracted 

145 for the detection of mutations. Detection of soluble sugar and TSS content in the fruit was carried 

146 out when the fruit was ripe. At least six fruits (two from each replicate with three replications) 

147 were collected from the second and third spikes of each plant, crushed, and homogenized into a 

148 sauce, and then analyzed for the content of soluble sugar and TSS.

149 Phylogenetic analysis

150 The protein sequences of INVINH and VPE from tomato (Solanum lycopersicum), Arabidopsis 

151 thaliana, paper (Capsicum annuum), citrus (Citrus sinensis), soybean (Glycine max), tobacco 

152 (Nicotiana tabacum), rice (Oryza sativa), potato (Solanum tuberosum), grape (Vitis vinifera), and 

153 maize (Zea mays), which the BLAST database search analysis were performed at NCBI. Multiple 

154 alignments of the INVINH and VPE protein sequences were processed by MEGA7 (Kumar, 

155 Stecher & Tamura, 2016). The phylogenetic tree was constructed by the neighbor-joining 

156 statistical method using 1000 bootstrap replicates (Kumar, Stecher & Tamura, 2016).

157 Selection of sgRNA target sequence and CRISPR/Cas9 vector construction
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158 The platform CRISPR-P (http://cbi.hzau.edu.cn/cgi-bin/CRISPR) was utilized to design the target 

159 sites of the target genes SlINVINH1 (Solyc12g099200.1) and SlVPE5 (Solyc12g095910.1). Each 

160 gene was provided with two target sites (Fig. 2B). The CRISPR/Cas9 vector was constructed as 

161 described previously (Yu et al., 2017). The gene of CRISPR/Cas9 was driving by 35S promoter, 

162 sgRNA1 and sgRNA2 were under the control by the U6 promoter of Aribidopsis thaliana and 

163 tomato, separately. All constructs were assembled using the Circular Polymerase Extension 

164 Cloning (CPEC) method (Quan & Tian, 2009). The pCAMBIA1301 binary vector (AtU6-

165 sgRNA1-SlU6-sgRNA2-35S-Cas9) was constructed, which used for genes knock-out (Fig. 2A).

166 Plant transformation

167 The Agrobacterium-mediated transformation method (Yu et al., 2017) was used, and 

168 pCAMBIA1301 vectors containing the Cas9 and sgRNA cassette were transformed into M82. In 

169 brief, tomato seeds were germinated on ½ MS medium after sterilization with 10% NaClO. After 

170 9-12 days culture, the apical segments of hypocotyls were punctured with OD600 = 0.5-0.6 of 

171 Agrobacterium suspension. Then, the explants were inoculated on selective plates with 

172 hygromycin (3 mg/L) until transgenic plants were regenerated from the calluses. After in vitro 

173 regeneration, plants were transplanted into soil in light growth chamber.

174 DNA extraction and mutation detection

175 Genomic DNA from fresh frozen leaves was extracted using high efficiency plant genome DNA 

176 extraction kit (Tiangen, Beijing, China), and the genomic flanks containing the target sites were 

177 amplified using specific primers (Table S1). Then, the annealed PCR products were subjected in 

178 to 1% agarose. The cut and purified PCR products were cloned into the pZERO-T Vector 

179 (Transgen, Beijing, China), and 26 clones for mutagenesis were sequenced using the Sanger 

180 method at each plant with the M13 primer. For the genotyping of T1 and T2 plants obtained from 

181 the T0 lines by strict self-pollination, the target fragment was directly sequenced. For the 

182 genotyping of F2 plants obtained from the F1 lines by strict self-pollination, and the F1 lines 

183 obtained from the two T0 lines cross-pollination, which the target fragments were also directly 

184 sequenced.
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185 Determinations of soluble sugars and TSS

186 Soluble sugars were determined as described previously (Lupi et al., 2019). Glucose, fructose and 

187 sucrose were quantified by high-performance anion exchange chromatography with pulsed 

188 amperometric detection (HPAEC-PAD; Dionex, Sunnyvale, CA, USA) using a Carbopac PA1 

189 column (250 x 4 mm, 5 μm particle size, Dionex) in an isocratic run with 18 mM NaOH as mobile 

190 phase. Content of each sugar was calculated using standard curves made with pure glucose, 

191 fructose and sucrose. TSS were measured with a refractometer DR201-95 (Kruess, Germany). 

192 Each sample contained three replicates with two fruit per replicate.

193 RESULTS

194 Characteristics and phylogenetic analysis of genes

195 The invertase inhibitor (INVINH1) protein consists of 171 amino acid residues, with a signal 

196 peptide of 19 amino acid residues at the N-terminus. The differences between INVINH1 and 

197 SolyCIF, which is another type of invertase inhibitor in tomato, include distinctions in protein 

198 sequences and protein structures (Reca et al., 2008). Compared with the sequence of the INVINH1 

199 protein in other crops, four cysteine residues were conserved, which was also a significant feature 

200 of all invertase inhibitors (Rausch & Greiner, 2004). Cluster analysis revealed that the INVINH1 

201 protein of tomato had the closest relationship with that of potato and tobacco, which are also 

202 solanaceous crops, but was distantly related to Arabidopsis, corn, and rice (Fig. 1A).

203 The vacuolar processing enzyme (VPE) has been classified in the cysteine protease family and 

204 is mainly involved in the regulation of post-translational levels of proteins in vacuoles. The VPE 

205 proteins are highly conserved in most plants and animals (Hara-Nishimura, Takeuchi & 

206 Nishimura, 1993). Among the numerous VPE proteins in tomatoes, SlVPE3 and SlVPE5 have 

207 been reported to regulate the accumulation of soluble sugars (Ariizumi et al., 2011). Cluster 

208 analysis revealed that SlVPE3 and SlVPE5, which are involved in sugar metabolism, did not 

209 cluster with other tomato VPE proteases but were rather the most closely related to tobacco 

210 (Nicotiana tabacum) NtVPE3 protein and sweet pepper CaVPE1b protein (Fig. 1B). This suggests 

211 that there might be a class of proteases among the VPE family proteins that specifically regulate 
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212 the accumulation of sugars.

213 Characterization of targeted editing in transgenic plants

214 The transformation system of SlINVINH1 gene knock-out finally yielded 14 T0 generation lines 

215 positive for the Cas9 gene. The genomic DNA was extracted from the leaves of each line, 

216 following which PCR using primers designed for the target region was carried out to amplify the 

217 mutant region fragments, and each clone of the amplified products were sequenced and analyzed 

218 to obtain information on mutations in the target region of the INVINH1 gene. The sequencing 

219 results demonstrated that among the 14 lines that were positive for Cas9, only 6 had a mutation in 

220 the target sequence of SlINVINH1 gene (probability of mutation = 42.86%). Among the mutants, 

221 one line was a homozygous mutant, two were biallelic mutants, one was a heterozygous mutant, 

222 and two were chimeric mutants (Fig. 2C, D; Table 1). The detailed mutations in the target sequence 

223 were mainly the deletions of single or multiple nucleotides (Fig. 2C).

224 The transformation system of the SlVPE5 gene knock-out yielded 13 T0 generation lines that 

225 were positive for the Cas9 gene. The results of mutation detection revealed that among the 13 

226 Cas9-positive lines, 8 lines had mutations in the target sequence of the SlVPE5 gene (probability 

227 of mutation = 61.54%). Among the mutants, one line was a homozygous mutant, another line was 

228 a biallelic mutant, five lines were heterozygous mutants, and one line was a chimeric mutant (Fig. 

229 2C, D; Table 1). The detailed mutations in the target region were mainly the deletion and 

230 replacement of single or multiple nucleotides (Fig. 2C).

231 Further analysis revealed that the mutation types of the SlINVINH1 gene were mainly biallelic 

232 mutations and chimeras, while the mutation type of the SlVPE5 gene was mainly heterozygotic 

233 (Fig. 2C, D; Table 1). In addition, at target-1 site of the SlINVINH1 gene, there are 14 mutations 

234 (2 mutations of homozygous mutant of alleles), at its target-2 site, there are 9 mutations. In the 

235 gene SlVPE5, at target-1 site, there are 10 mutations, while at the target-2 site, there are 8 mutations 

236 (Fig. 2C). This might be related to the promoters of sgRNA; the sgRNA of target-1 was initiated 

237 by the U6 promoter of Arabidopsis, while the sgRNA of target-2 was initiated by the U6 promoter 

238 of tomato. In this study, we observed that the efficiency of the Arabidopsis U6 promoter was higher 
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239 than that of the tomato U6 promoter.

240 CRISPR/Cas9-mediared mutants exhibited increase the soluble sugar and TSS content

241 The T0 mutant line, obtained as described in the above section, was selected, and the content of 

242 soluble sugar and TSS in the fruit was determined after maturation, each line with three 

243 replications. Among the mutants of the SlINVINH1 gene, four lines, INH-1, INH-2, INH-3, and 

244 INH-4 (Fig. 2C), were selected (the lines INH-5 and INH-6 were not selected as they were 

245 chimeras and displayed an extremely low probability of passing the mutations on to the next 

246 generation). Each line with three replications, It was observed that the contents of both glucose 

247 and fructose in the fruits of the lines INH-1, INH-2, and INH-4 were significantly increased, 

248 compared to the wild-type (INH-1 showed 40.19% increase in glucose and 42.42% increase in 

249 fructose; INH-2 showed 36.39% increase in glucose and 35.69% increase in fructose; INH-4 

250 showed 40.82% increase in glucose and 42.76% increase in fructose) (Fig. 3A; Table S2). In 

251 addition, the TSS content also showed a significant increase (31.90% in INH-1, 30.17% in INH-

252 2, 32.76% in INH-4) (Fig. 3A; Table S2), indicating that the SlINVINH1 gene mainly regulated 

253 the accumulation of glucose and fructose in fruits. However, the content of soluble sugars in the 

254 fruit of heterzygous INH-3 did not increase significantly compared to the wild-type (Fig. 3A; Table 

255 S2), which could be due to the recessive function of the mutated slinvinh1 gene.

256 Among the T0 lines that carried the mutations of the SlVPE5 gene, three lines, VPE-1, VPE-2, 

257 and VPE-7, were selected (the line VPE-8 was not selected as it was chimera and showed an 

258 extremely low probability of passing the mutations to the next generation. Also, among the five 

259 heterzygous, only one line, namely VPE-2, was selected as a representative for testing). The test 

260 revealed that glucose and fructose content in the lines fruits of VPE-1 and VPE-7 also increased 

261 significantly (glucose increase 35.20% in VPE-1, and increase 35.83% in VPE-7; fructose increase 

262 37.33% in VPE-1, and increase 43.00% in VPE-7), and the TSS content also increased 

263 significantly (30.63% in VPE-1, 32.43% in VPE-7) (Fig. 3B; Table S2), indicating that the SlVPE5 

264 gene also mainly regulated the accumulation of glucose and fructose in fruits. However, the soluble 

265 sugar content in the fruits of heterzygous INH-2 did not increase significantly compared to the 
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266 wild-type (Fig. 3B; Table S2), which might also be caused by the recessive gene characteristics of 

267 the mutant slvpe5 gene.

268 The double homozygous mutants further increased the soluble sugar and TSS content

269 The T0 generation homozygous mutant lines INH-4 and VPE-7 were crossed-pollination to 

270 generate the F1 generation. The F2 generation was obtained by self-pollination of the F1 generation, 

271 and 515 well-grown lines were obtained after sowing the F2 generation seeds. The genotype was 

272 screened, and 32 lines with homozygous mutated sites (genotype: inh/inh-vpe/vpe) of SlINVINH1 

273 and SlVPE5 were obtained from the 515 lines. By further screening for the exogenous Cas9 genes 

274 among the 32 lines, two lines without the exogenous Cas9 gene were identified. The two individual 

275 lines were numbered as F2–1 and F2–2.

276 The contents of soluble sugar and TSS in the fruits of F2–1 and F2–2 lines were determined after 

277 maturation, each line with three replications. It was observed that the contents of glucose and 

278 fructose in F2–1 and F2–2 fruits were significantly increased compared to the wild-type (In F2–1, 

279 glucose increased by 64.86%, and fructose increased by 68.40%, while in F2–2, glucose increased 

280 by 67.41%, and fructose increased by 69.44%) (Fig. 4; Table S3). The TSS content also showed a 

281 significant increase (55.17% in F2–1 and 62.07% in F2–2) (Fig. 4; Table S3).

282 As described earlier, we observed that both the SlINVINH1 and SlVPE5 gene mainly regulated 

283 the accumulation of glucose and fructose in the fruit. In addition, the content of both glucose and 

284 fructose, was significantly synergistic increased in the F2–1 and F2–2 fruits, and the TSS content 

285 was also significantly higher than the single locus-mutated homozygote. This indicated that the 

286 SlINVINH1 and SlVPE5 genes displayed a synergistic effect in regulating the content of soluble 

287 sugar.

288 Dynamic variation pattern of the fruit development and coloring

289 Because the SlINVINH1 is an invertase gene, loss of invertase function may delay fruit ripening. 

290 On the other hand, the loss of SlVPE5 gene functions may also cause changes in the other 

291 commercial traits (such as the size of the fruit, the color of the fruit) of tomato fruits. This study 

292 monitored the entire process of development of two individual lines (F2–1 and F2–2), starting from 
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293 flowering to fruit ripening, in real time. The results indicated that tomatoes of the F2–1 and F2–2 

294 lines were similar to the wild-type tomato fruits (including both shape and size of the fruits), 

295 starting from flowering to the physiological fruit expansion stage. However, during the breaker 

296 stage and the beginning of the ripping stage, fruits of the F2–1 and F2–2 lines were significantly 

297 delayed the break stage compared to the wild-type fruits, although they were fully ripened at the 

298 same time as wild-type fruits (Fig. 5A). This indicated that although the knock-out of the 

299 SlINVINH1 and SlVPE5 genes did delay the break stage and the color change of tomato fruits, it 

300 neither affected the ripening and harvesting time of the fruits nor the color of fruits after ripening 

301 (Fig. 5B).

302 DISCUSSION

303 The effects of SlINVINH1 and SlVPE5 in increasing the soluble sugar and the TSS content 

304 of tomato

305 We observed that the both genes SlINVINH1 and SlVPE5 mainly regulated the accumulation of 

306 glucose and fructose in fruits (Fig. 3A, 3B; Fig. 4), confirming the findings of previous research 

307 (Jin, Ni & Ruan, 2009; Ariizumi et al., 2011; Xu et al., 2017). In addition, there was also previous 

308 research finding that SlVPE5 gene also regulates the accumulation of sucrose in fruits (Wang et 

309 al., 2016). However, in this study, no sucrose content was detected in mature fruits (detection 

310 threshold was >= 0.2 mg/g fw), no matter in T0 or F2 lines. This may be because sucrose content 

311 in mature fruits is very low and sucrose contribution to the TSS of mature fruits is very small 

312 (Tieman et al., 2017). In homozygotes with the knock-out of both loci, both of tested sugars were 

313 significantly increased in the fruit, and the TSS content was also significantly higher than that in 

314 single locus-mutated homozygotes, indicating that there was a synergistic effect of SlINVINH1 

315 and SlVPE5 genes in regulating the content of soluble sugar. This finding is crucial for the 

316 improvement of quantitative genetic traits of soluble sugar.

317 The knock-out efficiency of different genes and different target sites

318 The knock-out efficiency of both genes was observed to be different. In the knock-out experiment 
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319 on SlINVINH1, 6 lines with the successful knock-out of the target gene were obtained from 14 

320 positive lines, and the knock-out efficiency was 42.86%, while in the knock-out experiment on 

321 SlVPE5, 8 lines with the successful knock-out of the target gene were obtained from 13 positive 

322 lines, with a knock-out efficiency of 61.54%. Furthermore, the mutation types of the SlINVINH1 

323 gene were mainly biallelic mutations and chimeras, while the mutation types of the SlVPE5 gene 

324 were mainly heterozygous (Fig. 2C, D; Table 1), which may be linked to the different types and 

325 structures of the genes (Pan et al., 2016; Li et al., 2018).

326 The sgRNA initiated by the U6 promoter of Arabidopsis thaliana showed 14 mutations at the 

327 target-1 site of the SlINVINH1 gene and 10 mutations at the target-1 site of the SlVPE5 gene, while 

328 the sgRNA initiated by the U6 promoter of tomato showed 9 mutations in the target-2 site of the 

329 SlINVINH1 gene and 8 mutations in the target-2 site of the SlVPE5 gene. Therefore, the efficiency 

330 of Arabidopsis U6 promoter was observed to be higher than that of the tomato U6 promoter at 

331 different target sites of the two genes. Based on these findings, we propose that the use of different 

332 promoters of sgRNA may also cause differences in the rate of mutation, which is consistent with 

333 the findings of previous studies (Ma et al., 2015; Čermák et al., 2017; Shao et al., 2020).

334 The methodology used in this study can effectively improve the commercial traits of tomato

335 In this study, two homozygous lines (F2–1 and F2–2) with mutations in both the functional gene 

336 loci were obtained, and the exogenous Cas9 was not included, due to which the content of both 

337 soluble sugar and TSS in tomato fruits were significantly increased (Fig. 4), thus facilitating the 

338 rapid improvement of the commercial traits of tomatoes. This study confirmed the feasibility of 

339 target gene editing by the transfer of Cas9 and sgRNA, and the subsequent application of 

340 conventional methods such as hybridization and inbreeding. On the one hand, two mutation sites 

341 could be brought together, while on the other, the mutation site could be made homozygous, and 

342 the exogenous gene Cas9 could be eradicated. This method greatly shortened the breeding cycle 

343 during the process of improving tomato varieties, and completely eliminated various risk factors 

344 associated with the exogenous genes. This technical system will improve technological innovation 

345 and progress in tomato breeding, and has tremendous potential in a variety of applications.
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346 CONCLUSIONS

347 The purpose of this study was to identify two tomato genes (SlINVINH1 and SlVPE5) that inhibited 

348 the accumulation of soluble sugar in tomato fruits, and then to obtain the knock-out lines of two 

349 genes by CRISPR/Cas9, respectively. Therewith, the aggregated lines with both CRISPR-invinh1 

350 and CRISPR-vpe5 were gained by hybridization and self-pollinating. Compared to the wild-type 

351 tomato lines, the glucose, fructose and TSS contents of CRISPR-invinh1 or CRISPR-vpe5 were 

352 significantly increased. In addition, the levels of glucose, fructose and TSS showed a further 

353 improved in the lines with CRISPR-invinh1 and CRISPR-vpe5 simultaneously than that of the 

354 single gene knock-out lines, which indicated that the two genes had a synergistic effect in 

355 increasing the content of these soluble sugars. Thus, knock-out the SlINVINH1 and SlVPE5 could 

356 effectively increase the content of soluble sugars in tomato and might provide an important 

357 theoretical guidance and practical basis for improving the flavor of tomato fruits and processing 

358 quality.

359

360

361 Supplemental Information

362 Table S1. Primers for detection of target region.

363 Table S2. The content of soluble sugar and TSS in the red fruit of T0 mutant lines.

364 Table S3. The content of soluble sugar and TSS in the red fruit of F2 lines.
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476 Figure Legends

477 Figure 1 Phylogenetic analysis of INVINH and VPE proteins in plants. (A) Phylogenetic tree 

478 of INVINH. (B) Phylogenetic tree of VPE. At, Arabidopsis thaliana; Ca, Capsicum annuum; Cs, 

479 Citrus sinensis; Gm, Glycine max; Nt, Nicotiana tabacum; Os, Oryza sativa; Sl, Solanum 

480 lycopersicum; St, Solanum tuberosum; Vv, Vitis vinifera; Zm, Zea mays. The size bar shows the 

481 estimated evolutionary distance.

482 Figure 2 Target genes editing by CRISPR/Cas9. (A) The schematic description of 

483 CRISPR/Cas9-sgRNA expression cassette. SpCas9 is controlled by a CaMV 35S promoter, the 

484 first sgRNA is expressed by the AtU6 promoter, the second sgRNA is expressed by the SlU6 

485 promoter. (B) Four target sites were designed in two target genes. Straight blue lines and 
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486 rectangular orange boxes are the introns and exons of the target genes, respectively. (C) The 

487 sequenced targeted InDel mutation of two target gene. 26 clones of the each PCR amplicon were 

488 picked and sequenced. “WT” means Wild-type, “Bi” means Biallele, “He” means Heterozygote, 

489 “Ho” means Homozygote, “Ch” means Chimera. (D) Specific types of each target gene in T0 lines. 

490 Green, orange, purple, and blue represent homozygous, biallelic, heterozygous, and chimeric 

491 mutations, respectively.

492 Figure 3 Determination of the soluble sugar and TSS content in red fruit from different T0 

493 lines and WT. (A) The contents of the soluble sugar and TSS of red fruit in four different T0 lines 

494 of editing SlINVINH1 gene and WT. (B) The contents of the soluble sugar and TSS of red fruit in 

495 three different T0 lines of editing SlVPE5 gene and WT. The contents of glucose and fructose is 

496 measured in mg/g in fruit weigh, and the TSS is measured in Brix (%). *(P < 0.05, Student’s t-test, 

497 n = 3) indicate statistically significant differences between T0 mutant lines and wild-type.

498 Figure 4 Determination of the soluble sugar and TSS content in red fruit from the WT and 

499 the two F2 lines of double homozygous mutants of edited SlINVINH1 and SlVPE5 genes. The 

500 contents of glucose and fructose is measured in mg/g in fruit weigh, and the TSS is measured in 

501 Brix (%). **(P < 0.01, Student’s t-test, n = 3) indicate statistically highly significant differences 

502 between F2 lines and wild-type.

503 Figure 5 Phenotypic detection of the WT fruits and the two F2 lines fruits. (A) Developmental 

504 series of WT fruits (up) and F2 fruits (down), “dpa” is days post anthesis. (B) Comparison of 

505 bisected fruit at the ripening stage. Bars = 1 cm.

506
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Figure 1
Phylogenetic analysis of INVINH and VPE proteins in plants

Phylogenetic analysis of INVINH and VPE proteins in plants. (A) Phylogenetic tree of
INVINH. (B) Phylogenetic tree of VPE. At, Arabidopsis thaliana; Ca, Capsicum annuum ; Cs,
Citrus sinensis; Gm, Glycine max; Nt, Nicotiana tabacum; Os, Oryza sativa; Sl, Solanum

lycopersicum; St, Solanum tuberosum; Vv, Vitis vinifera; Zm, Zea mays. The size bar shows
the estimated evolutionary distance.
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Figure 2
Target genes editing by CRISPR/Cas9

Target genes editing by CRISPR/Cas9. (A) The schematic description of CRISPR/Cas9-
sgRNA expression cassette. SpCas9 is controlled by a CaMV 35S promoter, the first sgRNA is
expressed by the AtU6 promoter, the second sgRNA is expressed by the SlU6 promoter. (B)
Four target sites were designed in two target genes. Straight blue lines and rectangular
orange boxes are the introns and exons of the target genes, respectively. (C) The sequenced
targeted InDel mutation of two target gene. 26 clones of the each PCR amplicon were picked
and sequenced. “WT” means Wild-type, “Bi” means Biallele, “He” means Heterozygote, “Ho”
means Homozygote, “Ch” means Chimera. (D) Specific types of each target gene in T0 lines.

Green, orange, purple, and blue represent homozygous, biallelic, heterozygous, and chimeric
mutations, respectively.
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Figure 3
Determination of the soluble sugar and TSS content in red fruit from different T0 lines
and WT

Determination of the soluble sugar and TSS content in red fruit from different T0

lines and WT. (A) The contents of the soluble sugar and TSS of red fruit in four different T0

lines of editing SlINVINH1 gene and WT. (B) The contents of the soluble sugar and TSS of red
fruit in three different T0 lines of editing SlVPE5 gene and WT. The contents of glucose and

fructose is measured in mg/g in fruit weigh, and the TSS is measured in Brix (%). *(P < 0.05,
Student’s t-test, n = 3) indicate statistically significant differences between T0 mutant lines

and wild-type.
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Figure 4
Determination of the soluble sugar and TSS content in red fruit from the WT and the two
F2 lines of double homozygous mutants of edited SlINVINH1 and SlVPE5 genes

Determination of the soluble sugar and TSS content in red fruit from the WT and

the two F2 lines of double homozygous mutants of edited SlINVINH1 and SlVPE5

genes. The contents of glucose and fructose is measured in mg/g in fruit weigh, and the TSS

is measured in Brix (%). **(P < 0.01, Student’s t-test, n = 3) indicate statistically highly
significant differences between F2 lines and wild-type.
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Figure 5
Phenotypic detection of the WT fruits and the two F2 lines fruits

Phenotypic detection of the WT fruits and the two F2 lines fruits. (A) Developmental

series of WT fruits (up) and F2 fruits (down), “dpa” is days post anthesis. (B) Comparison of

bisected fruit at the ripening stage. Bars = 1 cm.
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Table 1(on next page)

Detected zygosity of T0 independent transgenic lines

Detected zygosity of T0 independent transgenic lines of SlINVINH1 and SlVPE5
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1 Table 1. Detected zygosity of T0 independent transgenic lines of SlINVINH1 and SlVPE5

Zygosity

Target 

gene

No. of plants 

examined
Homozygote Biallele

Heterozygot

e
Chimera WT

SlINVINH1 14 1(7.14%) 2(14.29%) 1(7.14%) 2(14.29%) 8(57.14%)

SlVPE5 13 1(7.69%) 1(7.69%) 5(38.46%) 1(7.69%) 5(38.46%)

2

3
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