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Knowledge of demography is essential for understanding wildlife population dynamics and
developing appropriate conservation plans under global change. However, population
survey and demographic data (e.g., capture-recapture) are not always aligned in space
and time, hindering our ability to robustly estimate population size and demographic
processes. Integrated population models (IPMs) can provide inference for population
dynamics with poorly aligned but jointly analysed population and demographic data. In this
study, we developed an IPM for partially aligned population and demographic data, and
applied this model to a migratory shorebird species, the snowy plover (Charadrius
nivosus). Snowy plover populations have declined dramatically during the last two
decades, yet the demographic mechanisms and environmental drivers of these declines
remain poorly understood, hindering development of appropriate conservation strategies.
We analysed 21 years (1998-2018) of partially aligned population survey, nest survey, and
capture-recapture-resight data in three snowy plover populations (i.e., Texas, New Mexico,
Oklahoma) in the Southern Great Plains of the US. By using IPMs we aimed to achieve
better precision while evaluating the effects of wetland habitat (represented by Palmer
drought severity index) and climatic factors (minimum temperature, wind speed) on snowy
plover demography. Our IPM provided reasonable precision for productivity measures even
with missing data, but population and survival estimates had greater uncertainty in years
without corresponding data. Our model also uncovered the complex relationships between
wetland habitat, climate, and demography with reasonable precision. The Palmer drought
severity index had positive effects on snowy plover productivity (i.e., clutch size and clutch
fate) and apparent survival, indicating the importance of protecting wetland habitat under
climate change and other human stressors for the conservation of this species. We also
found a positive effect of minimum temperature on snowy plover productivity, indicating
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potential benefits of warmth during night on their population. Our study suggested that
continuous population and capture-recapture surveys combined with segmented
productivity survey data can be practical and useful for understanding population
dynamics and underlying demographic processes in this and other species. Our modelling
approach lays a foundation of allocating limited conservation resources for evidence-based
conservation decision-making under global change.
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14 Abstract

15 Knowledge of demography is essential for understanding wildlife population dynamics and 

16 developing appropriate conservation plans under global change. However, population survey and 

17 demographic data (e.g., capture-recapture) are not always aligned in space and time, hindering 

18 our ability to robustly estimate population size and demographic processes. Integrated population 

19 models (IPMs) can provide inference for population dynamics with poorly aligned but jointly 

20 analysed population and demographic data. In this study, we developed an IPM for partially 

21 aligned population and demographic data, and applied this model to a migratory shorebird 

22 species, the snowy plover (Charadrius nivosus). Snowy plover populations have declined 

23 dramatically during the last two decades, yet the demographic mechanisms and environmental 

24 drivers of these declines remain poorly understood, hindering development of appropriate 

25 conservation strategies. We analysed 21 years (1998-2018) of partially aligned population 

26 survey, nest survey, and capture-recapture-resight data in three snowy plover populations (i.e., 

27 Texas, New Mexico, Oklahoma) in the Southern Great Plains of the US. By using IPMs we 

28 aimed to achieve better precision while evaluating the effects of wetland habitat (represented by 

29 Palmer drought severity index) and climatic factors (minimum temperature, wind speed) on 

30 snowy plover demography. Our IPM provided reasonable precision for productivity measures 

31 even with missing data, but population and survival estimates had greater uncertainty in years 

32 without corresponding data. Our model also uncovered the complex relationships between 

33 wetland habitat, climate, and demography with reasonable precision. The Palmer drought 

34 severity index had positive effects on snowy plover productivity (i.e., clutch size and clutch fate) 

35 and apparent survival, indicating the importance of protecting wetland habitat under climate 

36 change and other human stressors for the conservation of this species. We also found a positive 
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37 effect of minimum temperature on snowy plover productivity, indicating potential benefits of 

38 warmth during night on their population. Our study suggested that continuous population and 

39 capture-recapture surveys combined with segmented productivity survey data can be practical 

40 and useful for understanding population dynamics and underlying demographic processes in this 

41 and other species. Our modelling approach lays a foundation of allocating limited conservation 

42 resources for evidence-based conservation decision-making under global change.

43

44 Key words: climate change, conservation, data integration, demography, human stressor, 

45 imbalanced sampling, population monitoring, wetland

46
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47 Introduction

48 The knowledge of demographic processes is fundamental to learning about natural populations 

49 (Turchin 2003; Rockwood 2015). Due to continuous impacts of global change such as climate 

50 change and agricultural development on biodiversity patterns (Thomas et al. 2004; Foley et al. 

51 2005; Parmesan 2006; Grimm et al. 2013) including population dynamics (Sæther, Sutherland & 

52 Engen 2004; Reist et al. 2006; Simmonds & Isaac 2007; Zhao et al. 2019), knowledge of 

53 demographic responses to environmental factors holds essential value in guiding conservation 

54 planning (Clark et al. 2001; Rushing et al. 2020).

55       It can be challenging to quantify population dynamics and underlying demographic processes 

56 with severely limited data. Inferences about demographic processes (e.g., survival) often relies 

57 on data of marked animals (e.g., capture-recapture data; Pollock 1991; Williams, Nichols & 

58 Conroy 2002), which can be difficult to collect. Furthermore, demography and population survey 

59 data are not always spatially and temporally aligned. Approaches that link population survey and 

60 demographic data are particularly useful when data are relatively sparse because they can 

61 potentially provide a comprehensive understanding of population dynamics and underlying 

62 demographic processes.

63       Integrated population models (IPMs) jointly analyse multiple types of data such as 

64 population survey, capture-recapture, and productivity information (Besbeas et al. 2002; Brooks, 

65 King & Morgan 2004; Schaub & Abadi 2011). These models can provide more accurate and 

66 precise parameter estimates than models that analyse each data type separately (Abadi et al. 

67 2010; Schaub & Abadi 2011). Furthermore, IPMs can provide estimates of some parameters 

68 without direct data via sharing of information among data types (Besbeas et al. 2002; Tavecchia 

69 et al. 2009; Schaub, Jakober & Stauber 2013; Zhao, Boomer & Royle 2019). Consequently, 
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70 IPMs are particularly useful when data are sparse and unaligned or partially aligned in space and 

71 time (Saunders et al. 2019). IPMs have largely improved our understanding of natural animal 

72 populations (Schaub & Fletcher 2015; Ahrestani et al. 2017; Weegman et al. 2017; Zhao et al. 

73 2019) and allow for the development of more effective and efficient conservation practices 

74 (Arnold et al. 2018; Zipkin & Saunders 2018; Zhao et al. 2020).

75       Many shorebird populations are sensitive to climate change (Van de Pol et al. 2010; 

76 Lehikoinen et al. 2013) because their key habitats (wetlands) are driven by weather and climatic 

77 factors (Sorenson et al. 1998; Sofaer et al. 2016; Zhao et al. 2016). Other types of human 

78 disturbance such as agricultural development may also lead to wetland habitat loss (Johnston 

79 2013; Burgin, Franklin & Hull 2016; Donnelly et al. 2020). Consequently, shorebirds are 

80 threatened by multiple human stressors. For example, numerous North American shorebird 

81 populations have declined during the past half-century, likely due to degradation, fragmentation, 

82 and other kinds of human disturbance of wetlands (Howe, Geissler & Harrington 1989; Bart et 

83 al. 2007; Rosenberg et al. 2019). However, warming temperatures resulting from climate change 

84 may drive shorebird population dynamics by influencing incubation behaviour and partitioning 

85 of incubation duties, particularly during cold periods (e.g., at night), because warmer 

86 temperatures allow birds to reserve more energy for reproduction or survival (Van de Pol et al. 

87 2010; Saalfeld et al. 2012). Greater wind speed during breeding seasons may increase 

88 physiological stress during incubation and accelerate water evaporation, and thus negatively 

89 impact shorebird demography and incubation success (Hilde et al. 2016).

90       The snowy plover (Charadrius nivosus) is a migratory shorebird species with breeding and 

91 wintering populations distributed along the Pacific Coast and Gulf Coast, as well as interior 

92 breeding populations in the Great Basin and Southern Great Plains (Page et al. 2009). Recent 
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93 studies have estimated a severe decline of the interior breeding populations in the Southern Great 

94 Plains (Andres et al. 2012; Saalfeld et al. 2013; Heath 2019). Knowledge of the demographic 

95 foundations and potential drivers of such a decline is essential for conservation planning of this 

96 species. However, knowledge gaps due to data limitations have hindered the development of 

97 effective conservation strategies.

98       In this study we developed an IPM analysing 21 years (i.e., 1998-2018) of partially aligned 

99 data for snowy plovers breeding within the Southern Great Plains. By using this modelling 

100 approach, we first aimed to achieve better precision of population and demographic estimates. 

101 We then evaluated the contributions of demographic processes to population growth. Lastly, we 

102 tested hypotheses regarding the drivers of productivity and survival, including wetland habitat, 

103 temperature, and wind speed. Based on our results, we provided recommendations for future 

104 population monitoring and conservation planning of snowy plover, and suggested prioritization 

105 of data collection schemes for conservation projects that often have limited resources.

106

107 Methods

108 Study area

109 Our study is located in the ecological region of the Southern Great Plains in Texas, New Mexico 

110 and Oklahoma (Figure 1), which encompasses semi-arid short and mixed grass prairie (Assal, 

111 Melcher & Carr 2015). More specifically, we studied 3 breeding populations in Texas, New 

112 Mexico and Oklahoma, respectively. Study sites included 3 privately owned saline lakes (i.e., A, 

113 B and C) and Muleshoe National Wildlife Refuge (NWR) in Texas, Bitter Lake NWR in New 
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114 Mexico, and Salt Plains NWR in Oklahoma. Details about the study sites can be found in Heath 

115 (2019).

116 Data collection

117 Population survey

118 For the Texas population, surveys were conducted weekly May through July at lakes A, B and C 

119 in 1998-2000, 2008-2010, and 2017-2018 (Figure 2), along transects that covered 3.2-3.5 km 

120 sections of shoreline (Heath 2019). Both the observers and survey areas were consistent within 

121 each year. Surveys began at approximately 08:00 and lasted 1-2 hours in days without 

122 abnormally high winds (i.e., wind speed >50 mph) or rain. For the New Mexico population, 

123 surveys were conducted biweekly and otherwise under the same protocol of the Texas 

124 population, in each year from 1999 through 2018.

125       For the Oklahoma population, annual surveys were conducted on a single day in early May 

126 from 2013 to 2017 at Salt Plains NWR. The entire salt flat area of Salt Plains NWR was divided 

127 into a total of 668 grids that were 300 m  300 m, among which 100 were randomly selected for ×

128 surveys. Biologists and volunteers were paired, and 10-12 grid cells were assigned to each pair to 

129 survey. Surveys were conducted along 300 m transects while birds within 75 m distance from the 

130 transects were counted. In addition to annual surveys, distance sampling was conducted at Salt 

131 Plains NWR during May-July in 2017 and 2018. The region was divided into three sub-regions 

132 (i.e., north, middle, south). The same grids of the annual survey were used, among which 9 (3 for 

133 north, 2 for middle, 4 for south) were randomly selected. Surveys were again conducted along 

134 300 m transects, but in addition to counting birds with 75 m distance, the linear distance between 

135 the observed birds and the transects was also recorded.
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136       More details about the population surveys can be found in Saalfeld et al. (2013) and Heath-

137 Acre et al. (2020).

138 Nest survey

139 We surveyed snowy plover nests at least once per week during the breeding season. Nests were 

140 located by searching suitable habitat and observing adults incubating nests or flushing from or 

141 returning to nests. The search effort was relatively consistent among study sites and years 

142 (Conway, Smith & Ray 2005). Once a nest was located, clutch size (i.e., the number of eggs) and 

143 ultimately clutch fate (success or failure) were determined and recorded. Nest surveys were 

144 conducted in 1999-2000, 2008-2009, and 2017-2018 at lakes A, B and C, and in 1999-2000 and 

145 2008-2009 at Muleshoe NWR for the Texas population, in 2017-2018 at Bitter Lake NWR for 

146 the New Mexico population, and in 2017-2018 at the Salt Plains NWR for the Oklahoma 

147 population.

148 Capture-recapture-resight

149 Adult snowy plovers were captured at feeding locations using mist nets and on nests using nest 

150 traps (Conway & Smith 2000). Juveniles were captured within 24 hours of hatching, either by 

151 hand in nests or with adult(s) after hatching. All captured individuals were banded with a 

152 uniquely numbered U.S. Geological Survey aluminium band and a unique combination of colour 

153 bands. Blood samples were collected during captures to identify sex (Saalfeld et al. 2013). The 

154 identities of banded birds were recorded during subsequent captures or population surveys (see 

155 above), yielding recapture and resighting information. The capture-recapture-resight surveys 

156 were conducted in 1999-2000, 2008-2009, 2013-2014, and 2016-2018 at lakes A, B and C and 

157 Muleshoe NWR for the Texas population, in 2013-2014 and 2017-2018 at the Bitter Lake NWR 
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158 for the New Mexico population, and in 2013-2018 at the Salt Plains NWR for the Oklahoma 

159 population.

160 Environmental data

161 We considered Palmer drought severity index, minimum temperature, and wind speed as 

162 potential drivers of snowy plover productivity and survival. Palmer drought severity index is a 

163 measurement of the amount of surface water based on recent precipitation and temperature 

164 (Palmer 1965). As Palmer drought severity index tends to be positively correlated with 

165 precipitation and negatively correlated with maximum temperature (Appendix 1), it can be used 

166 to represent wetland habitat availability that influences shorebird demography (Todhunter 1995; 

167 Dinsmore 2008). High minimum temperature represented warmth during night, which may 

168 influence snowy plover demography through energy reserves. We also considered wind speed 

169 because greater wind speed may increase physiological stress during incubation and thus 

170 negatively influence snowy plover survival and productivity. We also considered actual 

171 evapotranspiration, precipitation, and maximum temperature, but these variables were highly 

172 correlated with Palmer drought severity index and/or minimum temperature (Appendix 1), and 

173 thus were not included in the model. We calculated the mean values of the above-mentioned 

174 covariates during the breeding season (i.e., May-July) for each population and year and included 

175 them in our IPM.

176 Modelling approach

177 We developed an IPM to explain snowy plover population dynamics as a consequence of the 

178 spatiotemporal variation in productivity and survival. Our IPM included three sub-models: a 

179 population sub-model, a productivity sub-model, and a survival sub-model, which utilized 
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180 population survey, nest survey, and capture-recapture-resight data, respectively. We describe 

181 each sub-model and then the overall model below.

182 Population sub-model

183 We assumed that population size in region i in the first year, denoted , followed a log-Normal 𝑁𝑖,1
184 distribution such that , in which  was selected based on the 𝑙𝑜𝑔(𝑁𝑖,1)~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇[0]𝑖 ,0.1) 𝜇[0]𝑖
185 population survey data of the corresponding region, and a small standard deviation of 0.1 was 

186 used. From the second year (i.e., ), population size was assumed to follow a log-Normal 𝑡 ≥ 2

187 distribution such that

188 + +𝑙𝑜𝑔(𝑁𝑖,𝑡) = 𝑙𝑜𝑔 (𝑁𝑖,𝑡 ‒ 1 × 0.5 × 𝜙 [𝐴𝑀]𝑖,𝑡 ‒ 1 𝑁𝑖,𝑡 ‒ 1 × 0.5 × 𝜙 [𝐴𝐹]𝑖,𝑡 ‒ 1 𝑁𝑖,𝑡 ‒ 1 × 0.5 × 𝛾𝑖,𝑡 ‒ 1 × 𝜋𝑖,𝑡 ‒ 1

189 ,                                 (1)× 0.5 × 𝜙 [𝐽𝑀]𝑖,𝑡 ‒ 1 + 𝑁𝑖,𝑡 ‒ 1 × 0.5 × 𝛾𝑖,𝑡 ‒ 1 × 𝜋𝑖,𝑡 ‒ 1 × 0.5 × 𝜙 [𝐽𝐹]𝑖,𝑡 ‒ 1) + 𝜀[𝑁]𝑖,𝑡
190 in which , , , and  were apparent survival of adult males, adult females, 𝜙 [𝐴𝑀]𝑖,𝑡 ‒ 1 𝜙 [𝐴𝐹]𝑖,𝑡 ‒ 1 𝜙 [𝐽𝑀]𝑖,𝑡 ‒ 1 𝜙 [𝐽𝐹]𝑖,𝑡 ‒ 1

191 juvenile males, and juvenile females, respectively,  was average clutch size,  was 𝛾𝑖,𝑡 ‒ 1 𝜋𝑖,𝑡 ‒ 1

192 clutch fate, and  were process errors that followed a Normal distribution of mean 0 and 𝜀[𝑁]𝑖,𝑡
193 standard deviation . Note that we assumed that both adult sex ratio and clutch sex ratio were 𝜎[𝑁]
194 1:1.

195       We then linked the population survey data with the true but latent population size. For the 

196 Texas and New Mexico populations, we assumed that population counts followed Poisson 

197 distributions such that , in which  was the population 𝑦𝑖,𝑡,𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑖,𝑡 × 𝑒𝑥𝑝 [𝜀 [𝑦]𝑖,𝑡,𝑘]) 𝑦𝑖,𝑡,𝑘
198 count of population i in year t and date k, and  were observation errors that followed a 𝜀 [𝑦]𝑖,𝑡,𝑘
199 Normal distribution of mean 0 and standard deviation .𝜎[𝑦]
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200       For the Oklahoma population, we assumed that the grid-level (indexed by j) counts followed 

201 a Poisson distribution such that  for the annual surveys 𝑦𝑖,𝑡,𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑖,𝑡
668

× 𝑒𝑥𝑝 [𝜀 [𝑦]𝑖,𝑡,𝑗] × 𝑝[𝐴𝑁𝑁]
)

202 from 2013 to 2017, in which the total population size was divided by the total number of grids 

203 (i.e., 668, see above),  represented the variation in local abundance among grid j, and  𝜀 [𝑦]𝑖,𝑡,𝑗 𝑝[𝐴𝑁𝑁]
204 was the detection probability for these annual surveys. We also assumed 𝑦𝑖,𝑡,𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑖,𝑡

668

205  for the distance sampling in 2017 and 2018. Here we had × 𝑒𝑥𝑝 [𝜀 [𝑦]𝑖,𝑡,𝑗] × 𝑝[𝐷𝐼𝑆𝑇]𝑖,𝑡,𝑗 ) 𝑝[𝐷𝐼𝑆𝑇]𝑖,𝑡,𝑗
206 , in which  was a decay parameter representing the assumption that = 𝑒𝑥𝑝 ( ‒ 1 × 𝜉 × 𝑑𝑖,𝑡,𝑗) 𝜉
207 detection probability would decrease when the linear distance between the birds and the transect, 

208 denoted , increased (Royle et al. 2004).𝑑𝑖,𝑡,𝑗
209 Productivity sub-model

210 We assumed that clutch size and fate were functions of Palmer drought severity index, minimum 

211 temperature and wind speed. More specifically, we linked clutch size with these covariates using 

212 a multinomial logistic regression. We considered the probability of a clutch size n (denoted ) 𝜔[𝑛]𝑖,𝑡
213 for n = 1, 2, and 3. Average clutch size was then calculated as 𝛾𝑖,𝑡 ‒ 1 = 1 × 𝜔[1]𝑖,𝑡 + 2 × 𝜔[2]𝑖,𝑡
214 . We then had , in which =1, and  and  were expressed as + 3 × 𝜔[3]𝑖,𝑡 𝜔[𝑛]𝑖,𝑡 =

𝜃[𝑛]𝑖,𝑡∑ 3𝑛 = 1𝜃[𝑛]𝑖,𝑡 𝜃[1]𝑖,𝑡 𝜃[2]𝑖,𝑡 𝜃[3]𝑖,𝑡
215 functions of the above-mentioned covariates such that 

216 ,                        (2)𝑙𝑜𝑔 (𝜃[2]𝑖,𝑡 ) = 𝛼[2]
+ 𝛽[2]

1 × 𝑃𝐷𝑆𝐼𝑖,𝑡 + 𝛽[2]
2 × 𝑀𝐼𝑁𝑇𝑖,𝑡 + 𝛽[2]

3 × 𝑊𝐼𝑁𝐷𝑖,𝑡 + 𝜀[2]𝑖,𝑡
217 and 

218 ,                        (3)𝑙𝑜𝑔 (𝜃[3]𝑖,𝑡 ) = 𝛼[3]
+ 𝛽[3]

1 × 𝑃𝐷𝑆𝐼𝑖,𝑡 + 𝛽[3]
2 × 𝑀𝐼𝑁𝑇𝑖,𝑡 + 𝛽[3]

3 × 𝑊𝐼𝑁𝐷𝑖,𝑡 + 𝜀[3]𝑖,𝑡
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219 in which  was the Palmer drought severity index for region i and year t,  was 𝑃𝐷𝑆𝐼𝑖,𝑡 𝑀𝐼𝑁𝑇𝑖,𝑡
220 minimum temperature,  was wind speed, and  and  were process errors that 𝑊𝐼𝑁𝐷𝑖,𝑡 𝜀[2]𝑖,𝑡 𝜀[3]𝑖,𝑡
221 followed Normal distributions of mean 0 and standard deviations of  and , respectively. 𝜎[2] 𝜎[3]

222 Note that we used intercept and slope parameters that were the same across the regions, which 

223 represented the assumption the demography-environment relationships were the same across 

224 regions. We also considered regressions with region-specific intercept and slope parameters such 

225 that  and 𝑙𝑜𝑔(𝜃[2]𝑖,𝑡 ) = 𝛼[2]𝑖 + 𝛽[2]1,𝑖 × 𝑃𝐷𝑆𝐼𝑖,𝑡 + 𝛽[2]2,𝑖 × 𝑀𝐼𝑁𝑇𝑖,𝑡 + 𝛽[2]3,𝑖 × 𝑊𝐼𝑁𝐷𝑖,𝑡 + 𝜀[2]𝑖,𝑡 𝑙𝑜𝑔(𝜃[3]𝑖,𝑡 ) 

226  to allow for region-specific = 𝛼[3]𝑖 + 𝛽[3]1,𝑖 × 𝑃𝐷𝑆𝐼𝑖,𝑡 + 𝛽[3]2,𝑖 × 𝑀𝐼𝑁𝑇𝑖,𝑡 + 𝛽[3]3,𝑖 × 𝑊𝐼𝑁𝐷𝑖,𝑡 + 𝜀[3]𝑖,𝑡
227 demography-environment relationships.

228       We linked clutch fate with the same covariates using a logistic regression such that 

229 ,                            𝑙𝑜𝑔𝑖𝑡(𝜇𝑖,𝑡) = 𝛼[𝑓]
+ 𝛽[𝑓]

1 × 𝑃𝐷𝑆𝐼𝑖,𝑡 + 𝛽[𝑓]
2 × 𝑀𝐼𝑁𝑇𝑖,𝑡 + 𝛽[𝑓]

3 × 𝑊𝐼𝑁𝐷𝑖,𝑡 + 𝜀[𝑓]𝑖,𝑡
230 (4)

231 in which process errors  followed a Normal distribution with mean 0 and standard deviations 𝜀[𝑓]𝑖,𝑡
232 of . As in the regressions of clutch size, we also formed a regression with region-specific 𝜎[𝑓]
233 intercept and slope parameters for clutch fate.

234 Survival sub-model

235 We linked apparent survival with the same covariates mentioned above using a logistic 

236 regression such that 

237 ,                      (5)𝑙𝑜𝑔𝑖𝑡(𝜙 [𝐶]𝑖,𝑡 ‒ 1) = 𝛼[𝐶]
+ 𝛽[𝐶]

1 × 𝑃𝐷𝑆𝐼𝑖,𝑡 + 𝛽[𝐶]
2 × 𝑀𝐼𝑁𝑇𝑖,𝑡 + 𝛽[𝐶]

3 × 𝑊𝐼𝑁𝐷𝑖,𝑡 + 𝜀[𝐶]𝑖,𝑡
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238 in which  was the apparent survival of cohort C (i.e., adult male, adult female, juvenile 𝜙 [𝐶]𝑖,𝑡 ‒ 1

239 male, juvenile female) in region i and year t, and process errors  followed a Normal 𝜀[𝐶]𝑖,𝑡
240 distribution with mean 0 and standard deviations of . We again considered a regression with 𝜎[𝐶]
241 region-specific intercept and slope parameters for apparent survival.

242       We also estimated the probability of recapture ( ) and resighting ( ). The 𝑝[𝑅𝐸𝐶] 𝑝[𝑅𝐸𝑆]
243 likelihood of the individual encounter history data was then calculated using , , and 𝜙 [𝐶]𝑖,𝑡 ‒ 1 𝑝[𝑅𝐸𝐶]
244  values.𝑝[𝑅𝐸𝑆]
245 Model implementation

246 We implemented the IPM in a hierarchical Bayesian framework with posterior distributions 

247 obtained by Markov chain Monte Carlo (MCMC) computing in the software JAGS (Plummer 

248 2003), which was called from R (R Development Core Team 2013) through the package 

249 “jagsUI” (Kellner 2015). We used vague priors Normal (0, 100) for any intercept and slope 

250 parameters, gamma (0.01, 0.01) for any precision parameters and the decay parameter in distance 

251 sampling, and uniform (0, 1) for any probability parameters. We used 5,000 iterations including 

252 3,000 burn-in and 5 chains, yielding 10,000 posterior samples for each parameter. We checked 

253 the convergence of the MCMC computing using R-hat statistics and Gelman-Rubin diagnostics 

254 (Brooks & Gelman 1998). The R-hat statistics for each parameter were ≤1.02, and the chains 

255 were well mixed.

256 Post-modelling analysis

257 We conducted a hierarchical partitioning analysis (Mac Nally 1996) to understand the relative 

258 contributions of demographic parameters in describing population growth rates (Zhao, Boomer 
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259 & Royle 2019). Hierarchical partitioning is based on multiple linear regressions, in which 

260 population growth (i.e., ) was the response variable and demographic parameters were the 
𝑁𝑖,𝑡𝑁𝑖,𝑡 ‒ 1

261 predictors. This approach considers all possible models, each of which corresponds to a given 

262 combination of predictors. For each model, the joint contribution of the predictors is calculated. 

263 With such information, hierarchical partitioning allowed us to calculate the relative independent 

264 contributions of each demographic parameter on population growth. We used the full posterior 

265 samples to conduct these analyses to account for uncertainty in parameter estimates.

266

267 Results

268 Population and demographic estimates

269 Our results revealed population declines in the Texas and New Mexico populations, and 

270 potentially the Oklahoma population (Figure 3). Note that the Oklahoma population had a much 

271 larger population size (e.g., mean 1803.6, 80% C.I. 1600.1, 2038.1 in 2017) than the Texas 

272 (mean 82.6, 80% C.I. 74.1, 92.7 in 2017) and New Mexico populations (mean 23.7, 80% C.I. 

273 21.2, 26.8 in 2017). However, the trend of the Oklahoma population was less clear due to the 

274 lack of population survey data in the early years.

275       Average clutch size (Texas: mean 2.62, 80% C.I. 2.02, 2.97; New Mexico: mean 2.65, 80% 

276 C.I. 2.02, 2.97; Oklahoma: mean 2.62, 80% C.I. 1.99, 2.98) and clutch fate (Texas: mean 0.36, 

277 80% C.I. 0.10, 0.82; New Mexico: mean 0.40, 80% C.I. 0.09, 0.80; Oklahoma: mean 0.39, 80% 

278 C.I. 0.05, 0.90) were similar among populations, but declined during our study period (Figure 4). 

279 Apparent adult survival was greater than juvenile survival for both females and males for all 

280 study populations, but there was large uncertainty in estimates and no strong trends. Adult 
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281 female (Texas: mean 0.72, 80% C.I. 0.20, 0.99; New Mexico: mean 0.75, 80% C.I. 0.19, 0.98; 

282 Oklahoma: mean 0.73, 80% C.I. 0.13, 0.98) and adult male (Texas: mean 0.77, 80% C.I. 0.17, 

283 0.99; New Mexico: mean 0.78, 80% C.I. 0.18, 0.99; Oklahoma: mean 0.73, 80% C.I. 0.17, 0.98) 

284 survival was ~73% and ~75% respectively, while juvenile female (Texas: mean 0.15, 80% C.I. 

285 0.00, 0.81; New Mexico: mean 0.12, 80% C.I. 0.00, 0.82; Oklahoma: mean 0.09, 80% C.I. 0.00, 

286 0.81) and juvenile male (Texas: mean 0.08, 80% C.I. 0.00, 0.73; New Mexico: mean 0.09, 80% 

287 C.I. 0.00, 0.68; Oklahoma: mean 0.06, 80% C.I. 0.00, 0.66; Figure 5) survival was < 15% for all 

288 populations, with high uncertainty.

289 Demographic contributions on population growth

290 Demographic parameters considered in our IPM had similar and substantial contributions to 

291 population growth rates (clutch size: mean 8.5%, 80% C.I. 2.0%, 30.8%, clutch fate: mean 9.1%, 

292 80% C.I. 2.0%, 33.6%, adult female survival: mean 13.1%, 80% C.I. 2.2%, 47.2%, adult male 

293 survival: mean 14.9%, 80% C.I. 2.4%, 51.2%, juvenile female survival: mean 10.7%, 80% C.I. 

294 2.2%, 39.4%, juvenile male survival: mean 10.6%, 80% C.I. 2.0%, 39.0%; Figure 6).

295 Drivers of demography

296 The results from the IPM with region-specific intercept and slope parameters showed little 

297 regional variation in demography-environment relationships (Appendix 2). Therefore, here we 

298 report the results of the model with universal intercept and slope parameters.

299       Palmer drought severity index had a positive effect on the probability of a clutch size of 2 

300 (mean 0.65, 80% C.I. −0.53, 2.06) with moderate certainty and the probability of a clutch size of 

301 3 (mean 1.54, 80% C.I. 0.61, 2.88) and clutch fate (mean 1.70, 80% C.I. 1.25, 2.15) with 

302 relatively high certainty. Minimum temperature also had a positive effect on the probability of a 
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303 clutch size of 2 (mean 0.21, 80% C.I. −0.31, 0.82) with moderate certainty and the probability of 

304 a clutch size of 3 (mean 0.83, 80% C.I. 0.36, 1.40) and clutch fate (mean 0.99, 80% C.I. 0.72, 

305 1.24) with relatively high certainty. Wind speed positively influenced clutch fate (mean 0.40, 

306 80% C.I. 0.13, 0.77) with relatively high certainty but not the probability of a clutch size of 2 

307 (mean 0.11, 80% C.I. −0.58, 0.84) or 3 (mean 0.14, 80% C.I. −0.50, 0.86; Figure 7).

308       Palmer drought severity index also positively influenced survival (adult female: mean 0.46, 

309 80% C.I. −0.29, 1.16; adult male: mean 0.29, 80% C.I. −0.61, 1.02; juvenile female: mean 0.89, 

310 80% C.I. 0.07, 2.47; juvenile male: mean 0.66, 80% C.I. −0.21, 1.80) with moderate certainty. 

311 Minimum temperature (adult female: mean −0.12, 80% C.I. −0.74, 0.49; adult male: mean −0.23, 

312 80% C.I. −0.95, 0.38; juvenile female: mean 0.07, 80% C.I. −0.69, 1.30; juvenile male: mean 

313 −0.36, 80% C.I. −1.65, 0.45) and wind speed (adult female: mean −0.13, 80% C.I. −0.77, 0.41; 

314 adult male: mean −0.05, 80% C.I. −0.68, 0.57; juvenile female: mean −0.04, 80% C.I. −0.68, 

315 0.62; juvenile male: mean −0.05, 80% C.I. −0.72, 0.59) only had weak effects on survival 

316 (Figure 8).

317

318 Discussion

319 Our IPM provided reasonable precision for productivity estimates and uncovered the complex 

320 relationships between wetland habitat conditions, climate, and demography with partially aligned 

321 data. Our results showed that wetland habitat (represented by Palmer drought severity index) 

322 positively impacted productivity and survival of snowy plover, indicating the importance of 

323 protecting wetland habitat for the conservation of this migratory shorebird that breeds in a semi-

324 arid environment. Our results also showed that minimum temperature positively influenced 
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325 productivity. Based on these results, we recommend continuous population and capture-recapture 

326 surveys combined with segmented productivity survey data for understanding population 

327 dynamics and underlying demographic processes when data collection is limited by time and/or 

328 financial resource.

329 Analysis of partially aligned data

330 Our study could only provide population and demographic estimates with reasonable precision 

331 using IPMs. IPMs have been increasingly used in understanding population dynamics and 

332 underlying demographic processes due to their capability of estimating parameters with 

333 unbalanced data (Saunders et al. 2019) or even without specific data (Besbeas et al. 2002; Zhao, 

334 Boomer & Royle 2019), at no substantial cost to bias or precision of parameter estimates 

335 (Weegman et al. 2020).

336       Previous work revealed that the responses of populations to environmental conditions may be 

337 region-specific (Forchhammer et al. 1998; Williams, Ives & Applegate 2003; Grøtan et al. 

338 2009). However, these studies often focus on large spatial ranges that cover multiple ecological 

339 regions. Zhao, Boomer and Royle (2019) found that demography-environment relationships tend 

340 to be similar within ecological regions, but different among ecological regions. Because our 

341 study area lies in the Southern Great Plains, it is reasonable to assume that our three populations 

342 respond similarly to the environment. To test these hypotheses, we formed an IPM with region-

343 specific demography-environment relationships, and the results confirmed our assumption of 

344 similar responses among populations. Based on these results, we used a model with universal 

345 demography-environment relationships, which provided an information-borrowing mechanism 

346 among populations. As data availability and quality were variable among populations (e.g., a 

347 relatively thorough population survey in New Mexico but demographic surveys in Texas), such 
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348 an approach allows us to achieve relatively reasonable precision for all three populations. We 

349 encourage practitioners to use information-borrowing approaches among populations when data 

350 are only partly aligned, such as in our study.

351       Even with the advanced IPM, uncertainty of population and survival estimates was still high 

352 in some years due to the lack of corresponding data. For example, Oklahoma population 

353 estimates from 1998 to 2012 had relatively high uncertainty due to lack of population survey 

354 data during this period. These results remind us that monitoring programs are still extremely 

355 important for gaining knowledge about wildlife populations, even with advantages from recent 

356 modelling techniques.

357 Environmental impacts

358 Our study revealed the demographic mechanisms for and environmental drivers of the declines 

359 of the snowy plover populations in the Southern Great Plains (Andres et al. 2012; Saalfeld et al. 

360 2013; Heath 2019). Our study showed that wetland habitat, represented by Palmer drought 

361 severity index, had a strong positive effect on snowy plover productivity measures (i.e., clutch 

362 size and clutch fate) and a moderate positive effect on juvenile survival. Thus, the declines in 

363 snowy plover productivity and population size can be attributed, in part, to the change of wetland 

364 habitat. Like other shorebirds, snowy plover populations rely on wetland habitat (Conway, Smith 

365 & Ray 2005), where degradation or loss in wetland habitat may decrease their productivity or 

366 even survival (Saalfeld et al. 2011; Saalfeld et al. 2013). Wetland habitat loss could be driven by 

367 climate change (e.g. Sorenson et al. 1998; Sofaer et al. 2016) as well as other human stressors 

368 (Johnston 2013; Burgin, Franklin & Hull 2016; Donnelly et al. 2019; Donnelly et al. 2020). For 

369 example, the decline of the snowy plover population at Bitter Lake NWR may be driven by the 
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370 degradation of ground water sources in the Pecos River ecosystem related to agricultural 

371 development (Heath 2019).

372       Our study also reveals a positive effect of minimum temperature on snowy plover clutch size 

373 and fate. Increases in temperature are normally considered to lead to drier habitats and thus 

374 negatively impact shorebird populations. In our study area, maximum temperature is negatively 

375 correlated with Palmer drought severity index (Appendix 1). Even though we could not evaluate 

376 the effect of maximum temperature on snowy plover demography due to this correlation, the 

377 positive effect of Palmer drought severity index may indicate a negative impact of high 

378 temperature during day time on snowy plover demography. High temperatures not only could 

379 lead to increased evapotranspiration and drought but also may create a thermally stressful 

380 environment for nesting snowy plovers that necessitates incubating parents cooling eggs during 

381 daylight hours (Saalfeld et al. 2012). High minimum temperature, on the other hand, represents a 

382 relatively warm condition during night, which may benefit these birds (Van de Pol et al. 2010; 

383 Saalfeld et al. 2012). Further studies that are able to disentangle the multifaceted effects of 

384 climatic conditions on shorebird demography and behaviours are essential for a comprehensive 

385 understanding of the impacts of anticipated change on their populations, associated with climate 

386 change. Despite that we predicted a negative effect of wind speed on snowy plover demography 

387 (Hilde et al. 2016), we found that wind speed was positively correlated with clutch fate but not 

388 other demographic parameters. However, the relatively high uncertainty of the effect of wind 

389 speed indicated that further investigation is needed.

390       Interestingly, our results showed that productivity and survival of all cohorts had similar 

391 contributions on snowy plover population growth. Several studies showed that productivity tends 

392 to vary more and also contribute more to population growth (Alisauskas et al. 2004; Cooch et al. 
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393 2001; Taylor et al. 2012), although these studies focused on larger birds. Survival might play a 

394 more important role than productivity in smaller birds such as snowy plovers (current study) and 

395 insectivores (Zhao unpublished data). The relatively high uncertainty of population and survival 

396 estimates in some years, however, may have masked the differential contributions of 

397 demography on population growth, warranting further investigation.

398 Conservation implications

399 Conservation programs often have limited financial resources and practitioners are challenged to 

400 balance monitoring and conservation priorities. Demographic data (e.g., capture-recapture) are 

401 more expensive to collect than count data of unmarked populations yet are crucial for 

402 understanding demographic foundations of population dynamics. Recent studies showed that 

403 count data of unmarked animals can provide information for demography (Dail & Madsen 2011; 

404 Zipkin et al. 2014; Hostetler & Chandler 2015; Zhao, Royle & Boomer 2017). Furthermore, it 

405 would be ideal to jointly analyse count and demographic data to achieve comprehensive 

406 understanding and robust inference of population dynamics and underlying demographic 

407 processes (Zhao 2020). Our study showed that reasonable precision of demographic estimates 

408 could be achieved even with partially aligned data. In particular, productivity estimates had an 

409 overall reasonable precision even though nest survey data were available for only short periods. 

410 Previous researchers showed that productivity/recruitment could be estimated without direct data 

411 using IPMs (e.g., Besbeas et al. 2002; Zhao, Boomer & Royle 2019; Weegman et al. 2020). 

412 Survival estimates in Texas also had an overall reasonable precision despite the gaps in capture-

413 recapture-resight data. Survival estimates in Oklahoma, however, had relatively high uncertainty 

414 during the first 15 years of our study period due to the lack of capture-recapture-resight data. 

415 Population estimates had relatively reasonable precision only for years with population survey 
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416 data. In particular, the Oklahoma population was much larger than the other two populations and 

417 thus seems particularly important for the conservation of this species, which corroborates 

418 previous work (Heath 2019). Yet the estimates of the Oklahoma population had high uncertainty 

419 during the early years due to the lack of data, which largely hindered our ability to identify a 

420 long-term trend for this population. Overall, it seems that a combination of continuous 

421 population count and capture-recapture/resighting data with segmented nest survey data is 

422 practical and useful for monitoring population status and developing appropriate conservation 

423 strategies for this species.

424       Despite the imbalanced data availability, our IPM provided an understanding about the 

425 environmental drivers of snowy plover in the Southern Great Plains. Our study revealed that 

426 snowy plover demography and thus population dynamics are driven by wetland habitat 

427 conditions, indicating the importance of wetland habitat conservation under climate change and 

428 other human stressors such as groundwater mining and agricultural development (Conway, 

429 Smith & Ray 2005; Heath 2019). Our study also showed that future warming may potentially 

430 benefit snowy plover populations, at least in the short term (i.e., acknowledging that beyond a 

431 certain point, increased temperatures will negatively influence snowy plover productivity; 

432 Saalfeld et al. 2013). Understanding the multifaceted effects of climate on animal demography is 

433 key for accurate forecasts of population responses, and thus appropriate conservation planning 

434 under climate change (Clark et al. 2001; Petchey et al. 2015).

435       Taken together, our IPM lays a foundation of allocating limited conservation resources for 

436 evidence-based conservation decision-making under global change. The benefits of out 

437 modelling approach are not limited to our study species, as more studies should consider 

438 balancing allocation of conservation resources between different types of data.
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Figure 1
Study area

Figure 1. The position of the Great Plains in the contiguous US (inner panel), and the
positions of our study sites in the Southern Great Plains in Texas (Muleshoe National Wildlife
Refuge [NWR] and lakes A, B and C), New Mexico (Bitter Lake NWR), and Oklahoma (Salt
Plains NWR).
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Figure 2
Data availability

Figure 2. The years in which each type of data (population survey, distance sampling, nest
survey, and capture-recapture-resight) are available for each population (Texas, New Mexico,
Oklahoma).
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Figure 3
Population estimates

Figure 3. IPM estimated population trend (yellow line) and corresponding 80% Credible
Interval (purple band) as well as population count data (red points) in Texas, New Mexico,
and Oklahoma.
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Figure 4
Productivity estimates

Figure 4. IPM estimated average clutch size and clutch fate (yellow line) and corresponding
80% Credible Interval (purple band) in Texas, New Mexico, and Oklahoma.
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Figure 5
Survival estimates

Figure 5. IPM estimated apparent survival of adult female, adult male, juvenile female and
juvenile male (yellow line) and corresponding 80% Credible Interval (purple band) in Texas,
New Mexico, and Oklahoma.

PeerJ reviewing PDF | (2021:08:64923:0:1:NEW 23 Aug 2021)

Manuscript to be reviewed



PeerJ reviewing PDF | (2021:08:64923:0:1:NEW 23 Aug 2021)

Manuscript to be reviewed



Figure 6
Demographic contributions

Figure 6. The relative independent contribution of average clutch size, clutch fate, and
apparent survival of adult female, adult male, juvenile female, and juvenile male on snowy
plover population growth in Texas, New Mexico, and Oklahoma.
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Figure 7
Drivers of productivity

Figure 7. Violin plots showing the posterior distributions of the slope parameters that
represent the effect of Palmer drought severity index (PDSI), minimum temperature (min
temp), and wind speed (wind) on productivity measures of snowy plover including the
probability of a clutch size of 2 (C2) or 3 (C3), and clutch fate (FT).
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Figure 8
Drivers of survival

Figure 8. Violin plots showing the posterior distributions of the slope parameters that
represent the effect of Palmer drought severity index (PDSI), minimum temperature (min
temp), and wind speed (wind) on the apparent survival of adult female (AF), adult male (AM),
juvenile female (JF), and juvenile male (JM) snowy plover.
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