

Occupancy of wild southern pig-tailed macaques in intact and degraded forests in Peninsular Malaysia

Anna Holzner 1,2,3 , Nadine Ruppert $^{\text{Corresp.,3}}$, Laura Clart 2 , Lars Kulik 1 , D. Mark Rayan 4,5 , Jonathan Moore 6,7 , Cedric Kai Wei Tan 8,9 , Hjalmar Kühl 10 , Anja Widdig 1,2,10

Corresponding Author: Nadine Ruppert Email address: n.ruppert@usm.my

Deforestation is a major threat to terrestrial tropical ecosystems, particularly in Southeast Asia where human activities have dramatic consequences for the survival of many species. However, responses of species to anthropogenic impact are highly variable. In order to establish effective conservation strategies, it is critical to determine a species' ability to persist in degraded habitats. Here, we used camera trapping to provide first insights into the temporal and spatial distribution of southern pig-tailed macagues (Macaca nemestrina, listed as 'Vulnerable' by the IUCN) across intact and degraded forest habitats in Peninsular Malaysia, with a particular focus on the effects of clear cutting and selective logging on macaque occupancy. Specifically, we found a 10% decline in macaque site occupancy in the highly degraded Pasoh Forest Reserve from 2013 to 2017. This may be strongly linked to the macagues' sensitivity to clear cutting which significantly increased the probability that M. nemestrina became locally extinct at a previously occupied site. In contrast, no clear relationship was found between site occupancy and selective logging. Accordingly, the macaques' age and sex structure did not differ between undisturbed and selectively logged habitats within the Belum-Temengor Forest Complex. This suggests that selectively logged forests still constitute valuable habitats for M. nemestrina that need to be protected against further degradation. Our results emphasize the significance of population monitoring through camera trapping for understanding the ability of threatened species to cope with anthropogenic disturbance. This can inform species management PeerJ reviewing PDF | (2021:04:59765:0:1:NEW 15 Apr 2021)

¹ Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany

² Behavioural Ecology Research Group, Institute of Biology, University of Leipzig, Leipzig, Germany

³ School of Biological Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia

Durrell Institute of Conservation and Ecology (DICE), University of Kent, Canterbury, United Kingdom

Wildlife Conservation Society (WCS), Kuching, Malaysia

⁶ School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China

⁷ School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

⁸ Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, United Kingdom

⁹ School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, Malaysia

German Center for Integrative Biodiversity Research, Leipzig, Germany

plans and facilitate the development of effective conservation measures to protect biodiversity.

Occupancy of wild southern pig-tailed macaques in intact and degraded forests in Peninsular Malaysia

3

1

2

- 5 Anna Holzner^{1,2,3}, Nadine Ruppert^{3*}, Laura Clart², Lars Kulik¹, D. Mark Rayan^{4,5}, Jonathan
- 6 Moore^{6,7}, Cedric Kai Wei Tan^{8,9}, Hjalmar Kühl¹⁰, Anja Widdig^{1,2,10}

7

- 8 ¹ Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary
- 9 Anthropology, Leipzig, Germany
- ² Behavioural Ecology Research Group, Institute of Biology, University of Leipzig, Leipzig,
- 11 Germany
- ³ School of Biological Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
- ⁴ Wildlife Conservation Society (WCS), Kuching, Malaysia
- ⁵ Durrell Institute of Conservation and Ecology (DICE), University of Kent, Canterbury, United
- 15 Kingdom
- 16 School of Environmental Science and Engineering, Southern University of Science and
- 17 Technology, Shenzhen, China
- ⁷ School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
- 19 ⁸ Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford,
- 20 United Kingdom
- ⁹ School of Environmental and Geographical Sciences, University of Nottingham Malaysia,
- 22 Semenyih, Malaysia
- 23 ¹⁰ German Center for Integrative Biodiversity Research, Leipzig, Germany

24

- 25 *Corresponding author:
- 26 Nadine Ruppert
- 27 Email address: n.ruppert@usm.my

28

Abstract

Deforestation is a major threat to terrestrial tropical ecosystems, particularly in Southeast Asia 29 where human activities have dramatic consequences for the survival of many species. However, 30 31 responses of species to anthropogenic impact are highly variable. In order to establish effective conservation strategies, it is critical to determine a species' ability to persist in degraded habitats. 32 Here, we used camera trapping to provide first insights into the temporal and spatial distribution 33 of southern pig-tailed macaques (*Macaca nemestrina*, listed as 'Vulnerable' by the IUCN) across 34 35 intact and degraded forest habitats in Peninsular Malaysia, with a particular focus on the effects 36 of clear cutting and selective logging on macaque occupancy. Specifically, we found a 10% decline in macague site occupancy in the highly degraded Pasoh Forest Reserve from 2013 to 37 2017. This may be strongly linked to the macaques' sensitivity to clear cutting which 38 significantly increased the probability that M. nemestrina became locally extinct at a previously 39 40 occupied site. In contrast, no clear relationship was found between site occupancy and selective logging. Accordingly, the macaques' age and sex structure did not differ between undisturbed 41 42 and selectively logged habitats within the Belum-Temengor Forest Complex. This suggests that selectively logged forests still constitute valuable habitats for M. nemestrina that need to be 43 protected against further degradation. Our results emphasize the significance of population 44 monitoring through camera trapping for understanding the ability of threatened species to cope 45 with anthropogenic disturbance. This can inform species management plans and facilitate the 46 development of effective conservation measures to protect biodiversity. 47

48

49

Introduction

50 Tropical rainforests are highly complex ecosystems that exhibit exceptional biodiversity (Gallery, 2014). Yet, continuing human population growth, expanding infrastructure and the 51 52 intensive cultivation of crops lead to dramatically increasing deforestation rates, which are the major threat to these remarkable habitats (Rosa et al., 2016). Malaysia is a biodiversity hotspot 53 with high primate diversity but is still losing large parts of its natural habitat to new oil palm 54 plantations, mining operations and the timber industry (Vijay et al., 2016; Omran & Schwarz-55 56 Herion, 2020). During the past decade, the country has lost 11.3% of its primary forest and 16.8% of tree cover (Mongabay, 2021). As reported by the International Union for Conservation 57

of Nature (IUCN, 2020), more than one fourth of Malaysia's mammals are threatened with 58 extinction. Among them are 23 non-human primates (hereafter 'primates'), one of which is the 59 southern pig-tailed macaque (Macaca nemestrina), a little-studied, predominantly terrestrial 60 species native to Southeast Asia (Bernstein, 1967). 61 62 Macaca nemestrina inhabits tropical rainforests of Malaysia, Indonesia and southern Thailand (Ang et al., 2020). The dramatic decline of primary forest habitat in the primates' range, human 63 hunting of macaques for food and pet trade, and their widespread perception as crop pests have 64 65 contributed to rapidly decreasing populations during the past few decades (Linkie et al., 2007; 66 Ang et al., 2020). Only recently, Ang et al. (2020) confirmed the macaques' negative population trend and its current status as 'Vulnerable' (IUCN, 2020). Meijaard et al. (2007) reported a 67 generally high sensitivity of this species to logging, yet the macaques' response to human 68 69 disturbance remains poorly understood (Ang et al., 2020). To date, we lack detailed knowledge 70 on M. nemestrina's distribution, their abundance as well as their ability to cope in 71 anthropogenically impacted habitats. However, this is crucial to understand in order to establish 72 effective protection measures ensuring the long-term survival of this and other threatened wildlife species affected by human activities. 73 74 It is well known that human land use drastically reduces biodiversity and important ecosystem functions of primary forests (Marques et al., 2019; Alroy, 2017; Barnes et al., 2014). Degraded 75 habitats, such as forest fragments, monocultures or urban environments were shown to include 76 on average 41% fewer species than undisturbed forests (Alroy, 2017). Numerous studies have 77 78 highlighted the negative impact of clear-felling on biodiversity, with the conversion of tropical 79 forests into oil palm plantations being the main driver of deforestation in many Southeast Asian countries (Koh & Wilcove, 2007; Fitzherbert et al., 2008). The establishment of oil palm 80 monocultures does not only imply severe losses in species richness, but also substantially 81 contributes to habitat fragmentation and environmental pollution through chemical fertilizers or 82 pesticide runoffs (reviewed in Fitzherbert et al., 2008). Particularly, larger mammals and 83 specialized bird species may have difficulties in permanently adapting to and surviving in these 84 monocultural landscapes (Danielsen & Heegaard, 1995; Fitzherbert et al., 2008). The negative 85 86 effects of habitat degradation on animal populations may further be reinforced by the increase of 87 so-called 'edge effects', describing ecological alterations that result from the development of 88 abrupt, artificial edges of forest fragments (Didham et al., 1998). Forest edges open up the

89	canopy and dry out the wood, which increases the susceptibility of forests to fire (Cochrane,
90	2003).
91	Selective logging is one of the most widespread, yet a less intensive form of habitat degradation
92	(Asner et al., 2005). It refers to the removal of a limited number of economically valuable tree
93	species of a given age in a particular area and/or during a distinct logging cycle (Johns, 1985).
94	However, it also implies secondary threats, such as an increased hunting pressure from local
95	communities, as logging roads facilitate human access to forests (Robinson, Redford & Bennett,
96	1999; Milner-Gulland & Bennett, 2003). Previous research suggested that selective timber
97	extraction may have less severe effects on species diversity and abundance than more intense
98	forms of land use change, e. [7] rough clear cutting (Ibarra et al., 2017; Gibson et al., 2011).
99	However, Tobias (2015) highlighted the high variability in the reaction of different species to
100	habitat degradation, with both logging practices as well as species traits, such as diet and body
101	mass, being important factors in determining the effects of selective timber harvesting on
102	wildlife abundance. This is in line with other studies suggesting that generalist feeding
103	tendencies in particular are indicative for the ability of a species to persist in selectively logged
104	habitats (Vetter et al., 2011; Burivalova et al., 2015). Carnivores, as well-s frugivorous and
105	insectivorous forest specialists, on the other hand, were reported to be rather confined to
106	undisturbed primary forests (Brodie, Giordano & Ambu, 2015; Tobias, 2015). In this context,
107	caution is needed when inferring the adaptive capacity of one species from the response of
108	another.
109	Macaca nemestrina is best adapted to lowland and hill dipterocarp forests (Ang et al., 2020). The
110	macaques' diet primarily consists of fruits (Caldecott, 1986), indicating their value as seed
111	dispersers and, consequently, their key role in forest regeneration (Albert et al., 2014, Ruppert et
112	al., 2014), but also suggesting that they are frugivorous forest specialists with limited ecological
113	flexibility. Although this species readily enters oil palm plantations in search of food (Ruppert et
114	al., 2018; Holzner et al., 2019), previous studies highlighted the macaques' dependency on
115	primary forest habitat as a safe retreat to sleep and socialize (Ruppert et al., 2014, A Holzner,
116	unpublished data), confirming doubts on their ability to permanently persist in highly disturbed
117	habitats (Caldecott, 1986). Using camera trapping, we provide first insights into the impact of
118	forest degradation through tree felling on the occupancy of M. nemestrina in Peninsular
119	Malaysia. Firstly, we used a dynamic occupancy modelling approach (MacKenzie et al., 2003) to

120	assess temporal changes in the macaques' distribution as well as factors potentially impacting
121	dynamics in site occupancy in the highly disturbed Pasoh Forest Reserve (PFR), which was
122	affected by partial clear cutting and selective logging from 2013 to 2017. Secondly, we
123	investigated the macaques' spatial distribution within the Belum-Temengor Forest Complex
124	(BTFC), Tocusing on differences between the undisturbed, totally protected Royal Belum State
125	Park and the selectively logged Temengor Forest Reserve. Finally, we assessed potential
126	differences in the macaques' age and sex structure in undisturbed as well as selectively logged
127	forests within BTFC. This can inform about vital parameters of population dynamics,
128	particularly breeding success and survival, and therefore be indicative of population health.
129	
130	<u>Methods</u>
131	Study sites
132	Our study was conducted at two different sites in Peninsular Malaysia, which are characterized
133	by different degrees of human disturbance. One site is located within the Pasoh Forest Reserve
134	(PFR) in the state of Negeri Sembilan (102°31'0''E, 2°98'0''N). Large parts of the 140 km²
135	sized PFR were logged between the 1950s and 1970s, today comprising regenerating lowland
136	forest. Only its 4 km ² sized core area still consists of virgin primary forest (Fletcher et al., 2012).
137	Also today, PFP is subject to clear-felling and selective logging. It is surrounded by oil palm
138	plantations from all sides. The second study site is located within the Belum-Temengor Forest
139	Complex (BTFC) in the state of Perak (101°15'0'' 101°46'0''E, 5°55'0''N-5°0'0''N). With a
140	size of approximately 3,000 km², BTFC forms parts of the second-largest contiguous forest
141	complex in Peninsular Malaysia. It comprises lowland, hill and upper dipterocarp, well as
142	montane forest (Rayan & Linkie, 2016). A highway (i.e. the Gerik-Jeli Highway) dissects the
143	forest complex into two areas, i.e. the strictly protected Royal Belum State Park (hereafter
144	'Belum') in the north, and the Temengor Forest Reserve (hereafter 'Temengor'), where selective
145	logging has been ongoing since the 1970s, in the south (Rayan & Linkie, 2016).
146	
147	Camera trap setup
148	This study is based on camera trap data originally collected to assess habitat use of mainland
149	clouded leopards (Neofelis nebulosa) in PFR (Tan et al., 2017), as well as density and habitat use

150	of tigers (Panthera tigris), occupancy of ungulates and interactions between large carnivores in
151	BTFC (Rayan & Linkie, 2015, 2016, 2020). All necessary permits from the Perak State Parks
152	Corporation, the Department of Wildlife and National Parks and the Forestry Department of
153	Perak were acquired prior to data collection. Due to the non-invasive nature of observational
154	studies based on camera trapping, no ethical approval was required.
155	Detection data of <i>M. nemestrina</i> from PFR were provided by the Tropical Ecology Assessment
156	and Monitoring Network (TEAM Network 2019). In PFR, camera trapping was conducted from
157	2013 to 2017. Each camera trap was active for an average of 33 consecutive days per year. The
158	camera setup covered an area of 120 km², including a grid of 60 cameras. The spacing between
159	cameras was approximately 1.5 km. Camera images of macaques detected in BTFC were
160	provided by D. Mark Rayan and WWF Malaysia. Here, camera trapping was conducted from
161	2009 to 2011. Camera traps were active for an average of 86 consecutive days between August
162	2009 and May 2010 in Temengor, and 82 consecutive days between August 2010 and April 2011
163	in Belum. The camera setup covered an area of approximately 400 km² in each habitat (Rayan &
164	Linkie, 2015). A grid of 70 cameras was created in Belum and Temengor, respectively, with
165	each grid cell covering 2 km x 2 km. To increase spatial coverage, the cameras were moved
166	within the grid after three to four months of operation, resulting in 140 distinct camera locations.
167	The sampling blocks within Belum and Temengor were chosen to represent the entire forest by
168	taking into account the proportion of different vegetation types (Rayan & Linkie, 2015).
169	Figure 1 provides an overview on camera placements in PFR and BTFC. Camera tr
170	(RECONYX and SONY P41) were separated by a minimum distance of 1 km from one another.
171	As the approximate home range size of <i>M. nemestrina</i> is 1 km ² (Ruppert et al., 2018; Holzner et
172	al., 2019), a macaque group was unlikely to be detected by two different cameras, ensuring
173	spatial independence between sites. Camera traps were active for 24 hours per day and set to take
174	photos at 10-second intervals. They were fixed to trees at a height of approximately 50 cm above
175	the ground. Ground trapping (as opposed to placing cameras higher up in the trees) was
176	reasonable for this species, as M. nemestrina has previously been described as a predominantly
177	terrestrial primate, spending on average 56% of its active time on the forest ground (Ruppert et
178	al., 2018). GPS locations of the cameras were recorded using Garmin GPSMAP® 60CSX hand-
179	held GPS units.
180	

181 Detection histories Based on presence and absence data obtained from photographic records, we constructed 182 detection histories for each camera site in PFR and BTFC. For repeated sampling occasions, we 183 recorded a '1' when macaques were detected and a '0' when no macaques were detected even 184 though a camera trap was active, either because they were truly absent from a particular site or 185 because they were outside the detection range of a camera trap. Referring to previous studies 186 (Tan et al., 2017; Semper-Pascual et al., 2020), we pooled daily detection/non detection records 187 188 for each camera site into sampling occasions of seven (PFR) and 14 (BTFC) consecutive days, respectively, in order to minimize the risk of temporal interdependency among occasions. The 189 periods of one and two weeks, respectively, were chosen to ensure a good model fit. As several 190 camera traps within BTFC intermittently failed to record data for at least two sampling occasions 191 and thus were excluded from analysis, the final datasets of Belum and Temengor included 129 192 193 and 125 camera sites, respectively. The total number of sampling occasions per year ranged between two and nine (mean \pm standard deviation SD = 5.5 \pm 2.0) in PFR and between two and 194 195 eleven (mean \pm SD = 7.0 \pm 1.9) in BTFC. 196 Occupancy modelling 197 Using a maximum likelihood approach, occupancy models account for imperfect detection by 198 linking a state model determining occupancy (ψ , i.e. the probability with which a species occurs 199 at a specific site), with an observation model determining detection probability (p, i.e. the ability 200 201 to detect a species correctly when it is present) based on repeated samples from the same site (MacKenzie et al., 2002). Variation in probabilities across sampling sites and observation 202 periods can be modelled using site-specific (e.g. nabitat variables) and observation-specific (e.g. 203 the sampling effort) covariates. 204 Firstly, to assess temporal changes in the macaques' distribution in the PFR, we fit the dynamic 205 206 occupancy model described by MacKenzie et al. (2003). This assesses site occupancy dynamics over multiple seasons by estimating, besides detection (p) and first year occupancy (ψ) , the 207 208 probabilities of colonization (γ , i.e. the probability that a species is present at a previously unoccupied site) and extinction (ε , i.e. the probability that a species is absent at a previously 209 210 occupied site, MacKenzie et al., 2003). We included the mean elevation per camera grid cell

211	(range = 94-664 m, mean \pm SD = 295 \pm 156 m) and the shortest distance to the forest edge (range
212	= 5-2865 m, mean \pm SD = 1076 \pm 695 m) as potential predictors for first year ψ . Both altitude, as
213	well as edge effects which are likely to affect microclimate and tree communities in areas near
214	the forest border, are known to be important factors in predicting the distribution of wildlife
215	species, including primates (McCain & Grytnes, 2010; Brodie, Giordano & Ambu, 2015).
216	Further, a shorter distance of a camera site from the forest edge may facilitate human access and
217	thus increase hunting pressure (Milner-Gulland & Bennett, 2003). Additionally, we modelled
218	variation in γ and ε using a yearly site-specific covariate describing the occurrence and intensity
219	of forest degradation through tree felling at a camera site during the past five years. Based on
220	previous studies highlighting differences in species' responses depending on the severity of
221	human activity (Gibson et al., 2011; Tobias, 2015), we distinguished between clear cutting, i.e.
222	land use change resulting in the loss of the entire forest cover in a specific area, selective
223	logging, i.e. the removal of a limited number of economically valuable trees for the timber
224	industry, and no disturbance/tree felling. We considered the timespan of five years based on
225	previous studies highlighting that primate populations may be critically affected also several
226	years after logging took place (Shelton, 1985; Rao & Schaik, 1997). Finally, we included the
227	survey effort, i.e. the number of days a camera trap was active during a sampling occasion (range
228	= 1-7, mean \pm SD = 6.0 \pm 1.8 days), the sampling month (Jan, Feb, May-Dec) and the sampling
229	year (2013-2017) as predictors for p in order to account for seasonal variation and the effects of
230	abiotic factors on the macaques' activity (Takemoto, 2004; Hanya et al., 2018). Based on the six
231	predictor variables, we constructed the full model and subsequently built candidate models with
232	all possible combinations of predictor sets.
233	Secondly, to assess the macaques' spatial distribution within the BTFC, we fit a single-season
234	occupancy model (MacKenzie et al., 2002). We are confident that our dataset, including
235	sampling periods of a maximum length of five months, meets the closure assumption of
236	occupancy modelling (i.e. that the occupancy status of a site does not change during the
237	sampling, MacKenzie et al., 2002), as previous studies suggested home range areas of M .
238	nemestrina to be stable even over several years (Ruppert et al., 2018; Holzner et al., 2019). As
239	above, we included the mean elevation per grid cell (range = 323-1664 m, mean \pm SD = 737 \pm
240	302 m) as a potential predictor for ψ . To account for the effects of habitat degradation on ψ , we
241	further modelled the habitat type (undisturbed Belum or selectively logged Temengor), and the

mean Normalized Difference Vegetation Index (NDVI, range = 0.45-0.85, mean \pm SD = $0.78 \pm$ 242 0.05, for details on computation see Rayan & Linkie, 2015). The NDVI estimates the density of 243 green on a patch of land by measuring differences between visible and near-infrared reflectance 244 of vegetation cover, thus having frequently been used as a proxy to describe the bio-structural 245 changes in vegetation caused by land clearing and logging (Weier & Herring, 2000; Rayan & 246 Linkie, 2015; Hamel et al., 2009). Additionally, we included the distance to the nearest human 247 settlement, including indigenous villages and logging camps in the forest (range = 662-20643 m, 248 mean \pm SD = 8099 \pm 4756 m), as this may be indicative of the intensity of human hunting of 249 macaques at a camera site (Milner-Gulland & Bennett, 2003). Finally, to account for variation in 250 p, we included the survey effort (range = 1-14 days, mean \pm SD = 12.1 \pm 3.6 days) and the 251 sampling month (Jan-May, Aug-Dec) as observation-specific predictors into the model. As 252 253 described above, we constructed the full model based on all six predictor variables and then built candidate models with all possible combinations of these predictors. 254 255 We fitted the occupancy models for PFR and BTFC, respectively, using the functions *colext* and 256 occu from the package 'unmarked' (version 1.0.1, Fiske & Chandler, 2011) in R (version 3.4.4, R Core Team, 2018). To facilitate model interpretation and convergence, we standardized all 257 continuous predictors before model fitting to a mean of zero and a standard deviation of one 258 (Schielzeth, 2010). We drew inference using multi model inference based on Akaike's 259 information criterion (AIC, Burnham & Anderson, 2002). Following recommendations of 260 MacKenzie (2006), we first modelled detection, identifying a suitable covariate structure for p 261 while holding ψ and, in the dynamic model of PFR, γ and ε at the most general model including 262 all covariates. Having identified the most parsimonious model structure for p, we kept this 263 constant and modelled occupancy, colonization and extinction, respectively. We assessed the 264 role of our covariates on ψ , γ and ε by ranking all candidate models according to their AIC 265 corrected for small sample sizes (AIC_c, Burnham & Anderson, 2002). We considered top-ranked 266 models as those with $\triangle AIC_c \le 2$ (Burnham & Anderson, 2002). Model estimates were obtained 267 by averaging over all candidate models using the zero method (Nakagawa & Hauber, 2011). We 268 tested the goodness of fit of the global models by comparing the observed Chi-square statistics to 269 respective reference distributions calculated from 1000 parametric bootstraps (MacKenzie & 270 Bailey, 2004). This indicated no lack of fit for both models (both P > 0.05, further details and R 271 functions used in Supplemental Methods). 272

PeerJ

273					
274	Assessment of the macaques' age and sex structure				
275	To gain deeper insight into the viability of <i>M. nemestrina</i> in selectively logged forests, we				
276	compared age and sex ratios in the macaque populations in Belum and Temengor, respectively,				
277	based on camera trap images. Due to limitations in data availability for PFR, this assessment was				
278	restricted to BTFC. Each individual detected was identified as adult male, adult female, subadult,				
279	juvenile or infant according to its body size and sexual characteristics (e.g. anogenital swelling or				
280	elongated nipples in females, and prominent testes in males, Bullock et al., 1972), or individual				
281	behaviour (e.g. juveniles ranging in frequent proximity to their mother or infants nipple holding).				
282	Individuals that were partly hidden from view and thus could not be clearly assigned to either of				
283	these categories were marked as 'unknown'. We then summed the number of independent				
284	detections in each age and sex class, separately for each of the two habitats. Following O'Brien				
285	et al. (2003) and Kafley et al. (2019), we defined independent detections as (1) consecutive				
286	photographs of identifiable different individuals based on their unique characteristics, (2)				
287	consecutive photographs of individually unrecognizable macaques of the same age and sex class				
288	taken more than 30 minutes apart, or (3) non-consecutive photographs of individuals of the same				
289	age and sex class. As described above, spatial independence between camera sites was assumed				
290	due to the generally small home range size of approximately $1~\mathrm{km^2}$ of M . nemestrina (Ruppert et				
291	al., 2018; Holzner et al., 2019). The identification of individuals in images across cameras was				
292	not possible in the framework of this study. We assessed differences in the macaques' age and				
293	sex structure between Belum and Temengor using a Chi-square test for independence.				
294					
295	Results				
296	Detection of macagues in PFR and BTFC				
297	Within Pasoh Forest Reserve (PFR), we detected <i>M. nemestrina</i> during 42.3% of in total 1636				
298	independent sampling occasions. The naïve occupancy, i.e. the proportion of camera sites with at				
299	least one detection (MacKenzie et al., 2006), ranged between 0.80 and 0.93 during the five-year				
300	sampling period, with the highest rate recorded in 2013. In the Belum-Temengor Forest Complex				
301	(BTFC), macaques were present during 13.3% of 1774 sampling occasions. The naïve				

occupancy was 0.53 in the undisturbed forest of Belum and 0.39 in the selectively logged forest 302 of Temengor. 303 Based on AIC, camera trapping effort and the sampling date significantly contributed to 304 explaining the variation in the detection probability of M. nemestrina (Table 1). Specifically, 305 detection was positively correlated with the number of trapping days at both study sites, i.e. PFR 306 and BTFC (model estimate \pm standard error (PFR/BTFC) = 0.51 \pm 0.06 /0.61 \pm 0.12), and varied 307 between sampling year and sampling month, respectively, indicating the presence of seasonal 308 309 effects (details in Table S2). The mean estimated detection probability across all camera sites 310 was 0.48 (SD = 0.15) in PFR and 0.23 (SD = 0.11) in BTFC. 311 312 Temporal changes in macaque site occupancy in the highly disturbed PFR Using a dynamic occupancy modelling approach, we aimed at predicting temporal changes in 313 macaque site occupancy as well as their potential causes in PFR. The initial occupancy 314 probability of M. nemestrina in PFR was estimated to be 0.95 (standard error (SE) = 0.03), when 315 fixing elevation and the distance to the forest edge at their mean values. Macaque site occupancy 316 in subsequent years was found to decrease by 10% from 0.95 in 2013 to 0.85 in 2017 (Fig. 2). 317 Further, we assessed the role of environmental and anthropogenic factors in predicting 318 occupancy, colonization and extinction in PFR. Accordingly, only the top-ranked model, 319 including forest degradation (arising from tree felling trough clear cutting or selective logging) 320 as predictor for extinction, received substantial support (\triangle AICc < 2, Table 2). In line with this, 321 model-averaged coefficients corroborated the effect of forest degradation on the local extinction 322 probability of *M. nemestrina* in PFR (Table 3). Specifically, the probability that the macaques 323 were absent at a previously occupied camera site was found to be approximately six-fold higher 324 325 in areas affected by clear cutting compared to undisturbed forest patches (Fig. 3). No significant effect could be found for selective logging, yet large confidence intervals indicate high 326 327 variability in the response of M. nemestrina to this less intensive form of habitat degradation, likely relating to different practices and intensities of selective timber harvesting (Fig. 3). 328 329 Further, low model-averaged coefficients and 95% confidence intervals including zero suggest that both elevation and the distance of a camera site to the forest edge did not significantly affect 330 331 macaque site occupancy in PFR (Table 3).

332	
333	Macaques' spatial distribution in undisturbed and selectively logged forests within BTFC
334	To better understand the effects of selective logging on M. nemestrina, we assessed the macaque
335	distribution as well as the covariate structure that best explains variation in occupancy
336	probabilities within BTFC. Unlike in PFR, we found evidence that elevation had a strong effect
337	on site occupancy in BTFC, as indicated by its inclusion in the top-ranked model ($\Delta AIC_c \le 2$,
338	Table 2). Specifically, occupancy probability was found to significantly decrease with increasing
339	elevation (Table 3, Fig. 4). Note that elevation was on average lower in PFR than BTFC, and
340	only included a small portion of the variation found in BTFC (see Methods). Further, low model-
341	averaged coefficients and comparatively large 95% confidence intervals suggest that occupancy
342	did not significantly differ between habitats. Predicted occupancy probabilities in the strictly
343	protected forest of Belum and the selectively logged forest of Temengor were 0.59 (SE = 0.08)
344	and 0.58 (SE = 0.09), respectively, when fixing all other covariates at their mean values.
345	Similarly, the NDVI and distance to the closest human settlement had no effect on macaque site
346	occupancy (Table 3).
347	
348	Macaques' age and sex structure in BTFC
349	To explicitly examine the viability of <i>M. nemestrina</i> in selectively logged forests, we
350	investigated whether the macaques' age and sex structure differed between intact and partially
351	degraded habitats within BTFC. We detected a total of 614 and 695 individual macaques in
352	Belum and Temengor, respectively, 96% of which could be unambiguously assigned to an age-
353	sex class. Chi-square test of independence did not reveal significant differences in the age-sex
354	ratio between the undisturbed forest of Belum and the selectively logged forest of Temengor $(\chi^{\!\scriptscriptstyle 2}$
355	= 0.45 , df = 4 , p = 0.98). In both habitats, approximately 60% of detected individuals were
356	adults, while 40% of detections were immatures including subadults, juveniles and infants (Fig.
357	5).
358	
359	<u>Discussion</u>
360	Globally, increasing human encroachment into natural habitats is a major cause of biodiversity
361	loss (Marques et al., 2019), yet previous studies have highlighted the high variability in species'

362	ability to cope with anthropogenic impact (Brodie, Giordano & Ambu, 2015). This study
363	provides first insights into the temporal and spatial distribution of M. nemestrina across intact
364	and degraded forest habitats in Peninsular Malaysia, focusing on the effects of tree felling on
365	macaque occupancy over time. Specifically, clear cutting significantly increased the probability
366	that M. nemestrina became locally extinct at a previously occupied site, likely accounting for the
367	considerable decline in site occupancy observed in PFR during our five-year study period from
368	2013 to 2017. In contrast, selective logging did not predict dynamics in site occupancy within
369	PFR, which is consistent with our findings from BTFC where occupancy probabilities did not
370	depend on whether a site was located in the undisturbed forest of Belum or the selectively logged
371	forest of Temengor. In line with this, there were no differences in the macaques' age and sex
372	structure between Belum and Temengor, suggesting that degraded habitat, such as selectively
373	logged forest, may under certain conditions allow macaques to maintain viable populations.
374	Despite increasing the interval of sampling occasions in BTFC from seven to 14 days, detection
375	was more than twice as likely in PFR than BTFC. As pointed out by previous research (Neilson
376	et al., 2018), the comparatively higher detection probability in PFR (i.e. a relatively small forest
377	surrounded by oil palm plantations) may have various reasons, such as small home range areas
378	frequently reported for primate groups ranging in anthropogenic environments (McLennan,
379	Spagnoletti & Hockings, 2017), high group densities (Parsons et al., 2017), or increased
380	movement on the ground due to canopy gaps in degraded forests (Ancrenaz et al., 2014).
381	Another crucial factor in determining variation in the detection of wildlife may be seasonality.
382	Based on our results, the date of sampling was identified as an important predictor for detection
383	probability. Prolonged rainfall during the monsoon season may decrease the macaques' overall
384	activity and/or terrestriality (Takemoto, 2004; Hanya et al., 2018), thus resulting in a lower
385	probability of being detected by the camera traps on the ground. Whereas camera trapping was
386	performed from August until May in BTFC, in PFR more than 87% of sampling days took place
387	during the commonly dryer period between May and August, likely resulting in lower variability
388	and a higher detection probability in PFR compared BTFC. Overall, these results confirm
389	previous findings which stressed the importance to account for imperfect detection during the
390	data collection when studying the occurrence or distribution of wild animals (MacKenzie, 2006).
391	As one of the world's leading palm oil producers, Malaysia continues to be affected by
392	deforestation, which has dramatic consequences for many tropical species that rely on primary

393	rainforest (Vijay et al., 2016; Estrada et al., 2017). Our results provide evidence that southern
394	pig-tailed macaques are particularly threatened by intensive forest clearance. Clear cutting for
395	the purpose of converting natural forest, whether primary or selectively logged, into other land
396	use forms, including agricultural land, is likely to dramatically reduce the suitability of a habitat
397	for these macaques. In degraded forests, wildlife may suffer from habitat fragmentation, reduced
398	food availability and a high human hunting pressure facilitated by the increased accessibility to
399	the remaining forest patches (Johns, 1985; Tilker et al., 2019). Selectively logged forests, on the
400	other hand, may sustain viable macaque populations under certain conditions. Previous studies
401	suggested that species characterized by a more generalist diet and thus a lower degree of
402	frugivory may thrive in partially logged habitats (Johns & Skorupa, 1987; Vetter et al., 2011).
403	Although the main component of M. nemestrina's natural diet are fruits (ca. 75%, Caldecott,
404	1986) they feed on a wide range of other foods, such as insects, leaves, mushrooms and small
405	mammals (Ang et al., 2020). Southern pig-tailed macaques inhabiting a forest-oil palm matrix at
406	the west coast of Peninsular Malaysia were reported to complement their natural forest diet with
407	cultivated oil palm fruits and plantation rats (Ruppert et al., 2018; Holzner et al., 2019),
408	suggesting that macaques may indeed be able to adapt their diet to changing environmental
409	conditions, as also found for other Malaysian primates (Johns, 1985). Overall, our data indicate
410	that previously selectively logged forests may constitute a valuable habitat for M. nemestrina and
411	therefore should be protected and regenerated instead of opened for more land development.
412	Ultimately, it is imperative to clearly differentiate between these partially degraded, but for the
413	protection of biodiversity very important forests (Johns, 1985; Legipowell & Lindsell, 2015) and
414	inhabitable monoculture plantations. Frequently, the latter are likewise defined as 'forest' (e.g.
415	Peninsular Malaysia's National Forestry Act of 1984) and thus continue to legally replace
416	selectively logged areas, i.e. potential primate habitats, in many forest reserves after the high-
417	value forest timber had been extracted (Aziz, Laurance & Clements, 2010).
418	Nevertheless, it is crucial to stress here that the effects of selective logging on the macaques'
419	ability to occupy and persist in a habitat strongly depend on the intensity of human activity,
420	including secondary threats such as hunting pressure by humans. As demonstrated by Tilker et
421	al. (2019), intensive hunting may be an even more immediate threat to tropical wildlife than
422	moderate habitat degradation. Both the distance to human settlements and the distance to the
423	forest edge were not included in our top-ranked occupancy models, indicating that hunting

424	activities by indigenous tribes, local residents and logging workers may have been rather low at
425	our spiror sites. In BTFC, this may be closely linked to low densities of settlements which entail
426	far distances of on average 8 km to camera sites. Furthermore, based on our analyses, we can
427	infer primarily macaque occupancy, yet not necessarily abundance. Although MacKenzie and
428	Nichols (2004) proposed that occupancy may serve as a surrogate for abundance estimation and
429	some earlier studies found strong associations between occupancy and density in carnivorous
430	species (Clare, Anderson & MacFarland, 2015; Linden et al., 2017), this relationship remains
431	unknown for M. nemestrina. Therefore, in order to provide in-depth information on whether or
432	not selective logging affects the long-term viability of M. nemestrina, more detailed studies
433	including larger data sets are needed.
434	With low to moderate human disturbance, elevation in particular appears to be an important
435	factor in predicting whether macaques occur at a given site. This is unsurprising, as elevation
436	defines different floristic zones and thus determines food availability for the predominantly
437	frugivorous southern pig-tailed macaques (Saw, 2010). Our result is consistent with previous
438	findings reporting the highest density of southern pig-tailed macaque groups in lowland and
439	dipterocarp hill forest, as compared to montane forest (Ang et al., 2020). Accordingly, McCain
440	& Grytnes (2010) found a general trend of declining species richness with increasing elevation
441	across multiple taxa, including small mammals, reptiles, or amphibians. However, PFR lacks this
442	correlation between elevation and macaque site occupancy, potentially due to low variation
443	between camera sites and generally lower altitudes not exceeding 670 m. In BTFC, on the other
444	hand, altitudes reached up to 1600 m. Ultimately, this may explain the general discrepancy
445	between occupancy estimates in PFR and BTFC.
446	There are no current population assessments of M . nemestrina in its range but general estimates
447	are primarily based on assumptions inferred from knowledge available from other primates
448	occupying the same or similar habitats (Ang et al., 2020). Here, we add to these findings by
449	providing thorough insight into the macaques' ability to persist in human-impacted habitats and
450	quantifying the effect of tree felling activities on the distribution of M. nemestrina. We confirm
451	how population monitoring through camera trapping can contribute to understanding the
452	response of an elusive and threatened Malaysian primate to ecological and anthropogenic factors,
453	and hence to informing conservation efforts. The present study stresses the high sensitivity of M .
454	nemestrina to severe human encroachment, such as forest clearance for the cultivation of

455	monocultures. This confirms previous findings emphasizing the macaques' dependency on
456	primary forest habitat to be able to perform the full range of their natural behavioural repertoire
457	(A Holzner, unpublished data). This includes the formation of strong social relationships which
458	are critical characteristics of group-living animals owing to their crucial link to individual fitness
459	(Cameron, Setsaas & Linklater, 2009; Schülke et al., 2010; Ellis et al., 2019) and offspring
460	survival (Silk, Alberts & Altmann, 2003). To counteract population declines at accelerated rates,
461	as shown for many wildlife species around the globe (WWF, 2020), conservation actions need to
462	focus on the maintenance (and if necessary, restoration) of primary and secondary forest habitats,
463	including partially degraded forest that can provide valuable habitat for various species, such as
464	M. nemestrina. Specifically, the protection of selectively logged forest against conversion into
465	other land use forms, e.g. monoculture plantations, targeted restoration efforts of degraded
466	habitats, and the reconnection of isolated forests through the establishment of wildlife corridors
467	in fragmented habitats are important conservation measures. This may facilitate natural dispersal
468	between wildlife populations, which is inevitable to ensure the long-term survival of this and
469	other species.

470

471

Acknowledgements

- We thank the Perak State Parks Corporation, the Department of Wildlife and National Parks and
- the Forestry Department of Perak for permission to conduct surveys. We are very grateful to the
- 474 Tropical Ecological Assessment and Monitoring (TEAM) Network and the WWF Malaysia for
- sharing camera trap data on southern pig-tailed macaques. We also thank Monika Sündermann
- and Brigitte Schlögl for their support in the initial phase of this study, and Ammie Kalan for her
- advice on the application of occupancy modelling.

478

479

Author contributions

- 480 Conceptualization, N.R., H.K., A.W. and A.H.; Investigation (data provision), D.M.R, J.M. and
- 481 C.K.W.T.; Formal Analysis, A.H., L.C. and L.K.; Visualization, A.H.; Writing Original Draft,
- 482 A.H.; Writing Review & Editing, all authors; Funding acquisition, N.R., A.H. and D.M.R.

483

484 References

- 485 Albert A, McConkey K, Savini T, Huynen M-C. 2014. The value of disturbance-tolerant
- description cercopithecine monkeys as seed dispersers in degraded habitats. *Biological Conservation*
- 487 170:300–310. DOI: 10.1016/j.biocon.2013.12.016.
- 488 Alroy J. 2017. Effects of habitat disturbance on tropical forest biodiversity. *Proceedings of the*
- National Academy of Sciences of the United States of America 114:6056–6061. DOI:
- 490 10.1073/pnas.1611855114.
- 491 Ancrenaz M, Sollmann R, Meijaard E, Hearn AJ, Ross J, Samejima H, Loken B, Cheyne SM,
- Stark DJ, Gardner PC, Goossens B, Mohamed A, Bohm T, Matsuda I, Nakabayasi M,
- Lee SK, Bernard H, Brodie J, Wich S, Fredriksson G, Hanya G, Harrison ME, Kanamori
- T, Kretzschmar P, Macdonald DW, Riger P, Spehar S, Ambu LN, Wilting A. 2014.
- Coming down from the trees: Is terrestrial activity in Bornean orangutans natural or
- disturbance driven? *Scientific Reports* 4:4024. DOI: 10.1038/srep04024.
- 497 Ang A, Boonratana R, Choudhury A, Supriatna J. 2020. Macaca nemestrina. The IUCN Red List
- of Threatened Species 2020. IUCN Red List of Threatened
- 499 *Species*:e.T12555A181324867. DOI: 10.2305/IUCN.UK.2020-
- 3.RLTS.T12555A181324867.en.
- Asner GP, Knapp DE, Broadbent EN, Oliveira PJC, Keller M, Silva JN. 2005. Selective logging in the Brazilian Amazon. *Science* 310:480–482. DOI: 10.1126/science.1118051.
- Aziz SA, Laurance WF, Clements R. 2010. Forests reserved for rubber? *Frontiers in Ecology* and the Environment 8:178–178. DOI: 10.1890/10.WB.014.
- Barnes AD, Jochum M, Mumme S, Haneda NF, Farajallah A, Widarto TH, Brose U. 2014.
- Consequences of tropical land use for multitrophic biodiversity and ecosystem
- functioning. *Nature Communications* 5:5351. DOI: 10.1038/ncomms6351.
- Bernstein IS. 1967. A field study of the pigtail monkey (*Macaca nemestrina*). *Primates* 8:217–509 228.
- Brodie JF, Giordano AJ, Ambu L. 2015. Differential responses of large mammals to logging and edge effects. *Mammalian Biology* 80:7–13. DOI: 10.1016/j.mambio.2014.06.001.
- Bullock DW, Paris CA, Goy RW. 1972. Sexual behaviour, swelling of the sex skin and plasma progesterone in the pigtail macaque. *Reproduction* 31:225–236. DOI:
- 514 10.1530/jrf.0.0310225.
- Burivalova Z, Lee TM, Giam X, Şekercioğlu ÇH, Wilcove DS, Koh LP. 2015. Avian responses
- to selective logging shaped by species traits and logging practices. *Proceedings of the*
- 517 Royal Society B: Biological Sciences 282:20150164. DOI: 10.1098/rspb.2015.0164.
- Burnham KP, Anderson DR. 2002. Model Selection and Multimodel Inference: A Practical
- Information-Theoretic Approach, Second Edition. New York, NY: Springer.
- Caldecott JO. 1986. *An Ecological and Behavioural Study of the Pig-Tailed Macaque*. Basel: S.
- 521 Karger.

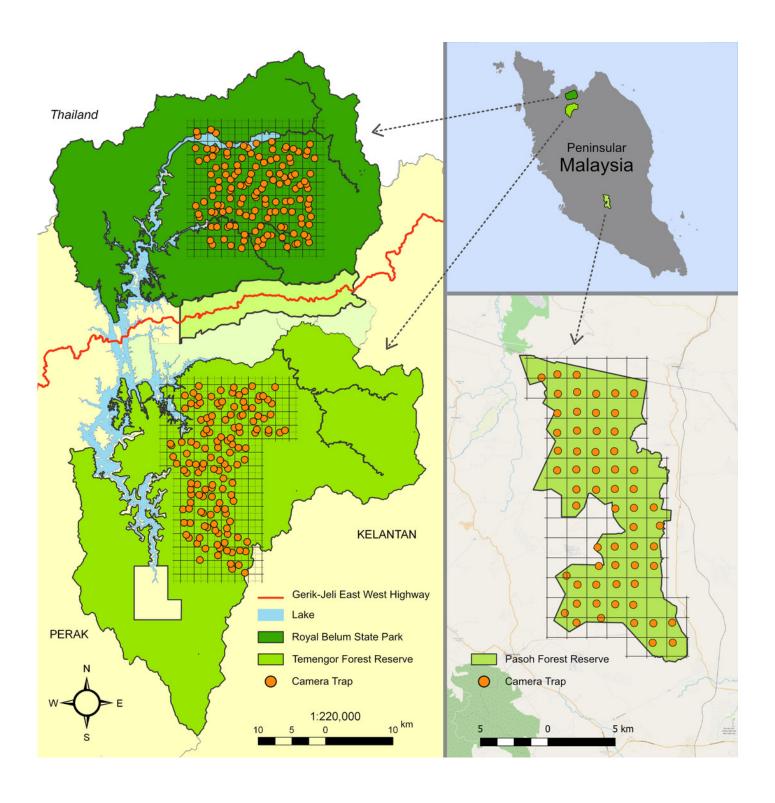
- Cameron EZ, Setsaas TH, Linklater WL. 2009. Social bonds between unrelated females increase reproductive success in feral horses. *Proceedings of the National Academy of Sciences*
- 524 106:13850–13853. DOI: 10.1073/pnas.0900639106.
- Clare JDJ, Anderson EM, MacFarland DM. 2015. Predicting bobcat abundance at a landscape scale and evaluating occupancy as a density index in central Wisconsin. *The Journal of*
- 527 *Wildlife Management* 79:469–480. DOI: 10.1002/jwmg.844.
- 528 Cochrane MA. 2003. Fire science for rainforests. *Nature* 421:913–919. DOI: 10.1038/nature01437.
- Danielsen F, Heegaard M. 1995. Impact of logging and plantation development on species diversity: a case study from Sumatra. In: Sandbukt Ø ed. *Management of Tropical*
- *Forests: Towards an Integrated Perspective*. Oslo: Centre for Development and the Environment, University of Oslo, 73–92.
- Darmaraj MR. 2012. Conservation and ecology of tigers in a logged-primary forest mosaic in Peninsular Malaysia. PhD thesis, Durrell Institute of Conservation and Ecology (DICE), University of Kent.
- Didham RK, Hammond PM, Lawton JH, Eggleton P, Stork NE. 1998. Beetle species responses
 to tropical forest fragmentation. *Ecological Monographs* 68:295–323. DOI:
 10.1890/0012-9615(1998)068[0295:BSRTTF]2.0.CO;2.
- Ellis S, Snyder-Mackler N, Ruiz-Lambides A, Platt ML, Brent LJN. 2019. Deconstructing
 sociality: the types of social connections that predict longevity in a group-living primate.
 Proceedings of the Royal Society B: Biological Sciences 286:20191991. DOI:
 10.1098/rspb.2019.1991.
- Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, Fiore AD, Nekaris KA-I,
 Nijman V, Heymann EW, Lambert JE, Rovero F, Barelli C, Setchell JM, Gillespie TR,
 Mittermeier RA, Arregoitia LV, Guinea M de, Gouveia S, Dobrovolski R, Shanee S,
 Shanee N, Boyle SA, Fuentes A, MacKinnon KC, Amato KR, Meyer ALS, Wich S,
 Sussman RW, Pan R, Kone I, Li B. 2017. Impending extinction crisis of the world's
 primates: Why primates matter. *Science Advances* 3:e1600946. DOI:
 10.1126/sciadv.1600946.
- Fiske I, Chandler R. 2011. unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. *Journal of Statistical Software* 43:1–23. DOI:
- 553 10.18637/jss.v043.i10.
- Fitzherbert EB, Struebig MJ, Morel A, Danielsen F, Brühl CA, Donald PF, Phalan B. 2008. How will oil palm expansion affect biodiversity? *Trends in Ecology & Evolution* 23:538–545.

 DOI: 10.1016/j.tree.2008.06.012.
- Gallery RE. 2014. Ecology of Tropical Rain Forests. In: Monson RK ed. *Ecology and the Environment. The Plant Sciences*. New York, NY: Springer, 247–272. DOI:
- 559 10.1007/978-1-4614-7501-9_4.

- Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA,
 Laurance WF, Lovejoy TE, Sodhi NS. 2011. Primary forests are irreplaceable for
- sustaining tropical biodiversity. *Nature* 478:378–381. DOI: 10.1038/nature10425.
- Hamel S, Garel M, Festa-Bianchet M, Gaillard J-M, Côté SD. 2009. Spring Normalized
- Difference Vegetation Index (NDVI) predicts annual variation in timing of peak faecal crude protein in mountain ungulates. *Journal of Applied Ecology* 46:582–589. DOI:
- 566 10.1111/j.1365-2664.2009.01643.x.
- Hanya G, Otani Y, Hongo S, Honda T, Okamura H, Higo Y. 2018. Activity of wild Japanese macaques in Yakushima revealed by camera trapping: Patterns with respect to season, daily period and rainfall. *PLOS ONE* 13:e0190631. DOI: 10.1371/journal.pone.0190631.
- 570 Holzner A, Ruppert N, Swat F, Schmidt M, Weiß BM, Villa G, Mansor A, Mohd Sah SA,
- Engelhardt A, Kühl H, Widdig A. 2019. Macaques can contribute to greener practices in
- oil palm plantations when used as biological pest control. *Current Biology* 29:R1066–
- 573 R1067. DOI: 10.1016/j.cub.2019.09.011.
- Ibarra JT, Martin M, Cockle KL, Martin K. 2017. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas. *Scientific*
- 576 *Reports* 7:4467. DOI: 10.1038/s41598-017-04733-2.
- 577 IUCN. 2020.The IUCN Red List of Threatened Species. *Available at https://www.iucnredlist.org/en* (accessed July 19, 2020).
- Johns AD. 1985. Selective logging and wildlife conservation in tropical rain-forest: Problems and recommendations. *Biological Conservation* 31:355–375. DOI: 10.1016/0006-3207(85)90091-6.
- Johns AD, Skorupa JP. 1987. Responses of rain-forest primates to habitat disturbance: A review. *International Journal of Primatology* 8:157. DOI: 10.1007/BF02735162.
- Kafley H, Lamichhane BR, Maharjan R, Thapaliya B, Bhattarai N, Khadka M, Gompper ME.
- 2019. Estimating prey abundance and distribution from camera trap data using binomial mixture models. *European Journal of Wildlife Research* 65:77. DOI: 10.1007/s10344-019-1308-0.
- Koh LP, Wilcove DS. 2007. Cashing in palm oil for conservation. *Nature* 448:993–994. DOI:
 10.1038/448993a.
- Lee DC, Powell VJ, Lindsell JA. 2015. The conservation value of degraded forests for agile
 gibbons *Hylobates agilis*. *American Journal of Primatology* 77:76–85. DOI:
 10.1002/ajp.22312.
- Linden DW, Fuller AK, Royle JA, Hare MP. 2017. Examining the occupancy–density
 relationship for a low-density carnivore. *Journal of Applied Ecology* 54:2043–2052. DOI:
 10.1111/1365-2664.12883.
- Linkie M, Dinata Y, Nofrianto A, Leader-Williams N. 2007. Patterns and perceptions of wildlife
 crop raiding in and around Kerinci Seblat National Park, Sumatra. *Animal Conservation*
- 598 10:127–135. DOI: 10.1111/j.1469-1795.2006.00083.x.

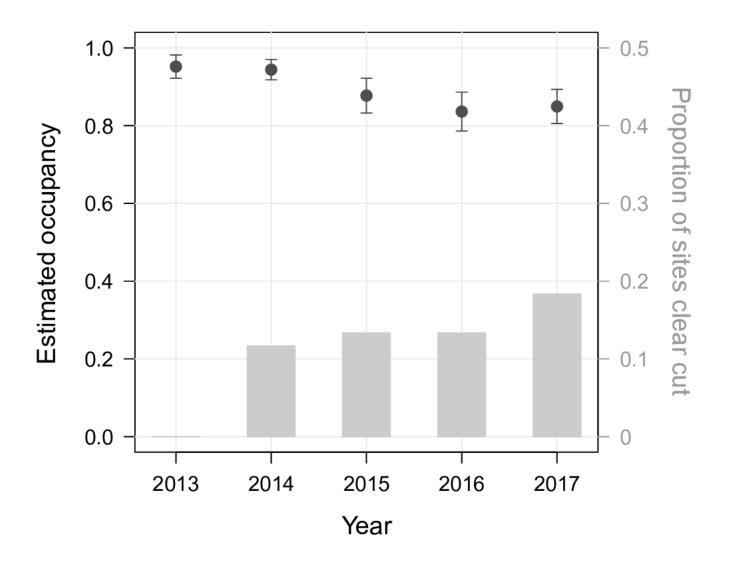
- MacKenzie DI. 2006. Modeling the probability of resource use: The effect of, and dealing with, detecting a species imperfectly. *The Journal of Wildlife Management* 70:367–374.
- MacKenzie DI, Bailey LL. 2004. Assessing the fit of site-occupancy models. *Journal of Agricultural, Biological, and Environmental Statistics* 9:300–318. DOI:
 10.1198/108571104X3361.
- MacKenzie DI, Nichols JD. 2004. Occupancy as a surrogate for abundance estimation. *Animal Biodiversity and Conservation* 27:461–467.
- MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB. 2003. Estimating site
 occupancy, colonization, and local extinction when a species is detected imperfectly.
 Ecology 84:2200–2207. DOI: 10.1890/02-3090.
- MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA. 2002. Estimating
 site occupancy rates when detection probabilities are less than one. *Ecology* 83:2248–
 2255. DOI: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2.
- MacKenzie D, Nichols JD, Royle J andrew, Pollock K, Bailey LL, Hines J. 2006. Occupancy
 Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence.
 Burlington, MA: Elsevier Academic Press.
- Marques A, Martins IS, Kastner T, Plutzar C, Theurl MC, Eisenmenger N, Huijbregts MAJ,
 Wood R, Stadler K, Bruckner M, Canelas J, Hilbers JP, Tukker A, Erb K, Pereira HM.
 2019. Increasing impacts of land use on biodiversity and carbon sequestration driven by
 population and economic growth. *Nature Ecology & Evolution* 3:628–637. DOI:
 10.1038/s41559-019-0824-3.
- McCain CM, Grytnes J-A. 2010. Elevational gradients in species richness. In: eLS ed. DOI: 10.1002/9780470015902.a0022548.
- McLennan MR, Spagnoletti N, Hockings KJ. 2017. The implications of primate behavioral flexibility for sustainable human-primate coexistence in anthropogenic habitats. *International Journal of Primatology* 38:105–121. DOI: 10.1007/s10764-017-9962-0.
- Meijaard E, Sheil D, Marshall AJ, Nasi R. 2007. Phylogenetic age is positively correlated with
 sensitivity to timber harvest in Bornean mammals. *Biotropica* 40:76–85. DOI:
 10.1111/j.1744-7429.2007.00340.x.
- 628 Milner-Gulland EJ, Bennett EL. 2003. Wild meat: the bigger picture. *Trends in Ecology & Evolution* 18:351–357. DOI: 10.1016/S0169-5347(03)00123-X.
- Mongabay. 2021.Deforestation statistics for Malaysia. *Available at rainforests.mongabay.com* (accessed February 15, 2021).
- Nakagawa S, Hauber ME. 2011. Great challenges with few subjects: Statistical strategies for neuroscientists. *Neuroscience & Biobehavioral Reviews* 35:462–473. DOI: 10.1016/j.neubiorev.2010.06.003.
- Neilson EW, Avgar T, Burton AC, Broadley K, Boutin S. 2018. Animal movement affects interpretation of occupancy models from camera-trap surveys of unmarked animals. *Ecosphere* 9:e02092. DOI: 10.1002/ecs2.2092.

- O'Brien TG, Kinnaird MF, Wibisono HT. 2003. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. *Animal Conservation* 6:131–139.
- DOI: 10.1017/S1367943003003172.
- Omran A, Schwarz-Herion O. 2020. Deforestation in Malaysia: The current practice and the way forward. In: Omran A, Schwarz-Herion O eds. *Sustaining our Environment for Better*
- *Future: Challenges and Opportunities.* Singapore: Springer, 175–193. DOI:
- 644 10.1007/978-981-13-7158-5_11.
- Parsons AW, Forrester T, McShea WJ, Baker-Whatton MC, Millspaugh JJ, Kays R. 2017. Do occupancy or detection rates from camera traps reflect deer density? *Journal of Mammalogy* 98:1547–1557. DOI: 10.1093/jmammal/gyx128.
- R Core Team. 2018. *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing. Available at https://www.R-project.org (accessed 24 February 2021).
- Rao M, Schaik C. 1997. The behavioral ecology of Sumatran orangutans in logged and unlogged forest. *Tropical Biodiversity* 4:173–185.
- Rayan DM, Linkie M. 2015. Conserving tigers in Malaysia: A science-driven approach for eliciting conservation policy change. *Biological Conservation* 184:18–26. DOI: 10.1016/j.biocon.2014.12.024.
- Rayan DM, Linkie M. 2016. Managing conservation flagship species in competition: Tiger, leopard and dhole in Malaysia. *Biological Conservation* 204:360–366. DOI: 10.1016/j.biocon.2016.11.009.
- Rayan DM, Linkie M. 2020. Managing threatened ungulates in logged-primary forest mosaics in Malaysia. *PLOS ONE* 15:e0243932. DOI: 10.1371/journal.pone.0243932.
- Robinson JG, Redford KH, Bennett EL. 1999. Wildlife harvest in logged tropical forests. *Science* 284:595–596. DOI: 10.1126/science.284.5414.595.
- Rosa IMD, Smith MJ, Wearn OR, Purves D, Ewers RM. 2016. The environmental legacy of modern tropical deforestation. *Current Biology* 26:2161–2166. DOI: 10.1016/j.cub.2016.06.013.
- Ruppert N, Holzner A, See KW, Gisbrecht A, Beck A. 2018. Activity budgets and habitat use of wild southern pig-tailed macaques (*Macaca nemestrina*) in oil palm plantation and forest. *International Journal of Primatology* 39:237–251. DOI: 10.1007/s10764-018-0032-z.
- Saw LG. 2010. Vegetation of Peninsular Malaysia. In: Kiew R, Chung RCK, Saw LG,
 Soepadmo E, Boyce PC eds. *Flora of Peninsular Malaysia. Series II: Seed Plants*.
 Kepong: Forest Research Institute Malaysia, 21–45. DOI: 10.13140/RG.2.1.2072.8486.
- Schielzeth H. 2010. Simple means to improve the interpretability of regression coefficients.
 Methods in Ecology and Evolution 1:103–113. DOI: 10.1111/j.2041-210X.2010.00012.x.
- Schülke O, Bhagavatula J, Vigilant L, Ostner J. 2010. Social bonds enhance reproductive success in male macaques. *Current Biology* 20:2207–2210. DOI: 10.1016/j.cub.2010.10.058.
- 676 Semper-Pascual A, Decarre J, Baumann M, Camino M, Di Blanco Y, Gómez-Valencia B,
- Kuemmerle T. 2020. Using occupancy models to assess the direct and indirect impacts of

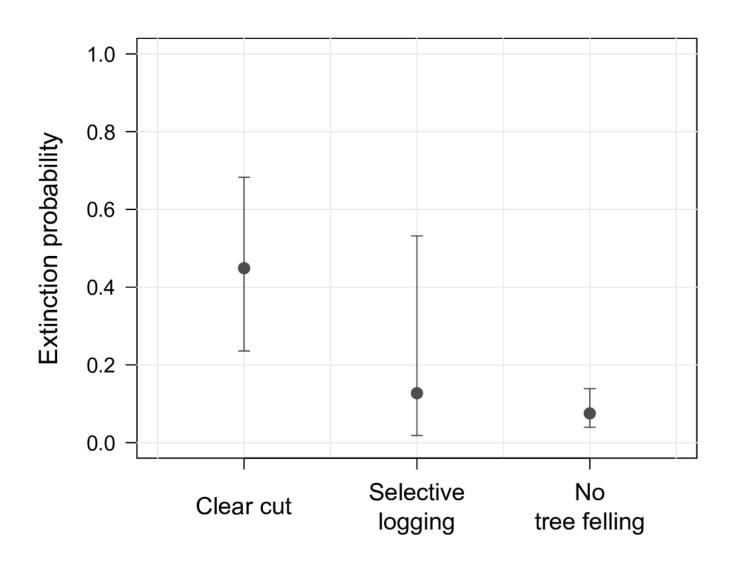

- agricultural expansion on species' populations. *Biodiversity and Conservation* 29:3669–3688. DOI: 10.1007/s10531-020-02042-1.
- Shelton N. 1985. Logging versus the natural habitat in the survival of tropical forests. *Ambio* 14:39–41.
- Silk JB, Alberts SC, Altmann J. 2003. Social bonds of female baboons enhance infant survival. *Science* 302:1231–1234. DOI: 10.1126/science.1088580.
- Takemoto H. 2004. Seasonal change in terrestriality of chimpanzees in relation to microclimate in the tropical forest. *American Journal of Physical Anthropology* 124:81–92. DOI: 10.1002/ajpa.10342.
- Tan CKW, Rocha DG, Clements GR, Brenes-Mora E, Hedges L, Kawanishi K, Mohamad SW,
 Mark Rayan D, Bolongon G, Moore J, Wadey J, Campos-Arceiz A, Macdonald DW.
 2017. Habitat use and predicted range for the mainland clouded leopard *Neofelis nebulosa* in Peninsular Malaysia. *Biological Conservation* 206:65–74. DOI:
 10.1016/j.biocon.2016.12.012.
- Tilker A, Abrams JF, Mohamed A, Nguyen A, Wong ST, Sollmann R, Niedballa J, Bhagwat T, Gray TNE, Rawson BM, Guegan F, Kissing J, Wegmann M, Wilting A. 2019. Habitat degradation and indiscriminate hunting differentially impact faunal communities in the Southeast Asian tropical biodiversity hotspot. *Communications Biology* 2:1–11. DOI: 10.1038/s42003-019-0640-y.
- 697 Tobias JA. 2015. Hidden impacts of logging. *Nature* 523:163–164. DOI: 10.1038/523163a.
- Vetter D, Hansbauer MM, Végvári Z, Storch I. 2011. Predictors of forest fragmentation
 sensitivity in Neotropical vertebrates: a quantitative review. *Ecography* 34:1–8. DOI:
 10.HH/j.1600-0587.2010.06453.x.
- Vijay V, Pimm SL, Jenkins CN, Smith SJ. 2016. The impacts of oil palm on recent deforestation and biodiversity loss. *PLOS ONE* 11:e0159668. DOI: 10.1371/journal.pone.0159668.
- Weier J, Herring D. 2000.Measuring Vegetation (NDVI & EVI): Feature Articles. *Available at https://earthobservatory.nasa.gov/features/MeasuringVegetation* (accessed February 24, 2021).
- WWF. 2020. Living Planet Report 2020 Bending the Curve of Biodiversity Loss. Almond REA,
 Grooten M, Petersen T eds. Gland, Switzerland: WWF.

Study sites in Peninsular Malaysia.

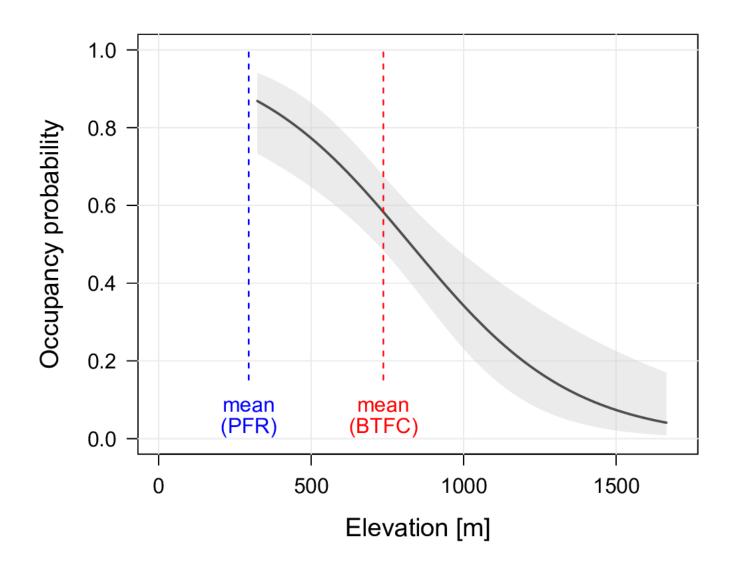
The maps indicate the camera trap distribution in Belum-Temengor Forest Complex (left) and Pasoh Forest Reserve (right). Adapted from Darmaraj (2012).

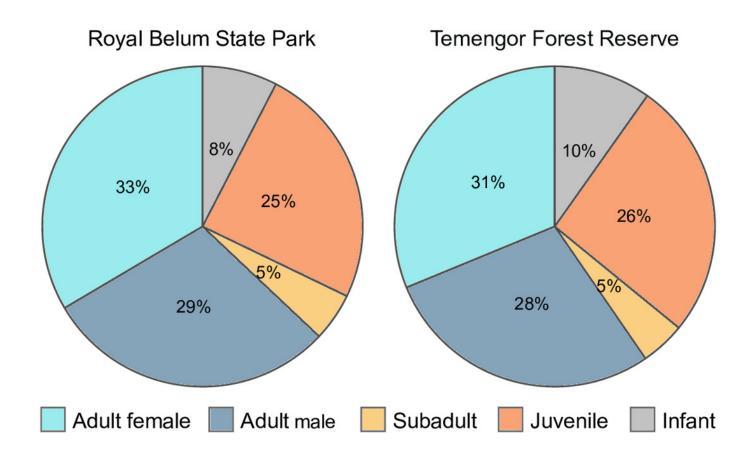


Dynamics in Macaca nemestrina occupancy in Pasoh Forest Reserve from 2013 to 2017.


Shown are smoothed site occupancy estimates, i.e. the predicted proportion of sampled sites that are occupied, and their standard errors (N = 60). The bars indicate the cumulative proportion of sites at which clear cutting occurred.

Effect of forest degradation on the local extinction probability of *Macaca nemestrina* in Pasoh Forest Reserve.


The filled circles show the fitted model and the whiskers its 95% confidence interval, conditional on all other predictors being fixed at their mean values (N = 60).


Effect of elevation on site occupancy of *Macaca nemestrina* in Belum-Temengor Forest Complex.

The solid line shows the fitted model and the shaded areas its 95% confidence interval, conditional on all other predictors being fixed at their mean values (N = 254). The dashed lines indicate the mean elevation at the two study sites, i.e. Belum-Temengor Forest Complex (BTFC) and Pasoh Forest Reserve (PFR).

Age-sex structure of *Macaca nemestrina* in the Belum-Temengor Forest Complex.

Pie charts indicate the proportion of independent detections of each age-sex category, separately for the Royal Belum State Park (Belum, N = 594) and the Temengor Forest Reserve (Temengor, N = 663).

Table 1(on next page)

Top-ranked *Macaca nemestrina* detection models ($\Delta AIC_c \le 2$) for Pasoh Forest Reserve (PFR) and Belum-Temengor Forest Complex (BTFC) with global occupancy models.

Shown are Akaike's Information Criterion corrected for small samples (AIC_c), differences in AIC_c between each model and the respective best model (ΔAIC_c), the probability of each model to the best model, i.e. the Akaike weights (wAIC), and the number of parameters (K, details on model selection and model averaged estimates for all covariates in Tables S1 and S2).

Site	Top-ranked models	AIC_c	ΔAIC_c	wAIC	K
PFR	p (effort + sampling year)	2069.5	0	1	15
BTFC	p (effort + sampling month)	1238.6	0	0.995	16

Table 2(on next page)

Top-ranked *Macaca nemestrina* occupancy models ($\Delta AIC_c \le 2$) for Pasoh Forest Reserve (PFR) and Belum-Temengor Forest Complex (BTFC) with best respective detection models.

Shown are Akaike's Information Criterion corrected for small samples (AIC_c), differences in AIC_c between each model and the respective best model (ΔAIC_c), the probability of each model to the best model, i.e. the Akaike weights (wAIC), and the number of parameters (K, details on model selection in Table S3).

Site	Top-ranked models	AICc	ΔΑΙС	wAIC	K
PFR	ψ (.) γ (.) ε (forest degradation)	2056.4	0	0.633	11
BTFR	ψ (elevation)	1232.1	0	0.415	13

1

Table 3(on next page)

Effect of covariates on *Macaca nemestrina* occupancy, colonization and extinction in Pasoh Forest Reserve (PFR) and Belum-Temengor Forest Complex (BTFC).

Shown are model averaged estimates (zero method), standard errors (SE) and lower and upper 95% confidence intervals (CI). Predictors included into the respective top models $(\Delta AIC_c \le 2)$ are indicated in bold.

1 2 3

Site	Parameter	Covariate	Estimate	SE	lower CI	upper Cl
PFR	Occupancy ψ	distance to edge ^a	-0.03	0.29	-1.47	1.14
		elevationa	-0.04	0.29	-1.51	1.12
	Colonization y	forest degradation (no vs. clear cut) ^b	0.02	0.33	-2.58	3.58
		forest degradation (no vs. selective)b	-0.01	0.34	-3.52	2.81
	Extinction $arepsilon$	forest degradation (no vs. clear cut)b	2.25	0.69	1.13	3.48
		forest degradation (no vs. selective) ^b	0.60	1.06	-1.47	2.70
BTFC	Occupancy ψ	habitat (Belum = 0, Temengor =1)	-0.001	0.23	-0.90	0.90
		NDVIa	0.02	0.10	-0.28	0.45
		distance to settlement ^a	-0.01	0.11	-0.46	0.35
		elevation ^a	-1.17	0.23	-1.62	-0.73

 $^{^{}a}$ z-transformed to mean = 0 and SD = 1 prior to model fitting; original means \pm SDs were: distance to edge: 1076 \pm 695 m, elevation (*PFR*): 295 \pm 156 m, NDVI: 0.78 \pm 0.05, distance to settlement: 8099 \pm 4756 m, elevation (*BTFC*): 737 \pm 302 m.

^b Reference level is 'no tree felling'.