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The nonavian theropod quadrate |: standardized terminology
and overview of the anatomy, function and ontogeny

By allowing the articulation of the mandible with the cranium, the quadrate of diapsids and
most other tetrapods plays an important role morphofunctionally. In Theropoda, its
morphology is particularly complex and varies importantly among different clades of nonavian
theropods so that the quadrate possesses a strong taxonomic potential. Inconsistencies in
the notation and terminology used in discussions of the theropod quadrate anatomy have
been noticed, a number of no less than height different terms being sometimes given to a
same structure. A standardization list of terms and notation for each quadrate anatomical
entity is here proposed, with the goal of facilitating future descriptions of this important cranial
bone. An overview of the quadrate function, pneumaticity and ontogeny in nonavian
theropods is also given. The quadrate of the large majority of nonavian theropod is akinetic
and the diagonally oriented sulcus of the mandibular articulation allowed both rami of the
mandible to move laterally when opening the mouth in many of them. Pneumaticity of the
guadrate is also present in most of tetanuran clades and the pneumatic chamber, invaded by
the quadrate diverticulum of the mandibular arch pneumatic system, was connected to one or
several pneumatopores on the medial, lateral, posterior, anterior or ventral sides of the
guadrate. Absence of a quadrate foramen in allosauroid embryos and a poor delimitation of
mandibular condyles in both embryonic and juveniles tetanurans seems to be ontogenetic
features of some theropods. Finally, the numerous morphological differences existing in the
guadrates of the two specimens of Shuvuuia deserti, interpreted by some as juvenile and
adult individuals, are considered as ontogenetic, taphonomic, and perhaps also taxonomic

variations.
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ABSTRACT

By allowing the articulation of the mandible with the cranium, the quadrate of diapsids
and most other tetrapods plays an important role morphofunctionally. In Theropoda, its
morphology is particularly complex and varies importantly among different clades of nonavian
theropods so that the quadrate possesses a strong taxonomic potential. Inconsistencies in the
notation and terminology used in discussions of the theropod quadrate anatomy have been
noticed, a number of no less than height different terms being sometimes given to a same
structure. A standardization list of terms and notation for each quadrate anatomical entity is here
proposed, with the goal of facilitating future descriptions of this important cranial bone.

An overview of the quadrate function, pneumaticity and ontogeny in nonavian
theropods is also given. The quadrate of the large majority of nonavian theropod is akinetic and
the diagonally oriented sulcus of the mandibular articulation allowed both rami of the mandible
to move laterally when opening the mouth in many of them. Pneumaticity of the quadrate is also
present in most of tetanuran clades and the pneumatic chamber, invaded by the quadrate
diverticulum of the mandibular arch pneumatic system, was connected to one or several
pneumatopores on the medial, lateral, posterior, anterior or ventral sides of the quadrate. Absence
of a quadrate foramen in allosauroid embryos and a poor delimitation of mandibular condyles in
both embryonic and juveniles tetanurans seems to be ontogenetic features of some theropods.
Finally, the numerous morphological differences existing in the quadrates of the two specimens
of Shuvuuia deserti, interpreted by some as juvenile and adult individuals, are considered as

ontogenetic, taphonomic, and perhaps also taxonomic variations.

PeerJ reviewing PDF | (v2014:05:2063:0:0:NEW 4 May 2014)


a0032079
Highlight
see comments above


PeerJ

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

INTRODUCTION

The quadrate (in Latin quadratum, meaning ‘square’) is a cranial bone of endochondral
origin that articulates with the mandible in all gnathostomes except mammals, in which it evolved
into the incus (Carroll 1988; Benton 2005; Brusatte 2012). In theropods, this bone plays many
important functions such as a structural support for the basicranium, articulatory element with the
lower jaws, attachment for several muscles, audition and hosting important nerves and vascular
passages (e.g., Witmer 1990, 1997; Bakker 1998; Sedlmayr 2002; Kundrat and Janacek 2007;
Holliday and Witmer 2008; Tahara and Larsson 2011; Appendix 1).

Its rather simple architecture, an elongated body bearing an anteriorly projected blade,
therefore tends to vary significantly in the structure of its head, mandibular articulation,
quadratojugal contact and the presence of pneumatic openings, quadrate foramen and lateral
processes, among theropods with a large variability of feeding strategies (e.g., Holtz 2003;
Therrien et al. 2005; Hone and Rauhut 2010; Zanno and Makovicky 2011). Such morphological
variation has been recognized in avian theropods in particular, revealing the great taxonomical
utility of the quadrate in this clade (e.g., Lowe 1926; Samejima and Otsuka 1987; Barbosa 1990;
Elzanowski et al. 2001; Elzanowski and Stidham 2010). Likewise but to a lesser degree, the
systematic potential of the quadrate bone has also been noted for nonavian theropods (Maryanska
and Osmolska 1997; Currie 2006), witnessing the particular importance that should be accorded
to the description of this bone in the literature on nonavian theropod anatomy. Nevertheless, the
terminology and abbreviations of the quadrate anatomy has been inconsistent in nonavian
theropods, several different anatomical terms for the same quadrate sub-entity being often used
(Appendix 2). Although a thorough list of anatomical terms has been given by Elzanowski et al.
(2001) and Elzanowski and Stidham (2010) for the avian quadrate, the terminology proposed by

these authors has never been followed in the description of the nonavian theropod quadrate
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hitherto. Indeed, the quadrate of birds has greatly changed in its morphology throughout the
evolution of this clade and therefore displays many features absent in more primitive theropods,
so that many anatomical terms coined by Elzanowski et al. (2001) and Elzanowski and Stidham
(2010) cannot be applied for the nonavian theropod quadrate. Likewise, some quadrate entities
such as the quadrate foramen and the lateral process observable in nonavian theropods are absent
in their avian descents and do not appear in the list of these authors.

The present paper has two major aims. The first is to propose a standardization of the
anatomical terms for the quadrate sub-units, each associated with a two to four letters
abbreviation and followed by a definition, in order to facilitate future description of this bone in
the literature. The second is to give a general overview of the function, pneumaticity and

ontogeny of this important bone in nonavian theropods.

Institutional Abbreviations

AMNH, American Museum of Natural History, New York, U.S.A.; BMNH, The Natural History
Museum, London, U.K.; BYUVP, Brigham Young University Vertebrate Paleontology, Provo,
Utah, U.S.A.; CMNH, Carnegie Museum, Pittsburgh, Pennsylvania, U.S.A.; FMNH, Field
Museum of Natural History, Chicago, Illinois, U.S.A.; IGM, Mongolian Institute of Geology,
Ulaan Bataar, Mongolia; IVPP, Institute for Vertebrate Paleontology and Paleoanthropology,
Beijing, China; MACN, Museo Argentino de Ciencias Naturales, Buenos Aires, Argentina; MCF
PVPH, Museo Municipal Carmen Funes, Paleontologia de Vertebrados, Plaza Huincul,
Argentina; MCNA, Museo de Ciencias Naturales y Antropologicas de Mendoza, Mendoza,
Argentina; MIWG, Dinosaur Isle, Isle of Wight Museum Services, Sandown, U.K.; ML, Museu
da Lourinha, Lourinha, Portugal; MNHN, Muséum national d’Histoire Naturelle, Paris, France;
MNN, Musée National du Niger, Niamey, Niger; MSNM, Museo di Storia Naturale di Milano,

Milan, Italy; MUCPv, Museo de Ciencias Naturales de la Universidad Nacional de Comahue,
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Neuquén, Argentina; NH, Horniman Museum & Gardens, London, U.K.; OUMNH, Oxford
University Museum, Oxford, U.K.; PVSJ, Instituto y Museo de Ciencias Naturales, San Juan,
Argentina; SMA, Sauriermuseum Aathal, Aathal, Switzerland; SMINS, Staatliches Museum fiir
Naturkunde, Stuttgart, Germany; RTMP, Royal Tyrrell Museum of Palaeontology, Drumheller,
Alberta, Canada; UCMP, University of California Museum of Paleontology, Berkeley, California,
U.S.A.; UC, University of Chicago Paleontological Collection, Chicago, U.S.A.; UMNH, Utah
Museum of Natural History, Salt Lake City, Utah, U.S.A.; USNM, United State National
Museum Vertebrate Paleontology, Washington, D. C., U.S.A.; WDIS, Wyoming Dinamation

International Society, Casper, Wyoming, U.S.A.

PROPOSED TERMINOLOGY OF THE QUADRATE ANATOMY

Figure 1

Table 1

Quadrate body (qb). Part of the quadrate that includes the mandibular articulation, the quadrate
shaft, the quadrate ridge, the quadrate head, the lateral contact (quadratojugal and/or squamosal
contact), and the lateral process, and excludes the pterygoid flange. In posterior view, the
quadrate body is delimited by the lateral margin of the lateral contact and sometimes the medial
margin of the quadrate foramen, the ventral margin of the mandibular articulation, the dorsal
margin of the quadrate head, and a medial margin mostly formed by the quadrate shaft and the
medial fossa of the pterygoid flange. The quadrate body corresponds to the corpus ossis quadrati
of Baumel and Witmer (1993), and the corpus quadrati of Elzanowski et al. (2001) and
Elzanowski and Stidham (2010) for avian theropods.

Quadrate shaft (qs). Part of the quadrate body that excludes the lateral process and all

articulating surfaces (i.e., quadrate head, quadratojugal/squamosal/pterygoid contacts, and
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mandibular articulation). The quadrate shaft, as called by Welles (1984), Sereno and Novas
(1994), Norell et al. (2006), Sampson and Witmer (2007), Sereno et al. (2008), Carrano et al.
(2011), and Brusatte et al. (2012), is also referred as the quadrate pillar by Madsen and Welles
(2000), and the ascending process by Colbert (1989).

Quadrate ridge (qr). Dorsoventrally elongated column, ridge or crest located on the quadrate
body and visible in posterior view. Although the quadrate ridge is present in the large majority of
nonavian theropods, a description of the structure is often omitted in the literature. The quadrate
ridge is referred as ‘a column’ for Welles (1984), a ‘ridge-like mediodorsal edge’ for Carr (1996),
‘a prominent rounded ridge’ for Smith et al. (2007), a ‘columnar ridge’ for (Rauhut et al. 2010)
and a ‘robust ridge’ for Brusatte et al. (2012).

Quadrate ridge groove (qrg). Groove dividing the quadrate ridge in two different units at two-
thirds, or more dorsally, of the quadrate body height. A quadrate ridge groove exists in some
allosauroid theropods.

Quadrate head (qh). Dorsal articulation of the quadrate abutting to the cotyle of the squamosal
and touching other bones of the braincase in some theropod taxa. The quadrate head, as it is
called by Britt (1991), Charig and Milner (1997), Madsen and Welles (2000), Sampson and
Witmer (2007), Sereno et al. (2008), Norell et al. (2009) and Brusatte et al. (2012) among others,
has also been termed quadrate cotylus (Currie 2003; Coria and Currie 2006) quadrate cotyle
(Currie 2003; Coria and Currie 2006), squamosal condyle (Coria and Salgado 1998), squamosal
articulation (Turner et al. 2011), otic process (Maryanska and Osmoélska 1997; Burnham 2004;
Holliday and Witmer 2008), squamosal capitulum (Zanno 2010) and, processus oticus (Baumel
and Witmer 1993; Figure 2), and caput quadrati (Elzanowski et al. 2001; Elzanowski and

Stidham 2010). When the quadrate head is double, it divides into otic and squamosal capitula.
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Otic capitulum (otc). Medial capitulum of the quadrate head articulating with the braincase. The
otic capitulum corresponds to the capitulum (condylus) oticum of Baumel and Witmer (1993;
Figure 2), Elzanowski et al. (2001) and Elzanowski and Stidham (2010) for avian theropods.
Squamosal capitulum (sqc). Lateral capitulum of the quadrate head articulating with the
squamosal. The squamosal capitulum corresponds to the capitulum (condylus) squamosum of
Baumel and Witmer (1993; Figure 2), Elzanowski et al. (2001) and Elzanowski and Stidham
(2010) for avian theropods.

Intercapitular sulcus (icas). Groove separating the ootic capitulum from the squamosal
capitulum on the dorsal surface of the quadrate head. The intercapitular sulcus (sensu Witmer
1990) corresponds to the incisura intercapitularis of Baumel and Witmer (1993; Figure 2), and the
vallecula intercapitularis of Elzanowski et al. (2001) and Elzanowski and Stidham (2010) for
avian theropods.

Quadrate foramen (qf). Aperture in the quadrate body or concavity on the lateral margin of the
quadrate body and delimited ventrally by the ventral quadratojugal contact and dorsally by the
dorsal quadratojugal contact and its ventral projection in some theropod taxa. Most authors
usually refer to this perforation as the quadrate foramen (e.g., Welles 1984; Sereno and Novas
1994; Charig and Milner 1997; Maryanska and Osmdlska 1997; Currie and Carpenter 2000;
Coria and Currie 2006; Currie 2006; Norell et al. 2006; Zanno 2010; Choiniere et al. 2010; Foth
and Rauhut 2012; Brusatte et al. 2012) but it can be also called the paraquadratic foramen (e.g.,
Barsbold and Osmoélska 1999; Kobayashi and Lii 2003; Kobayashi and Barsbold 2005), the
paraquadrate foramen (Sampson and Witmer 2007; Dal Sasso and Maganuco 2011), the
paraquadrate fenestra (Smith et al. 2007) or the quadrate fenestra (e.g., Carr 1996; Sereno et al.
1998; Currie 2003; Eddy and Clarke 2011). A quadrate foramen exists in all nonavian theropods

but Ceratosauria and Megalosauridae.
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Mandibular articulation (mar). Ventral surface of the quadrate, articulating with the mandible
and fitting in the glenoid fossa of the lower jaw. It includes the ectocondyle, entocondyles,
sometimes a mediocondyle, and an intercondylar sulcus. Corresponds to the pars or processus
mandibularis of Baumel and Witmer (1993; Figure 2), Elzanowski et al. (2001) and Elzanowski
and Stidham (2010) for avian theropods. Although most authors (e.g., Currie 2006; Sampson and
Witmer 2007; Rauhut et al. 2010; Brusatte et al. 2012) referred the ectocondyle and entocondyles
as the lateral and medial condyles (or hemicondyles) respectively, the terms ‘ectocondyle’ and
‘entocondyle’ have been used by Welles (1984), and Madsen and Welles (2000). The condyle
present in between the ecto- and entocondyles in some theropods is here coined mediocondyle.
Ectocondyle (ecc). Lateral condyle of the mandibular articulation. The ectocondyle corresponds
to the condylus (mandibularis) lateralis of Baumel and Witmer (1993; Figure 2), Elzanowski et
al. (2001) and Elzanowski and Stidham (2010) for avian theropods.

Entocondyle (enc). Medial condyle of the mandibular articulation. The entocondyle corresponds
to the condylus (mandibularis) medialis of Baumel and Witmer (1993; Figure 2), Elzanowski et
al. (2001) and Elzanowski and Stidham (2010) for avian theropods.

Mediocondyle (mdc). Median condyle of the mandibular articulation. The mediocondyle is
referred as the third condyle by Clark et al. (1994) and Xu and Wu (2001), the accessory condyle
by Kobayashi and Lii (2003), and the condyles caudalis of Baumel and Witmer (1993) and
Elzanowski et al. (2001) for avian theropods.

Intercondylar sulcus (ics). Groove separating the ectocondyle from the entocondyle and sliding
along the interglenoid ridge of the articular. The intercondylar sulcus, a term also used by
Carrano et al. (2011), can be referred as a groove (e.g., Madsen 1976; Britt 1991; Madsen and
Welles 2000; Currie 2006), swelling (Charig and Milner 1997), sulcus (e.g., Kobayashi and Lii
2003; Norell et al. 2006; Sadleir et al. 2008), trochlea (Brochu 2003; Brusatte et al. 2010),

trochlear surface (Brusatte et al. 2010, 2012), and intercondylar bridge (Zanno 2010). The
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intercondylar sulcus corresponds to the sulcus intercondylaris (Baumel and Witmer 1993) and the
vallecula intercondylaris (Elzanowski et al. 2001; Elzanowski and Stidham 2010) of the quadrate
of avian theropods.

Intercondylar notch (icn). Notch located in between the ectocondyle and entocondyle, either on
the anterior or posterior margin of the mandibular articulation, and corresponding to the depressio
praecondylaris of Elzanowski et al. (2001) for avian theropods.

Lateral process (Ipq). Lateral or anterolateral projection of the lateral margin of the quadrate
body. Also known as the dorsal wing (Welles 1984; Currie 2006), the anterolateral wing (Madsen
and Welles 2000), the lateral lamina (Coria and Salgado 1998) and the lateral ramus (Sampson
and Witmer 2007), this process can contact the quadratojugal and/or the squamosal and therefore
either be referred to the quadratojugal ramus by Sampson and Witmer (2007) or the squamosal
ramus Norell et al. (2006).

Quadratojugal contact (qjc). Contact of the quadrate with the quadratojugal on the lateral,
anterolateral or, posterolateral margin of the quadrate body. The quadratojugal contact, which
corresponds to the cotyla quadratojugalis of Baumel and Witmer (1993), Elzanowski et al. (2001)
and Elzanowski and Stidham (2010) for avian theropods, can be divided into a ventral and a
dorsal quadratojugal contact when the quadrate foramen is present and delimited by both
quadrate and quadratojugal.

Ventral quadratojugal contact (vqjc). ventral contact of the quadrate with the quadratojugal.
The ventral quadratojugal contact of the quadrate always receives the quadratojugal bone.

Dorsal quadratojugal contact (dqjc). dorsal contact of the quadrate with the quadratojugal. The
ventral quadratojugal contact of the quadrate can either receive the quadratojugal or both
quadratojugal and squamosal in some theropod taxa.

Ventral projection of the dorsal quadratojugal contact (vpdq). Small projection of the dorsal

quadratojugal contact delimiting the dorsolateral margin of the quadrate foramen.
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Quadratojugal process (qjp). Anterior projection of the ventral quadratojugal contact of the
quadrate.

Squamosal contact (sqc). Contact on the lateral margin of the quadrate with the squamosal.
Posterior fossa (pfq). Depression or concavity situated on the posterior side of the quadrate body
and dorsal to the mandibular articulation, ventral to the quadrate head and lateral to the quadrate
ridge. The posterior fossa can include or exclude the quadrate foramen.

Quadrate diverticulum (qdi). Air sac invading the pneumatic chamber inside the quadrate body
and communicating with other diverticula by the quadrate pneumatopores.

Dorsal pneumatopore (dpne). Pneumatic foramen or recess located on the dorsal part of the
quadrate, beneath the quadrate head. The dorsal pneumatopore corresponds to the foramen
pneumaticum caudomediale of Elzanowski et al. (2001) and Elzanowski and Stidham (2010) for
avian theropods.

Medial pneumatopore (mpne). Pneumatic foramen or recess situated on the medial side of the
quadrate, typically in the ventromedial part of the pterygoid flange. The medial pneumatopore
corresponds to the foramen pneumaticum basiorbitale of Elzanowski et al. (2001) and
Elzanowski and Stidham (2010) for avian theropods.

Posterior pneumatopore (ppne). Pneumatic foramen or recess on the posterior side of the
quadrate body, typically at one-height of the quadrate. The posterior pneumatopore corresponds
to the ‘foramen pneumaticum rostromediale’ of Elzanowski et al. (2001) and Elzanowski and
Stidham (2010) for avian theropods.

Ventral pneumatopore (vpne). Pneumatic foramen or recess on the ventral side of the quadrate.
The ventral pneumatopore corresponds to the foramen pneumaticum adventitium of Elzanowski
et al. (2001) and Elzanowski and Stidham (2010) for avian theropods.

Pterygoid flange (pfl). Sheet-like projection attached to the quadrate body and extending

anteriorly or anteromedially to contact the pterygoid bone. The pterygoid flange, a term also used
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by Charig and Milner (1997), Brochu (2003), Currie (2006), Coria and Currie (2006) and
(Rauhut et al. 2010), is also known as the quadrate/anterior flange (e.g., Colbert 1989; Norell et
al. 2006; Brusatte et al. 2010, 2012), the pterygoid ramus (e.g., Sereno and Novas 1994; Sampson
and Witmer 2007; Choiniere et al. 2010), the pterygoid wing (e.g., Welles 1984; Madsen and
Welles 2000; Eddy and Clarke 2011), the pterygoid ala (e.g., Currie 2003, 2006; Sadleir et al.
2008; Dal Sasso and Maganuco 2011), the pterygoid process (Molnar 1991; Carr 1996; Sereno et
al. 2008), the optic wing (Balanoff and Norell 2012), the orbital process (Clark et al. 1994;
Chiappe et al. 2002), and the processus orbitalis (Baumel and Witmer 1993; Elzanowski et al.
2001; Elzanowski and Stidham 2010; Figure 2) for avian theropods.

Pterygoid contact (ptc). Contact on the medial margin of the pterygoid flange, or the quadrate
body, with the pterygoid. The pterygoid contact corresponds, for avian theropods, to the facies
pterygoidea in Elzanowski et al. (2001) and the facies articularis pterygoidea in Elzanowski and
Stidham (2010), as well as the condylus pterygoideus, located on the quadrate body, in Baumel
and Witmer (1993; Figure 2), Elzanowski et al. (2001) and Elzanowski and Stidham (2010).
Medial fossa (mfq). Depression or concavity situated ventroposteriorly on the pterygoid flange.
It is delimited by the quadrate shaft and the ventral shelf in some theropod taxa. The medial fossa
corresponds to the fossa corporis quadrati of Fuchs (1954) and the fossa basiorbitalis of
Elzanowski et al. (2001) and Elzanowski and Stidham (2010) for avian theropods.

Ventral shelf (vsh). a medial or medioposterior fold of the ventral margin of the pterygoid
flange. The term ‘shelf” was employed by Sereno and Novas (1994) and ‘ventral shelf” was used

by Sampson and Witmer (2007), Eddy and Clarke (2011) and Carrano et al. (2011).

Figure 2

Inter-taxic Topological Homologies
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258 To establish comparisons between taxa with widely disparate quadrate morphology, a

259  homology concept of the feature in question is required. Here, we will give a general account of
260  the variability within different anatomical sub-units of the quadrate and by following the criteria
261  summarized in Rieppel (2006).

262 The quadrate ridge (Figure 1, qr) is easily distinguishable in many theropod taxa such as
263 Aerosteon riocoloradensis (MCNA-PV 3137) and Proceratosaurus bradleyi (NHM R.4860) but
264  the limits of this structure on the quadrate body can be subtle like in Noasaurus leali (PVL 4061),
265  Majungasaurus crenatissimus (FMNH PR 2100), and Eustreptospondylus oxoniensis (OUMNH
266 J.13558). The quadrate ridge corresponds to a columnar ridge in many theropod clades like in
267  Dilophosaurus wetherilli (Welles 1984), Allosaurus (SMA 005/02) and Eotyrannus lengi

268  (MIWG, 1997.550) but can also corresponds to a thin crest as in Tyrannosauridae (AMNH 5027;
269  Carr 1996; Brusatte et al. 2012). Although the ventral portion of the quadrate ridge is usually

270  demarcated just above the medial condyle of the mandibular articulation, its dorsal termination is
271  more variable. The dorsal termination can reach the quadrate head like in Acrocanthosaurus

272 atokensis (NCSM 14345) or flatten at the mid-height of the quadrate such as in Albertosaurus
273 sarcophagus (Currie 2003, figure 10B). Despite being the same structure, the quadrate ridge can
274  be separated by a deep groove like in Allosaurus fragilis (AMNH 600) and A/losaurus europaeus
275 (ML 415) or flare and reappear more dorsally at the second third of the quadrate such as in some
276  derived Spinosauridae (pers. observ.). Likewise, the ventral portion can also be divided in two
277  parts separated by a concavity such as in the tyrannosaurids Albertosaurus sarcophagus,

278  Daspletosaurus sp. (Currie 2003, figure 10 and 28) and Tyrannosaurus rex (AMNH 5027).

279 The pterygoid flange (Figure 1, pfl) contacts the quadrate process of the pterygoid

280 anteriorly or anteromedially, and sometimes other bones such as the epipterygoid in

281  Herrerasaurus ischigualastensis (PVSJ 407), the basipshenoid and prootic in Erlikosaurus

282 andrewsi (Clark et al. 1994), and the squamosal in Khaan mckennai (Balanoff and Norell 2012).
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Although the pterygoid flange can be easily homologized between taxa, it may acquire
subtrapezoidal, subtriangular, subrectangular and M-shaped outlines or form a large semi-oval
structure. The ventral limit of the flange can reach the mandibular condyles (e.g., Baryonyx
walkeri, Tyrannosaurus rex) or get attached to the quadrate body well-above the mandibular
articulation (e.g., Majungasaurus crenatissimus). This single structure can in some instances be
divided into two ridges delimited by a deep pneumatic fossa facing ventrally (e.g., Alioramus
altai, Brusatte et al. (2012), figure 23c; Tyrannosaurus rex FMNH PR2081). In anterior view, the
pterygoid flange can be straight and only directed anteriorly like in the carcharodontosaurid
Shaochilong maortuensis (Brusatte et al. 2010, figure 7a), or completely recurved anteromedially
and its anteroventral margin can be either straight, or fold medially and dorsally, forming the
ventral shelf, such as in Majungasaurus crenatissimus (FMNH PR 2100), Carnotaurus sastrei
(MACN-CH 894) and Allosaurus fragilis (Madsen 1976:plate 3d).

The medial fossa of the quadrate (Figure 1, mfq) can be easily recognizable between taxa
as it is always situated on the pterygoid flange, usually on the ventral part of it. This fossa is
posteriorly delimited by the quadrate body in nonavian theropods and sometimes by the ventral
shelf of the pterygoid flange. The medial fossa can be of variable depth (deep in
Cryolophosaurus and shallow in Eustreptospondylus), pneumatized (e.g., Falcarius), and situated
in the ventralmost part of the pterygoid flange (e.g., Tsaagan) or at mid-height of it and just
above a large pneumatic recess like in Mapusaurus roseae (MCF PVPH-108.102).

The posterior fossa of the quadrate (Figure 1, pfq) can be located either in between the
quadrate and the quadratojugal, being centred on the lateral margin of the quadrate (e.g.,
Ceratosaurus); or in the middle of the quadrate shaft and between the quadrate ridge and the
lateral margin of the quadrate (e.g., ‘Syntarsus’; Majungasaurus; Tsaagan). Difficulties to
recognize this structure between taxa may arise because it is not always well-delimited (e.g.,

Shaochilong). The posterior fossa can either be strongly ventrodorsally elongated like in the
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megalosaurid Torvosaurus tanneri, or form an oval concavity lateromedially wide (e.g.,
Majungasaurus). Similarly to the medial fossa, the posterior fossa can have a large pneumatic
recess positioned dorsally (e.g., Sinornithomimus) or ventrally (e.g., Garudimimus) inside the
fossa.

Due to the highly variable morphology of the quadrate foramen (Figure 1, qf), this
structure deserves special attention. It can be completely absent (e.g., Carnotaurus, Torvosaurus),
or form a very small aperture (e.g., ‘Syntarsus’) to a large opening (e.g., Tsaagan). In most
nonavian theropods, the quadrate foramen is mostly delimited by the quadrate and only its lateral
margin is bounded by the quadratojugal (e.g., Sinraptor). In some nonavian theropods, however,
the medial margin of the quadrate foramen and part of the ventral and dorsal margins are formed
by the quadrate, the other lateral half being delimited by the quadratojugal (e.g.,
Dromaeosaurus). Finally, in a few theropods, the foramen can be completely enclosed in the
quadrate (e.g., Aerosteon).

The quadratojugal contact of the quadrate (Figure 1, gjc) can either be a single extensive
contact or made of two contacts separated by the quadrate foramen. In the latter case, the ventral
quadratojugal contact and the dorsal quadratojugal contact of the quadrate are not always clearly
separated and their dorsal and ventral margins, respectively, can overlap like in the sinraptorid
Sinraptor dongi (IVPP 10600). If the quadrate foramen is absent or located inside the quadrate,
the lateral quadratojugal contact is an elongated line of variable width along the lateral margin of
the quadrate. If separated by the quadrate foramen, the ventral and dorsal contacts can display a
wide variety of shapes that, nevertheless, are easily recognizable inter-taxically. Both
quadratojugal contacts may face laterally, anteriorly or posteriorly and their articulating surface
can be smooth, irregular or deeply grooved by several radiating ridges as in Allosaurus fragilis
(Madsen 1976). The ventral quadratojugal contact is usually D-shaped or ovoid and its anterior

margin can extend far anteriorly, forming the quadratojugal process occasionally forming a large
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subtriangular projection (Norell et al. 2006). The dorsal quadratojugal contact can vary from a
very thin line to a broad surface and its dorsal extension can reach the dorsal condyle or terminate
well beneath it. A ventral projection of this contact may be present, and such projection
delimiting part of the lateral border of the quadrate can either be short, like in Daspletosaurus sp.
(Currie 2003, figure 28A), or formed an elongated ramus, like in the therizinosaurid Falcarius
utahensis (Zanno 2010, figure 1H) and the coelurosaur Zuolong salleei (Choiniere et al. 2010,
figure 3B).

In some basal theropods, ceratosaurs and dromaeosaurids, the lateral process of the
quadrate (Figure 1, Ipq) forms a wing-like projection similar to the pterygoid flange. This process
is an extension of the quadrate body laterally so that it can be difficult to delimitate and one can
see the presence of such process in Allosaurus ‘jimmadseni’ (SMA 005/02), Sinraptor dongi
(Currie 2006, figure 1D), and Erlikosaurus andrewsi (Clark et al. 1994, figure 7). The lateral
process can also vary in shape and size, as it can be short and parabolic (e.g., Carnotaurus) or
elongated and subtriangular (e.g., T5saagan). Its ventral border can also extend to the quadrate
foramen (e.g., Bambiraptor) or more ventrally, sometimes reaching the medial condyle of the
mandibular articulation (e.g., llokelesia).

The quadrate head (Figure 1, gh) always articulates with the deep cotylus of the
squamosal and contacts more rarely other bones of the braincase such as the opisthotic in
oviraptorids (Maryanska and Osmolska 1997), the prootic in Mononykus olecranus (Perle et al.
1994; Chiappe et al. 2002) and the postorbital in Shuvuuia deserti (Chiappe et al. 1998, 2002).
The contact of the braincase between the dorsal part of the quadrate and the opistothic-exoccipital
or the paroccipital process is also present in Herrerasaurus ischigualastensis (Sereno and Novas
1994), Dilophosaurus wetherilli (Welles 1984), Ceratosaurus magnicornis (Madsen and Welles
2000; Sanders and Smith 2005), tyrannosaurids (Currie 2003), Heyuannia huangi (Ll 2005), and

perhaps Erlikosaurus andrewsi (Clark et al. 1994), but this contact occurs on a small medial
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surface just below the quadrate head and not with the quadrate head itself. The large majority of
nonavian theropods have a single headed quadrate head (Rauhut 2003; pers. observ.); however,
oviraptorids (Maryanska and Osmolska 1997, figure 3B) and the alvarezsaurid Shuvuuia deserti
(Chiappe et al. 1998) have a unique double head. A bistylic quadrate head has also been observed
in the dromaeosaurid Mahakala omnogovae (Turner et al. 2007) but Turner et al. (2011, figure 4)
later reconsidered the head of the quadrate as not being double headed. The morphology of the
quadrate head is variable; it may be subtriangular in most basal theropods (Sereno and Novas
1994; UCMP 37302), oval or subcircular in megalosaurids (UC OBA1; BYUVP 9246) and
allosauroids (MCNA-PV-3137; IVPP 10600; IVPP V2885.3), subquadrangular in Spinosaurinae
(SMNS 58022; MSNM V6896) or conical in Oviraptoridae (Maryanska and Osmolska 1997,
figure 1B). Whilst most nonavian theropods have either a convex or a flattened quadrate head, the
quadrate of some allosaurids (Bakker 1998, figure 5C) and derived tyrannosaurids (FMNH
PR208) can also possess a well-marked concavity on the dorsal margin of the quadrate head.
Despite this variability, the quadrate head can be easily homologized inter-taxically due to the
obvious location of this structure.

With the exception of the therizinosaur Erlikosaurus andrewsi and the ornithomimosaur
Sinornithomimus dongi which both seem to have a unique tricondylar condition on the
mandibular articulation (Clark et al. 1994; Kobayashi and Lii 2003), all other nonavian theropods
have two mandibular condyles. The presence of three mandibular condyles was also noted in the
alvarezsaurid Avimimus portentosus (Chatterjee 1995) and the dromaeosaurid Sinornithosaurus
millenii (Xu and Wu 2001). However, Vickers-Rich et al. (2002) only found two condyles in the
former and our observations confirm that the third condyle of the latter seems to be part of the
much broader lateral condyle (Xu and Wu 2001, figure 4D).

The intercondylar sulcus (Figure 1, ics) varies in orientation, size and depth. It can be

large, shallow and sub-perpendicular to the long axis passing through the mandibular articulation
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as in Tyrannosaurus rex (FMNH PR2081); or narrow, deep and strongly lateromedially-oriented
as in some derived spinosaurids (pers. observ.).

The shape of the mandibular articulation (Figure 1, mar) in posterior view can vary from
the biconvex condition known in most theropods, to the W-shaped articulation typical of Citipati
osmolskae (Clark et al. 2002, figure 6) or a unique convex articulation seen in some
dromaeosaurids such as Tsaagan manga (IGM 100/1015). The intercondylar notch (Figure 1, icn)
is present in Allosaurus ‘jimmadseni’ (Bakker 1998, figure 5B, C; SMA 005/02) and
Suchomimus tenerensis (MNN GAD 502) on the posterior side of the mandibular articulation,
and in Majungasaurus crenatissimus (FMNH PR 2100) and Carnotaurus sastrei (MACN-CH
894) on its anterior margin. The ectocondyle (Figure 1, ecc) and entocondyle (Figure 1, ent) are
highly variable among each clade of nonavian theropods in terms of shape, size and orientation.

Pneumaticity of the quadrate can either be internal or, obviously expressed externally by
pneumatopores. The establishment of inter-taxic homologies is difficult to assess, because these
structures have very diverse interspecific variability. Nevertheless, as in other saurischian taxa
(Schwarz et al. 2007), these pneumatic structures have phylogenetic signal. These openings can
appear on different views and portions of the quadrate. The medial and posterior pneumatopores
(Figure 1, ppne) usually occur in the medial and posterior fossa respectively, and their position
inside the fossae is again quite variable. Pneumatopores can also be located in a pneumatic recess
outside the medial fossa and just beneath it such as in the carcharodontosaurids Mapusaurus
roseae (Coria and Currie 2006) and Acrocanthosaurus atokensis (Eddy and Clarke 2011). In the

latter, the pneumatic aperture is divided by a septum.

OVERVIEW OF THE FUNCTION, PNEUMATICITY AND ONTOGENY

Figure 3
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Function of the Quadrate

Although in all archosaurs, and all amniotes except mammals, the main function of the
quadrate is the articulation of the cranium with the mandible, this bone can also play an important
role in the mobility of the skull in many extant theropods. Quadrate movement inside the skull,
known as streptostyly, is a fundamental property of all avian theropods, and cranial kinesis in
birds, known already in the beginning of the, 19" century (Nitzsch 1816), has been extensively
studied in the past sixty years (e.g., Fisher 1955; Bock 1964, 1999, 2000; Biihler 1981; Zusi
1984, 1993; Biihler et al. 1985, 1988; Chatterjee 1991, 1997; Hoese and Westneat 1996; Zweers
et al. 1997; Zweers and Vanden Berge 1998; Bout and Zweers 2001; Gussekloo and Bout 2005;
Meekangvan et al. 2006). Streptostyly consists of the rotation of the quadrate at its dorsal
articulation against the squamosal and/or supratemporal and usually corresponds to a transversal
movement, although a lateral movement of the quadrate around an anteroposteriorly directed axis
occurs in some lepidosaurs taxa (Metzger 2002). Cranial kinesis in avian theropods with a
streptostylic quadrate includes upward (protraction) and downward (retraction) rotation of the
upper jaw relative to the braincase and three main types of kinesis are recognized relative to the
position of the dorsal flexion zone of the cranium and the nature of the nasal opening in modern
theropods (Bock 1964; Biihler 1981; Zusi 1984; Meekangvan et al. 2006). There are the
prokinesis where the flexion occurs at the nasofrontal joint and the upper jaw thereby moves as
one unit, the amphikinesis where the flexion occurs in two zones of flexibility and the upper jaw
and its tip are bent upward, and finally the rhynchokinesis where the flexion happens forward
from the nasofrontal joint, allowing its rostral part to be moved.

Inference of the cranial kinesis and quadrate mobility in nonavian theropods has been
recently investigated by Holliday and Witmer (2008) which regard the cranium of this group of
dinosaurs as partially kinetically competent, since synovial joints and protractor muscles are

present, but not fully kinetic like in birds. The strong suture of the quadrate to the quadratojugal
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and the immobile contact of the quadrate and the pterygoid on the medial side of the pterygoid
flange in most nonavian theropods seem to indicate a very limited movement, and perhaps even
the total absence of movement of this bone within the cranium. Although the synovial quadrate
head joint existing in theropods, and all other archosaurs, is necessary to infer cranial kinesis, its
presence in akinetic taxa such as crocodiles and thyreophorans demonstrates that the synovial
joint cannot be considerate alone as an argument for cranial kinesis. Synovial joints have actually
been interpreted as growth zones rather than articular surfaces of mobile joints based on the
presence of very thin articular cartilage covering the end of this joint (Holliday and Witmer
2008). According to Holliday and Witmer (2008) “articular cartilage persists in loading
environments that exert hydrostatic pressures (which result in a change in volume but not shape)
but exert low shear stresses”. Indeed, one of the key centres of deformation during normal biting
is the quadrate-squamosal contact, which would have experienced large shear stresses associated
with torque and asymmetrical loading during biting (Rayfield 2005), and the presence of a
minimal amount of cartilage between the quadrate and squamosal would therefore suggest that
the synovial zone was rather a growth zone than a mobile one. A streptostylic quadrate in
Tyrannosaurus rex (Molnar 1991, 1998), Oviraptor philoceratops (Smith 1992), Heyuannia
huangi (L 2005) and Dromiceiomimus brevitertius (Russell 1972) based on the saddle joint
between the quadrate and squamosal only is thereby unlikely.

Nevertheless, and more convincingly, a streptostylic quadrate has also been proposed in
the alvarezsaurid Shuvuuia deserti (Chiappe et al. 1998) in which the quadratojugal/jugal (Dufeau
(2003) suggested that the quadratojugal may be absent in Shuvuuia deserti), rather than being
firmly sutured to the quadrate, like in other nonavian theropods, would have contacted the
quadrate though a movable joint (Chiappe et al. 1998, 2002; Figure 3). According to Chiappe et
al. (1998), the absence of a latero-dorsal contact of the quadrate with the quadratojugal/jugal, as

well as a ventro-lateral process of the squamosal, would have permitted to the quadrate of this
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mononykine to pivot antero-posteriorly, and the upper jaw to rotate ventro-dorsally thanks to this
transversal movement. Although these authors have implied the existence of a bending zone
between the frontals and the nasal-preorbital bones in S. deserti, allowing the flexion of the snout
as a single unit when the quadrate displaced forward, like in prokinetic birds, the complex
contacts between the nasal, frontal and prefrontal illustrated by Sereno (2001, figure 12B) makes
assessment of Chiappe et al. (1998) hypothesis quite dubious (Holliday and Witmer 2008). In
addition, Holliday and Witmer (2008) noted that a maxillojugal and palatal flexion zones
authorizing a true prokinesis to be present in alvarezsaurids is still not clear. Likewise, the contact
between the pterygoid flange of the quadrate and the pterygoid needs also to be better
documented in order to imply any specific movement of the quadrate inside the cranium of S.
deserti.

A movable articulation between the quadrate and quadratojugal may also have been
present in the oviraptorids Heyuannia huangi (Lii 2003) and Nemegtia huangi (Lii et al. 2004) in
which the quadrate and quadratojugal articulation of the former corresponds to a trochlea-like
structure (Lii 2003, 2005), while the quadratojugal contact of the latter is convex and fit into a
quadratojugal cotyle (Lii et al. 2004).

Quadrate articulation with the mandible and orientation of the intercondylar sulcus are
highly variable among nonavian theropods, therefore suggesting some variation in the movement
of the rami when the jaw opened. The helical intercondylar sulcus present in many nonavian
theropods, but not all of them (pers. observ.), was noticed by Bakker (1998) in primitive theropod
dinosaurs, Hendrickx and Buffetaut (2008) in spinosaurids, and Molnar (1991) and (Larson 2008)
in Tyrannosaurus rex. These authors suggested that such spiral groove of the mandibular
articulation constrained the diagonal ridge of the articular glenoid fossa, which fitted into the

intercondylar sulcus, to slide laterally, therefore forcing the rami of the mandible to displace
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laterally when the lower jaw was depressed, enlarging the width of the larynx in order to swallow
food of large size (Hendrickx and Buffetaut 2008).

In allosaurid quadrates, the marked constriction of the intercondylar sulcus, associated
with the enlargement of the mandibular condyles, the backward bent of the ventral part of the
quadrate, and the intercondylar notch, were interpreted by Bakker (1998) as joint-stabilization
zones. According to this author, the enlargement of the articulating surface would improve the
stability of the joint when the mouth was widely opened, while the posterior depression would
correspond to the area for attachment of one or several ligaments within the quadrate-mandibular
articulation ((Bakker 1998). An intercondylar notch has also been noticed in the abelisaurids
Carnotaurus sastrei (MACN-CH 894) and Majungasaurus crenatissimus (FMNH PR 2100), and
the spinosaurid Suchomimus tenerensis (MNN GAD 502), implying a similar mechanic of the

mandibular articulation than Allosaurus.

Figure 4
Pneumaticity in the Quadrate

Pneumatization of the quadrate bone has long been recognized for its phylogenetic value
(e.g., Gauthier 1986; Holtz 1998; Chiappe 2001; Rauhut 2003; Holtz et al. 2004; Smith et al.
2007; Benson 2010; Carrano et al. 2012; Turner et al. 2012; Novas et al. 2013; Choiniere et al.
2014). Pneumatopores within the quadrate are widespread among avetheropod clades (Gold et al.
2013; Figure 4). The presence of one or several pneumatopores has indeed been recorded in
carcharodontosaurids (e.g., Coria and Currie 2006; Eddy and Clarke 2011), neovenatorids
(Sereno et al. 2008), tyrannosauroids (e.g., Molnar 1991; Brochu 2003; Currie 2003; Xu et al.
2004; Brusatte et al. 2012; Gold et al. 2013), compsognathids (Currie and Chen 2001),
therizinosauroids (Clark et al. 1994; Zanno 2010), oviraptorids (e.g., Maryanska and Osmolska

1997; Lii 2003; Kundrat and Janacek 2007; Balanoff and Norell 2012), ornithomimoids (Witmer
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1997; Tahara and Larsson 2011), dromaeosaurids (Makovicky et al. 2005) and troodontids
(Barsbold et al. 1987; Currie and Zhao 1993; Varricchio 1997; Xu et al. 2002; Xu and Norell
2004). An incipient development of a pneumatic recess also exists in the basal allosauroid
Sinraptor dongi (Currie 2006), and quadrate pneumaticity therefore seems to be an avetheropod
synapomorphy (Figure 4). Among nonavian avetheropods, there is however no evidence of a
pneumatic quadrate in Alvarezsauroidea hitherto.

The pneumatic foramen is particularly large in some allosauroids such as Aerosteon
riocoloradensis (Sereno et al. 2008) and Acrocanthosaurus atokensis (Eddy and Clarke 2011),
and the therizinosaur Falcarius utahensis (Zanno 2010; Figure 5). It however corresponds to a
small rounded or oval aperture lodged in the posterior fossa of the quadrate body in most
avetheropods (Figure 5). Indeed, a posterior pneumatopore exists in the tyrannosauroid Dilong
paradoxus (Xu et al. 2004), the compsognathid Sinosauropteryx prima (Currie and Chen 2001,
figure 3f), the ornithomimids Garudimimus brevipes (the ‘paraquadrate foramen’ or
‘paraquadratic foramen’ of Kobayashi and Barsbold 2005), Sinornithomimus dongi (the
‘paraquadratic foramen’ of Kobayashi and Lii 2003) and Ornithomimus edmontonicus (Tahara
and Larsson 2011), the dromaeosaurid Buitreraptor gonzalezorum (Makovicky et al. 2005), and
the troodontids Mei long (Xu and Norell 2004), and Sinovenator changii (Xu et al. 2002). A
pneumatopore can also be located in the ventral corner of the pterygoid flange, as observed in the
carcharodontosaurids Acrocanthosaurus atokensis (Eddy and Clarke 2011), Mapusaurus roseae
(Coria and Currie 2006), Giganotosaurus carolinii (MUCPv-CH-1), and the tyrannosaurid
Albertosaurus sarcophagus (Currie 2003, figure 10B). A pneumatic opening is also present
anteroventrally, within a recess on the posteroventral part of the pterygoid flange (‘funnellike
external opening on the rostral surface of the quadrate, above the condyles’ of Gold et al., 2013,
p. 37) like in the therizinosauroid Falcarius utahensis (Zanno 2010) and the tyrannosaurids

Alioramus altai ((Brusatte et al. 2012; Gold et al. 2013), Daspletosaurus sp. (Currie 2003, figure
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28C) and Tyrannosaurus rex (Brochu 2003). This ventral pneumatopore has also been reported in
the basal tyrannosauroid Dilong paradoxus (Gold et al. 2013) but was not observed in the closely
related taxa Guanlong wucaii, Proceratosaurus lengi, and Xiongguanlong baimoensis (Gold et al.
2013), and its presence cannot be established in Eotyrannus lengi (contra Gold et al. 2013; pers.
obs.). More rarely, a pneumatic opening can be situated on the lateral surface of the quadrate
body, as in Aerosteon riocoloradensis (MCNA-PV 3137), and in the anterior part of the quadrate,
as in Mapusaurus roseae (Coria and Currie 2006), Troodon formosus (Currie and Zhao 1993),
Heyuannia huangi (Li 2005), and perhaps Tyrannosaurus rex (Molnar 1991).

Figure 5

Carcharodontosauridae (Coria and Currie 2006; Eddy and Clarke 2011) and
Tyrannosauridae (Molnar 1991; Brochu 2003) possess several pneumatic openings which
perforate different sides of the quadrate and sometimes intercommunicate (Brochu 2003). The
pneumatic foramina usually enter a large pneumatic chamber within the quadrate bone such as in
Tyrannosaurus rex (Molnar 1991; Brochu 2003), Alioramus altai (Gold et al. 2013),
Conchoraptor gracilis (Kundrat and Janacek 2007) or Ornithomimus edmontonicus (Tahara and
Larsson 2011). The neovenatorid Aerosteon riocoloradensis also possess a large posterior
pneumatopore leading to a pneumatic chamber, as well as a shallow pneumatic recess on the
lateral surface of the quadrate shaft (pers. obs.).

These pneumatopores and the pneumatic chamber associated with them are invaded by
the quadrate diverticulum of the mandibular arch pneumatic system which, together with the
periotic pneumatic system, forms the tympanic sinus of archosaurs (Tahara and Larsson 2011).
The mandibular arch pneumatic system includes the quadrate and/or the articular diverticulum
which both have their embryological origins as parts of the first pharyngeal (= mandibular) arch,
like the middle ear sac itself (Witmer 1997). As nonavian theropods, the quadrate diverticulum of

modern birds exhibits a large variety of morphologies, and can either pneumatize the quadrate by
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entering through a single medial or anteromedial foramen or not (Witmer 1990; Tahara and
Larsson 2011). In the basal theropods that do not have a pneumatic quadrate, both medial and
posterior fossae of the quadrate correspond to the osteological trace of the quadrate diverticulum.
In nonavian theropods with a pneumatic quadrate, the position of the quadrate diverticulum is
variable such as in ornithomimids (Tahara and Larsson 2011), carcharodontosaurids and
oviraptorids (pers. observ.). The quadrate diverticulum of nonavian theropods may also have
communicated with other diverticula such as the squamosal diverticulum as in Conchoraptor
gracilis (Kundrét and Janacek 2007), and the siphoneal diverticulum of the articular as in Dilong
paradoxus, Aerosteon riocoloradensis and perhaps other nonavian maniraptorans (Sereno et al.
2008; Tahara and Larsson 2011). In Tyrannosaurus rex, however, the siphoneal diverticulum does
not pass through the quadrate and the quadrate diverticulum only enters the ventral opening of the
pterygoid flange, and then passes with or without the siphoneal diverticulum along the medial
fossa of the pterygoid flange. Likewise, the quadrate diverticulum only pneumatizes two distinct
regions of the quadrate in Acrocanthosaurus atokensis and Mapusaurus roseae (Tahara and

Larsson 2011).

Figure 6
Quadrate Ontogeny

Skull ontogeny has been generally poorly studied in nonavian theropod, especially in their
early stage of development (Rauhut and Fechner 2005), but the ontogeny of the quadrate bone
has particularly received very little attention when compared to other cranial bones (see Carr
1999; Loewen 2010). Although the quadrate of embryonic and juvenile specimens has been
reported in many nonavian theropod clades such as basal Megalosauroidea (Rauhut et al. 2012),
Spinosauridae (Hendrickx and Mateus 2012), basal Avetheropoda (Hendrickx and Mateus 2012),

Tyrannosauridae (e.g. Bakker et al. 1988; Carr and Williamson 2010; Tsuihiji et al. 2011),
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Compsognathidae (Dal Sasso and Maganuco 2011), alvarezsaurid (Dufeau 2003), Oviraptoridae
(Norell et al. 1994, 2001; Weishampel et al. 2008) and Troodontidae (Varricchio et al. 2002), the
ontogenic variations of the nonavian theropod quadrate has only been investigated by Hendrickx
and Mateus (2012) hitherto. These authors reported two incomplete quadrates belonging to
embryos of Lourinhanosaurus autunesi (Figure 6) from the Upper Jurassic of Portugal (Mateus et
al. 1998; de Ricqles et al. 2001; Mateus 2005). Comparison of these two bones with the quadrates
of the closest relative of Lourinhanosaurus, Sinraptor dongi (Benson 2010; Benson et al. 2010)
allowed Hendrickx and Mateus (2012) to suggest that the absence of a quadrate foramen and the
poor delimitation of the two mandibular condyles and the intercondylar sulcus were most likely
ontogenetical features present in the allosauroid quadrate. Hendrickx and Mateus (2012) also
examined the ontogenic changes of the quadrate in spinosaurids from the Cenomanian of Eastern
Morocco. Based on five quadrates belonging to juvenile, subadult and adult specimens of
Spinosaurus sp., they were able to propose a list of ontogenetical steps that they divided into
juvenile, subadult and adult stages. The ontogenetical transformation occurring in the
Spinosaurus quadrate are the clear delimitation of the ento- and ectocondyle, the intercondylar
sulcus and the quadrate head, as well as the development of a ventral projection of the dorsal
quadratojugal contact and the excavation of both ventral and dorsal quadratojugal contacts,
allowing a firm contact between the quadrate and quadratojugal to be present in sub-adults and
adults specimens.

Well-preserved quadrates are present in a small and large specimens of the alvarezsaurid
Shuvuuia deserti (Chiappe et al. 1998; Dufeau 2003). Dufeau (2003), who interprets the small
skull (IGM 100-1001) and the larger one (IGM 100-977) as belonging to a juvenile and adult
specimens of Shuvuuia deserti, respectively, comprehensively described the quadrate bone but
did not investigate the ontogenetic variation occurring in the skull of Shuvuuia deserti. Personal

examination of the two specimens allowed to observe major differences in the quadrate
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morphology (Figure 3.3-3.6) that could be interpreted as ontogenetic variations. The quadrate
body of IGM 100-1001 is extremely ventro-dorsally elongated, with a prominent and narrow
quadrate ridge along the dorsal half of the quadrate bone. On the other hand, the quadrate body of
the larger specimen IGM 100-977 is shorter, with a relatively shallow quadrate ridge. The
mandibular articulation of IGM 100-1001 is lateromedially expanded and the lateral part of the
articulation is subtriangular in outline and strongly projects laterally. The mandibular articulation
of IGM 100-977 is particularly short, subrectangular in outline in posterior view, and lacks a
lateral projection (Figure 3.3, 3.5). This projection may however be broken and present as an
isolated piece of bone displaced on the ventrolateral surface of the pterygoid flange (pers. obs.).
In IGM 100-1001, the lateral process is ventro-dorsally long, subtriangular in lateral view, almost
subrectangular in posterior view, and reaches the quadrate head dorsally. The most lateral corner
projects anteriorly to contact the postorbital, and the postorbital contact of the quadrate extends
along the anterodorsal surface of the lateral process. The ventral most part of the lateral process
forms a small corner dorsal to the parabolic outline of the ventral part of the quadrate body. On
the contrary, the lateral process of IGM 100-977 only projects laterally and does not extend to the
quadrate head dorsally. The lateral margin of the lateral process is parabolic in outline, and
neither includes a small corner ventrally, nor an important projection anteriorly. The quadrate
foramen of IGM 100-1001, forms a large fenestra delimited by the quadrate, jugal and,
postorbital. If an articulation between the postorbital and the lateral corner of the lateral process
was present in IGM 100-977 as well, the quadrate foramen of this specimen would have been
much smaller, and delimited by the ventral half of the quadrate only. The quadrate head of the
small specimen (IGM 100-1001) is incipiently bistylic and oriented posteromedially to contact
the squamosal dorsally, and the braincase posteromedially (Figure 3.3). The quadrate head of

IGM 100-977 is strongly inclined laterally and seems to include a single condyle only, although
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Dufeau (2003) noted that the quadrate head was also divided by a very weak intercondylar sulcus
in the adult specimen.

Dufeau (2003) interpreted these differences in the two specimens of Shuvuuia deserti as
ontogenetic and taphonomic variations (Dufeau pers. comm.). According to Dufeau (2003), the
contact between the quadrate head and the junction of the squamosal and postorbital, which is
unique in IGM 100-1001 among nonavian theropods, is, for instance, interpreted as a taphonomic
condition where the quadrate head would be taphonomically displaced laterally. Nevertheless,
both left and right quadrate of IGM 100-1001 occupy the same position and share similar contact
with the postorbital and squamosal, and the skull suffered neither compressional nor shear
distortions (Dufeau 2003; pers. obs.). A taphonomic displacement of the quadrate of IGM 100-
1001 seems therefore unlikely, and the postorbital contact of the quadrate is an autapomorphy of
Shuvuuia deserti. Despite the fact that the right quadrate of the larger specimen IGM 100-977
may have been subject to important postmortem compression (as the rest of the skull which is
ventro-dorsally flattened), the numerous differences existing between IGM 100-1001 and IGM
100-977 suggests that these variations may be taphonomic, ontogenetic, but also perhaps
taxonomic. The ontogenetic variations occurring in the spinosaurid quadrates are subtle and only
concern the delimitation of the condyles and quadrate head, and the reinforcement of the quadrate
and quadratojugal suture, so that the general morphology of the quadrate bone does not change at
all. If the features differentiating IGM 100-1001 and IGM 100-977 are mostly ontogenetic, the
quadrate of Shuvuuia deserti would therefore undergo a major metamorphosis during its
development, including a dorsoventral shortening of the quadrate bone, rotation of the quadrate
head from a medial to a lateral orientation, posterior displacement of the lateral process, and
morphological transformation of the lateral process from a subtriangular to a parabolic process.

Although plausible, these ontogenetic transformations seem a bit extreme, and it is reasonable to
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suggest that IGM 100-977 and IGM 100-977 may belong to two taxa, perhaps two species of
Shuvuuia.

Quadrate pneumaticity appears early in ontogeny as it has been reported in the embryo of
Troodon formosus (Varricchio et al. 2002) and the juvenile Tarbosaurus baatar (Tsuihiji et al.
2011). Although absent in the embryonic specimen of Lourinhanosaurus autunesi, a quadrate
foramen exists in many juvenile specimens of theropods such as the hatchling Scipionyx
samniticus (Dal Sasso and Maganuco 2011) and the early posthatchling Sciurumimus
albersdoerferi (Rauhut et al. 2012). Although the quadrate and quadratojugal are weakly
articulated to each other in immature tetanurans (Hendrickx and Mateus 2012), a fusion between

the quadrate and pterygoid was already present in oviraptorid embryos (Norell et al. 2001).

CONCLUSIONS

A revised nomenclature of the quadrate bone, along with a corresponding set of
abbreviations, is here proposed and provides a standard set of terms for describing this cranial
bone in nonavian theropod dinosaurs. The quadrate can be divided into two regional categories,
the quadrate body and the pterygoid flange, and twelve anatomical sub-units, the quadrate shaft,
quadrate head, quadrate ridge, quadrate foramen, lateral process, quadratojugal contact,
squamosal contact, pterygoid contact, mandibular articulation, medial fossa, and posterior fossa.
Although being highly variable in shape, all of these quadrate entities, with perhaps the exception
of the posterior fossa, are easily recognisable inter-taxa and a description of their morphology
should be provided in the literature.

A summary of the current knowledge on the quadrate function, pneumaticity and
ontogeny in nonavian theropods allows some evidence about this bone to be highlighted. The

quadrate of large majority of nonavian theropods is akinetic and a streptostylic quadrate may
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have been present in some derived coelurosaurs such as the alvarezsaurid Shuvuuia deserti and
the oviraptorid Nemegtia huangi. A lateral movement of the rami while the mandible was
depressed was permitted in many theropods such as spinosaurids thanks to a helicoidal and
diagonally oriented intercondylar sulcus of the mandibular articulation. Likewise, the presence of
an intercondylar notch constricting the intercondylar sulcus in allosaurids was interpreted to be a
joint-stabilization zone that would improve the stability of the mandibular articulation when the
mouth was widely opened.

A pneumatic quadrate was present in members of most nonavian avetheropod clades such
as allosauroids, tyrannosaurids, compsognathids, therizinosauroids, ornithomimoids, oviraptorids,
troodontids and dromaeosaurids, in which pneumatopores typically open in the ventral part of the
pterygoid flange and in the medial and lateral fossae. Although the pneumatic recess invaded by
the quadrate diverticulum of the mandibular arch pneumatic system was linked to only one
pneumatopore in most avetheropods, the presence of several pneumatic openings perforating
different sides of the quadrate have been recorded in Neovenatoridae, Carcharodontosauridae and
Tyrannosauridae.

A poorly delimited mandibular condyles, intercondylar sulcus and quadrate head, and a
quadratojugal contact with a smooth surface have been interpreted as ontogenetical features in the
quadrate of embryonic and juvenile basal tetanurans. The development of a quadrate foramen and
a ventral projection of the dorsal quadratojugal contact seem also to happen during ontogeny in
allosauroids and spinosaurids, respectively. On the other hand, pneumaticity and a strong suture
between the quadrate and quadratojugal appear early in ontogeny, in the embryonic stage of
coelurosaurs. Finally, based on the quadrate morphology, the two specimens assigned to
Shuvuuia deserti, considered by some as juvenile and adult specimens, may belong to two

distinct taxa.
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FIGURE CAPTIONS AND TABLES

FIGURE 1. Anatomy of nonavian theropod quadrates. Right (1=5) quadrate of Tsaagan mangas
(IGM 100-1015; courtesy shared by Mick Ellison © AMNH) in (1) anterior, (2) lateral, (3)
posterior, (4) medial and (5) ventral views; left (6—10) and right (11) quadrates of (6) Baryonyx
walkeri (BMNH R9951), (7) Aerosteon riocoloradensis (MCNA-PV-3137; courtesy shared by
Martin Ezcurra), (8) an indeterminate Oviraptoridae (GIN A; Maryanska and Osmolska 1997,
figure 1), (9) Tyrannosaurus rex (BHI 3333, cast; Larson and Carpenter, 2008), (10) A/losaurus
‘jimmadseni’ (SMA 005/02), and (11) Majungasaurus crenatissimus (FMNH PR 2100, cast;
courtesy shared by Lawrence Witmer) in (6=9) posterior and (10—11) ventral views.
Abbreviations: dqje, dorsal quadratojugal contact; ece, ectocondyle; enc, entocondyle; icn,
intercondylar notch; ics, intercondylar sulcus; Ipq, lateral process of the quadrate; mar,
mandibular articulation; mfq, medial fossa of the quadrate; pfl, pterygoid flange (in green); pfq,
posterior fossa of the quadrate; ppne, posterior pneumatopore; qb, quadrate body (in blue); qf,
quadrate foramen (delimited by a broader line); qh, quadrate head; qj, quadratojugal; qjp,
quadratojugal process; qr, quadrate ridge; qrg, quadrate ridge groove; qs, quadrate shaft (in light
blue); sqc, squamosal contact; vqje, ventral quadratojugal contact; vpdq, ventral projection of

the dorsal quadratojugal contact; vsh, ventral shelf.

FIGURE 2. Avian and non-avian theropod terminology of the quadrate bone. Left quadrate of
Fregata minor (Great Frigatebird) in medial view annotated with (1) Baumel and Witmer (1993)
terminology, and (2) the here proposed terminology for the nonavian theropod quadrate (image

from Witmer 1990 and Baumel and Witmer (1993; modified).
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FIGURE 3. Skull comparison between (1) the bird Corythaeola cristata (Great Blue Turaco;
NH.34.26; courtesy of the Horniman Museum & Gardens), and (2) the alvarezsaurid Shuvuuia
deserti (IGM 100-1001; reversed) in lateral view. Comparison between the left quadrate of the
juvenile? specimen of Shuvuuia deserti (IGM 100-1001) in (3) posterior, and (4) lateral view, and
the right quadrate of the adult specimen of Shuvuuia deserti (IGM) in (5) posterior, and (6)
posterolateral views. Abbreviations: j, jugal; je, jugal contact; Ipq, lateral process; ote, otic
capitulum; pfl, pterygoid flange; po, postorbital; poec, postorbital contact; qf, quadrate foramen;

sq, squamosal; sqe, squamosal capitulum. Scale bars =2 cm (1-2), 1 cm (5-6), and 5 mm (3-4).

FIGURE 4. Morphology and position of pneumatic openings in the quadrate of nonavian
Theropoda. Pneumatic fossa (1) of the right quadrate of the metriacanthosaurid Sinraptor dongi
(IVPP 10600) in posterior view (courtesy of Philip Currie). Medial pneumatopore (2) of the right
quadrate of the carcharodontosaurid Acrocanthosaurus atokensis (NCSM 14345) in medial view.
Medial pneumatopore (3) of the left quadrate of the carcharodontosaurid Giganotosaurus
carolinii (MUCPv CH 1) in medial view. Posterior pneumatopore (4) of the left quadrate of the
neovenatorid Aerosteon riocoloradensis (MCNA PV 3137) in posterior view (courtesy of Martin
Ezcurra). Ventral pneumatopore (5) of the right quadrate of the tyrannosaurid Alioramus altai
(IGM 100-844) in ventral view (courtesy of Mick Ellison). Ventral pneumatopore (6) of the left
quadrate of the tyrannosaurid Tyrannosaurus rex (FMNH PR2081; cast) in ventral view. Medial
pneumatopore (7) on the right quadrate of the therizinosauroid Falcarius utahensis (UMNH VP
14559) in medial view (courtesy of Lindsay Zanno). Posterior pneumatopore (8) of the left
quadrate of the ornithomimid Garudimimus brevipes (IGM 100—13) in posterior view (courtesy
of Yoshitsugu Kobayashi). Posterior pneumatopore (9) of the right quadrate of the dromaeosaurid
Buitreraptor gonzalezorum (MPCA 245) in posterior view. Scale bars = 5 cm (1-3,6), 2 cm (4,8),

1 cm (5,7), 5 mm (9).
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FIGURE 5. Distribution of quadrate pneumaticity in Theropoda. Simplified cladogram of
theropod dinosaurs showing the phylogenetic distribution of a pneumatic quadrate denoted in red
(from Bhullar et al., 2012; Modified). Pneumaticity is present in the quadrate of Allosauroidea
(Acrocanthosaurus, Mapusaurus, Giganotosaurus), Tyrannosauroidea (Alioramus,
Albertosaurus, Tyrannosaurus), Compsognathidae (Sinosauropteryx), Ornithomimosauria
(Ornithomimus), Therizinosauria (Falcarius), Oviraptorosauria (Conchoraptor), Troodontidae
(Sinovenator), Dromaeosauridae (Buitreraptor) and many birds. There is no evidence of a
pneumatic quadrate in Alvarezsauroidea hitherto. When optimized onto this simplified tree, a

pneumatic quadrate is a synapomorphy of Avetheropoda.

FIGURE 6. Quadrate of Lourinhanosaurus antunesi embryo. Incomplete left (1—8) quadrate
(ML565-150) in (1) anterior, (2) lateral, (3) posterior, (4) medial, (5) ventral, (6) dorsal, (7)
posteromedial, and (8) ventromedial views (the quadrate in (7) and (8) was photographed before
preparation). Abbreviations: dqjc, dorsal quadratojugal contact; ecc, ectocondyle; enc,
entocondyle; mfq, medial fossa; pfl, pterygoid flange; pfq, posterior fossa; qjp, quadratojugal

process; qr, quadrate ridge; vqjc, ventral quadratojugal contact.
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1164 TABLE 1. Standardized terminology and abbreviation of the nonavian theropod quadrate and
1165 comparison with the terminology of the avian quadrate based on Baumel and Witmer (1993),

1166  Elzanowski et al. (2001) and Elzanowski and Stidham (2010).

Nonavian theropod quadrate (q) Avian theropod quadrate

Quadrate body gb Corpus quadrati

Quadrate shaft qs /

Quadrate ridge qr /

Quadrate ridge groove qrg /

Quadrate head gh Processus oticus/Pars otica/Caput
quadrati

Otic capitulum otc Capitulum oticum

Squamosal capitulum sqc Capitulum squamosum

Intercapitular sulcus icas Incisura/Vallecula intercapitularis

Quadrate foramen qf /

Mandibular articulation mar Pars/Processus mandibularis

Ectocondyle ecc Condylus (mandibularis) lateralis

Entocondyle enc Condylus (mandibularis) medialis

Mediocondyle mec Condylus caudalis

Intercondylar sulcus ics Vallecula intercondylaris

Intercondylar notch icn Depressio praccondylaris

Lateral process Ipq /

Quadratojugal contact qjc Cotyla quadratojugalis

Ventral quadratojugal contact vqje /

Dorsal quadratojugal contact dqgjc /

Quadratojugal process qip /

Ventral projection of the dorsal vpdq |/

quadratojugal contact

Squamosal contact sqc /

Posterior fossa pfq /

Quadrate diverticulum qdi /

Dorsal pneumatopore dpne | Foramen pneumaticum caudomediale

Medial pneumatopore mpne | Foramen pneumaticum basiorbitale

Posterior pneumatopore ppne | Foramen pneumaticum rostromediale

Ventral pneumatopore vpne | Foramen pneumaticum adventitium

Pterygoid flange pfl Processus orbitalis

Pterygoid contact ptc Condylus pterygoideus/Facies
articularis pterygoidea

Medial fossa mfq Fossa basiorbitalis

Ventral shelf vsh /
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Figure 1

Anatomy of nonavian theropod quadrates

Right (1-5) quadrate of Tsaagan mangas (IGM 100-1015; courtesy shared by Mick Ellison ©
AMNH) in (1) anterior, (2) lateral, (3) posterior, (4) medial and (5) ventral views; left (6—10)
and right (11) quadrates of (6) Baryonyx walkeri (BMNH R9951), (7) Aerosteon
riocoloradensis (MCNA-PV-3137; courtesy shared by Martin Ezcurra), (8) an indeterminate
Oviraptoridae (GIN A; Maryanska and Osmélska 1997 :fig. 1), (9) Tyrannosaurus rex (BHI
3333, cast; Larson and Carpenter, 2008), (10) Allosaurus ‘jimmadseni’ (SMA 005/02), and
(11) Majungasaurus crenatissimus (FMNH PR 2100, cast; courtesy shared by Lawrence
Witmer) in (6—9) posterior and (10-11) ventral views. Abbreviations: dgjc, dorsal
guadratojugal contact; ecc, ectocondyle; enc, entocondyle; icn, intercondylar notch; ics,
intercondylar sulcus; Ipq, lateral process of the quadrate; mar, mandibular articulation; mfq,
medial fossa of the quadrate; pfl, pterygoid flange (in green); pfqg, posterior fossa of the
guadrate; ppne, posterior pneumatopore; gb, quadrate body (in blue); qf, quadrate foramen
(delimited by a broader line); gh, quadrate head; qj, quadratojugal; qjp, quadratojugal
process; qr, quadrate ridge; qrg, quadrate ridge groove; gs, quadrate shaft (in light blue);
sqc, squamosal contact; vgjc, ventral quadratojugal contact; vpdq, ventral projection of the

dorsal quadratojugal contact; vsh, ventral shelf.
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This figure could be improved markedly by increasing content and changing organization. What is useful for the reader is an overview of the many different morphologies of the quadrate in non-avian and avian theropod taxa. A compound figure or plate consisting of images a representative quadrate from each of the major theropod families in a series of views would therefore best communicate the variation the authors are discussing. I suggest that these images be stacked vertically, from basal to derived. For example, the first column of the plate could be a series of images of the posterior view of the quadrates of representatives of basal theropods (e.g., ceratosaurs), allosauroids, megalosauroids, tyrannosauroids, ornithomimosaurs, therizinosauroids, oviraptorosaurs, dromaeosaurids, and avialans.
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Figure 2

Avian and non-avian theropod terminology of the quadrate bone

Left quadrate of Fregata minor (Great Frigatebird) in medial view annotated with (1) Baumel
and Witmer (1993) terminology, and (2) the here proposed terminology for the nonavian

theropod quadrate (image from Witmer 1990 and Baumel and Witmer (1993) ; modified).
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Figure 3

Skull comparison between Corythaeola and Shuvuuia

Skull comparison between (1) the bird Corythaeola cristata (Great Blue Turaco; NH.34.26;
courtesy of the Horniman Museum & Gardens), and (2) the alvarezsaurid Shuvuuia deserti
(IGM 100-1001; reversed) in lateral view. Comparison between the left quadrate of the
juvenile? specimen of Shuvuuia deserti (IGM 100-1001) in (3) posterior, and (4) lateral view,
and the right quadrate of the adult specimen of Shuvuuia deserti (IGM) in (5) posterior, and
(6) posterolateral views. Abbreviations: j, jugal; jc, jugal contact; Ipq, lateral process; otc, otic
capitulum; pfl, pterygoid flange; po, postorbital; poc, postorbital contact; qf, quadrate
foramen; sqg, squamosal; sqc, squamosal capitulum. Scale bars =2 cm (1-2), 1 cm (5-6),

and 5 mm (3-4).
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Figure 4

Morphology and position of pneumatic openings in the quadrate of nonavian Theropoda

Pneumatic fossa (1) of the right quadrate of the metriacanthosaurid Sinraptor dongi (IVPP
10600) in posterior view (courtesy of Philip Currie). Medial pneumatopore (2) of the right
guadrate of the carcharodontosaurid Acrocanthosaurus atokensis (NCSM 14345) in medial
view. Medial pneumatopore (3) of the left quadrate of the carcharodontosaurid
Giganotosaurus carolinii (MUCPv CH 1) in medial view. Posterior pneumatopore (4) of the
left quadrate of the neovenatorid Aerosteon riocoloradensis (MCNA PV 3137) in posterior
view (courtesy of Martin Ezcurra). Ventral pneumatopore (5) of the right quadrate of the
tyrannosaurid Alioramus altai (IGM 100—-844) in ventral view (courtesy of Mick Ellison).
Ventral pneumatopore (6) of the left quadrate of the tyrannosaurid Tyrannosaurus rex (FMNH
PR2081; cast) in ventral view. Medial pneumatopore (7) on the right quadrate of the
therizinosauroid Falcarius utahensis (UMNH VP 14559) in medial view (courtesy of Lindsay
Zanno). Posterior pneumatopore (8) of the left quadrate of the ornithomimid Garudimimus
brevipes (IGM 100-13) in posterior view (courtesy of Yoshitsugu Kobayashi). Posterior
pneumatopore (9) of the right quadrate of the dromaeosaurid Buitreraptor gonzalezorum

(MPCA 245) in posterior view. Scale bars =5 cm (1-3,6), 2 cm (4,8), 1 cm (5,7), 5 mm (9).
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Highlight
These pneumatic openings must be labeled.

jonahchoiniere
Highlight
The images presented in this figure are nearly impossible to place on the generalized morphology of the quadrate because they are so tightly cropped. There are three means of improving this: 1. Present a schematic diagram of a quadrate, showing the major positions of all of the pneumatic openings across all taxa
2. Also present pictures of these openings that are less tightly cropped (i.e., include positional references such as the quadrate head, etc)
3. Diagram these differences in pneumatic openings with reference to phylogeny, for example by showing the schematic representation of the openings for each major clade of theropods arranged in phylogenetic order from basal to derived.
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Figure 5

Distribution of quadrate pneumaticity in Theropoda

Simplified cladogram of theropod dinosaurs showing the phylogenetic distribution of a
pneumatic quadrate denoted in red (from Bhullar et al., 2012; Modified). Pneumaticity is
present in the quadrate of Allosauroidea (Acrocanthosaurus, Mapusaurus, Giganotosaurus),
Tyrannosauroidea (Alioramus, Albertosaurus, Tyrannosaurus), Compsognathidae
(Sinosauropteryx), Ornithomimosauria (Ornithomimus), Therizinosauria (Falcarius),
Oviraptorosauria (Conchoraptor), Troodontidae (Sinovenator), Dromaeosauridae
(Buitreraptor) and many birds. There is no evidence of a pneumatic quadrate in
Alvarezsauroidea hitherto. When optimized onto this simplified tree, a pneumatic quadrate is

a synapomorphy of Avetheropoda.
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Highlight
Why do the taxon names and silhouettes change color? It's very confusing, especially because you're using a red color to mark morphology and variations of red are used in the taxon names. I suggest removing color from the taxon names and silhouettes to clarify the point you are trying to make.

jonahchoiniere
Highlight
This optimization is simplified, and a much better investigation of pneumatic openings of theropod groups could be conducted, e.g., by using the analysis of Choiniere et al., 2014 to map pneumatic characters of the quadrate (indeed, several characters in that data matrix do deal with quadrate pneumaticity). By oversimplifying the presence of quadrate pneumaticity to a summary of its presence in a given clade, the authors are not testing the possibility that this feature arose numerous times independently in respective theropod groups. For example, the quadrate of Guanlong, a basal tyrannosauroid, is not apparently pneumatized (CT scans are pending), but those of derived tyrannosauroids are. This would indicate that pneumaticity is therefore a secondarily derived condition in that group.
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Figure 6

Quadrate of Lourinhanosaurus antunesi embryo

Incomplete left (1-8) quadrate (ML565-150) in (1) anterior, (2) lateral, (3) posterior, (4)
medial, (5) ventral, (6) dorsal, (7) posteromedial, and (8) ventromedial views (the quadrate in
(7) and (8) was photographed before preparation). Abbreviations: dgjc, dorsal quadratojugal
contact; ecc, ectocondyle; enc, entocondyle; mfqg, medial fossa; pfl, pterygoid flange; pfq,
posterior fossa; gjp, quadratojugal process; gr, quadrate ridge; vgjc, ventral quadratojugal

contact.
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