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ABSTRACT
Background. Colorectal cancer (CRC) is one of the most common malignancies.An
early diagnosis and an accurate prognosis are major focuses of CRC research. Tumor
microenvironment cells and the extent of infiltrating immune and stromal cells
contribute significantly to the tumor prognosis.
Methods. Immune and stromal scores were calculated based on the ESTIMATE
algorithm using the sample expression profile of the The Cancer GenomeAtlas (TCGA)
database. GSE102479 was used as the validation database. Differentially expressed genes
whose expression was significantly associated with the prognosis of CRC patients were
identified based on the immune matrix score. Survival analysis was conducted on the
union of the differentially expressed genes. A protein–protein interaction (PPI) network
was constructed using the STRING database to identify the closely connected modules.
To conduct functional enrichment analysis of the relevant genes, GO and KEGG
pathway analyses were performed with Cluster Profiler. Pivot analysis of the ncRNAs
and TFs was performed by using the RAID2.0 database and TRRUST v2 database. TF-
mRNA regulatory relationships were analyzed in the TRRUST V2 database. Hubgene
targeting relationships were screened in the TargetScan, miRTarBase and miRDB
databases. The SNV data of the hub genes were analyzed by using the R maftools
package. A ROC curve was drawn based on the TCGA database. The proportion of
immune cells was estimated using CIBERSORT and the LM22 feature matrix.
Results. The results showed that the matrix score was significantly correlated with
colorectal cancer stage T. A total of 789 differentially expressed genes and 121 survival-
related prognostic genes were identified. The PPI network showed that 22 core genes
were related to the CRC prognosis. Furthermore, four ncRNAs that regulated the core
prognosis genes, 11 TFs with regulatory effects on the core prognosis genes, and two
drugs, quercetin and pseudoephedrine, that have regulatory effects on colorectal cancer
were also identified.
Conclusions. We obtained a list of tumor microenvironment-related genes for CRC
patients. These genes could be useful for determining the prognosis of CRC patients.
To confirm the function of these genes, additional experiments are necessary.

Subjects Bioinformatics, Gastroenterology and Hepatology, Oncology, Medical Genetics
Keywords Prognosis, Tumor micro-environment, Immune scores, Colorectal cancer

How to cite this article Zhu Y, Zhou Y, Jiang HG, Chen ZH, Lu BH. 2021. Analysis of core genes for colorectal cancer prognosis based on
immune and stromal scores. PeerJ 9:e12452 http://doi.org/10.7717/peerj.12452

https://peerj.com
mailto:zhuanwen456@163.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.12452
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.12452


INTRODUCTION
Colorectal cancer (CRC) is a common malignant tumor (Long, Lundsmith & Hamilton,
2017). Despite advances in understanding the molecular mechanisms of CRC, it still
has a high mortality rate. Guided treatment based on outcome prediction is an effective
method to reduce the mortality of CRC (Yu et al., 2017). In recent years, studies on the
prognostication of CRC have become increasingly important, and a large number of
potential outcome predictors have been identified (Sanz-Garcia et al., 2017; Rena et al.,
2002). The pathogenesis of CRC is comprehensive. Tumor cell intrinsic genes, especially
master transcription factors, dictate the initiation, progression, and evolution of CRC
(Wang et al., 2017; Suvà et al., 2014). The tumor microenvironment has also been reported
to critically influence the expression of genes in tumor tissues and the prognosis (Curry et
al., 2014; Cooper et al., 2012).

The tumor microenvironment is the cellular environment of tumor cells, consisting
of extracellular matrix, soluble molecules and tumor stromal cells. In the tumor
microenvironment, immune cells and stromal cells are the two main types of nontumor
components and have been proposed to be valuable for the diagnosis and prognosis
evaluation of tumors (Fukumura et al., 2010). In 2011, scientists began to examine various
stages (TNMI-IV) of CRC for immunity to authenticate grading and staging systems, and
there was considerable research on immune scoring stages and TNM staging. The results
showed that an immune scoring system could predict the outcomes ofCRCmore accurately.
It has obvious advantages for predicting survival in patients with CRC (Mlecnik et al., 2011;
Fridman et al., 2012; Galon, 2006). According to the study conducted by Yoshihara et al.
(2013), immune and stromal scores could be used to predict the infiltration of nontumor
cells by analyzing specific gene expression data from The Cancer Genome Atlas (TCGA)
database of immune and stromal cells.

However, no research has been conducted on predicting the prognosis-related genes
of CRC by using the tumor microenvironment score. For the first time, in this current
work, by taking advantage of both the TCGA database of CRC cohorts and the ESTIMATE
algorithm-derived immune scores, we extracted a list of microenvironment-associated
genes that predict the outcomes of CRC patients.

MATERIALS & METHODS
Materials
(1) Gene expression profile data and the clinical information of 362 CRC patients from
TCGA were obtained from the NCI Genomic Data Commons (https://portal.gdc.cancer.
gov) (Heath et al., 2021), and samples with missing survival information or a follow-up of
fewer than 30 days were excluded (Table 1).

(2) Gene expression profile data and clinical information from the GSE102479 dataset
(152 CRC patients) were obtained from the Gene Expression Omnibus (GEO) database,
and samples with missing survival information or a follow-up of fewer than 30 days were
removed from the subsequent verification (Table 2).
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Table 1 Clinical Information of patients with colorectal cancer from TCGA.

Parameter subtype patients

Age >66 175
≤66 187

Gender Female 160
Male 202

Stage I 55
II 130
III 110
IV 50
Unknow 17

OS time(days) >700 181
≤700 181

Notes.
Abbreviations: OS, overall survival; TCGA, The Cancer Genome Atlas.

Table 2 Clinical Information of patients with colorectal cancer fromGEO.

Parameter Subtype Patients

Age >70.1 75
≤70.1 76
NA 1

Gender Female 68
Male 84

Stage II 80
III 72

OS time (months) >51.2385 76
≤51.2385 76

Notes.
Abbreviations: OS, overall survival; GEO, Gene expression omnibus.

Methods
Calculation of the immune matrix score and identification of differentially
expressed genes (DEGs)
The ESTIMATE algorithm was applied to calculate the immune score and stromal score
of the sample expression profile of the TCGA CRC patients. Maxstat software was used to
find the best cut-off of the immune score and matrix score. Samples were classified into
two groups with high and low scores based on the score of the best cut-off to analyze and
calculate the DEGs. Limma was used to analyze the gene expression data after processing,
and Log(Fold Change) > 0.2 and P value < 0.05 were taken as the standard to define the
DEGs.

Survival analysis
Survival analysis was conducted on the union of DEGs, and a Kaplan–Meier diagram
was drawn to illustrate the relationship between the overall survival of patients and the
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expression level of the DEG genes. By using the log-rank test, the DEGs with p< 0.05 were
defined as survival-related prognostic genes.

PPI network
Survival-related prognostic genes were placed in the String database to retrieve the PPI
network, identify the closely connected modules in the network, and define the closely
connected module genes as the core prognostic genes.

Enrichment analysis
Cluster Profiler was used to conduct functional enrichment analysis on relevant genes, and
the Gene Ontology (GO) terms of significant enrichment were further identified according
to the biological process (BP) functional enrichment analysis, while Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis was performed to identify the
biological processes with significant enrichment. Enrichment analysis of KEGG pathways
in GSEA was performed using the R package enrichplots for immune andmatrix groupings
(P value cut-off = 0.05).

Pivot analysis
The pivot node refers to (1) having at least two interactions with the module gene; (2) the
significance analysis of the interaction between the node and each module should be less
than or equal to 0.05, and the statistical method is hypergeometric.

Pivot analysis method of the ncRNA: The ncRNA-mRNA interaction relationship
included in theRAID2.0 database is the backgroundof the interaction. All of the interactions
between ncRNAs and module genes were counted. Then, the interactions between each
ncRNA and the in-module genes were counted.

Pivot analysis method of transcription factors (TFs): according to the interaction
background of the human TF-mRNA regulation in the TRRUST v2 database, all TF
interactions with the module genes were counted, then each TF interaction with the in-
module genes and out-module genes were counted, and the pivot was screened according
to the significance of the p value of the hypergeometric test.

Analysis of the hub genes
Target gene-TF regulatory network. Human TF-mRNA regulatory relationships were
downloaded from the TRRUST V2 database to screen the 22 transcription factors that
interacted with the hub genes.

Target gene-miRNA regulatory network. Human miRNA-mRNA targeting relationships
were downloaded from the TargetScan (http://www.targetscan.org/vert_72/), miRTarBase
database (https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php)
and miRDB database (http://mirdb.org/). Based on the human miRNA-mRNA targeting
relationships in the TargetScan, miRTarBase and miRDB databases, 22 hub gene targeting
relationships were screened.

Mutation analysis of the hub genes. The R maftools package was used to analyze the single
nucleotide variation (SNV) data of the hub gene samples obtained from TCGA.
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The receiver operating characteristic (ROC) curve based on the hub genes: Based on the
TCGA dataset, ROC curves were drawn for hub genes with a predict.time value of 1095.

Immune infiltration analysis of the hub genes. The proportion of immune cells in the
colorectal cancer samples was estimated using the CIBERSORT and LM22 feature matrices.
The Pearson correlation coefficient of the hub gene and the proportion of infiltration of
the immune cells were calculated using the Psych and ar packages.

RESULTS
The matrix score was significantly correlated with stage T colorectal
cancer
CRC expression profile data were downloaded from the TCGA database. Clinical
information (OS>1 month) and immune and stromal scores calculated by the ESTIMATE
algorithm were integrated. In addition, 362 CRC samples were finally retained for
subsequent analysis. The distribution of the immune score and stromal score is shown in
Fig. 1A. To determine the potential correlation between the overall survival rate and the
immune and stromal scores, Maxstat software was used to find the optimal cut-offs for
the immune and stromal scores. Cancer samples were divided into high and low scores
according to the score of the optimal cut-off (stromal score = −207.8886/immune score
= −708.0627), and the corresponding clinical information was used for survival analysis.
In the survival curve of the immune score and matrix score, we found that the immune
score and matrix score were significantly correlated with the survival time of the patients
(p= 0.0035/ p= 0.0034, Figs. 1B–1C). At the same time, the results showed that the stromal
score had no statistical significance with all stages, but it was significantly correlated with
T staging in the correlation analysis (p= 0.28/ p= 0.029, Figs. 1D–1E). There was no
statistical significance in the correlation between the immune score and staging. However,
there was a certain difference in the scores for each stage (p= 0.34/ p= 0.93, Figs. 1F–1G).

Comparison of colorectal cancer gene expression with immune score
and stromal score
To reveal the correlations between gene expression and the immune and matrix scores,
we evaluated the expression profile data of CRC patients in the TCGA database. A total
of 228 DEGs were identified according to the matrix score (100 cases with a high score
and 262 cases with a low score), among which 163 genes were upregulated and 65 genes
were downregulated. The results showed that some of the DEGs were significantly different
between the two groups (Fig. 2A). A total of 579 DEGs were identified according to the
immune score groups (38 cases with high scores and 324 cases with low scores), among
which 301 genes were upregulated and 278 genes were downregulated. These 789 DEGs
were used as key genes for subsequent analysis (Fig. 2B), and their details are listed in
Table S1. To clarify the potential function of the 789 DEGs, GO and KEGG enrichment
analyses were performed on the DEGs. The results are shown in Figs. 3A and 3B (the
top 8 were selected for display). GO analyses revealed that these DEGs were mostly
involved in tissue-specific immune responses, positive regulation of adaptive immune
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Figure 1 The score distribution and the Kaplan–Meier survival curves and the correlation of immune
score and stromal score and the stage of CRC. (A) The distribution of immune score and stromal score.
(B) Kaplan–Meier survival curve based on stromal score. (C) Kaplan–Meier survival curve based on im-
mune score. (D) The correlation of stromals core and the stage of CRC. (E) The correlation of stromal
score and the stage T of CRC. (F) The correlation of immune score and the stage of CRC. (G) The correla-
tion of immune score and the stage T of CRC.

Full-size DOI: 10.7717/peerj.12452/fig-1

responses and so on. In addition, according to the KEGG pathway analyses, the DEGs were
involved in the age-race signaling pathway in diabetic complications, cytokine-cytokine
receptor interaction, IL17 signaling pathway and so on. The results of the enrichment
analysis of KEGG pathways in GSEA showed that the genes were mostly enriched in the
pathways of asthma, graft-versus-host disease, malaria, rheumatoid arthritis, and viral
protein interaction with cytokines and cytokine receptors based on the ImmuneScore
(Fig. 4A). In addition, the results showed that the genes were mostly enriched in the ECM-
receptor interaction, hypertrophic cardiomyopathy, protein digestion and absorption,
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Figure 2 The heat map and venn diagram of ifferentially expressed genes. (A) Heat map of differential
gene expression in gene score. (B) Venn diagram. A total of 579 differentially expressed genes were identi-
fied according to the immune score groups (38 cases with high score and 324 cases with low score), among
which 301 genes were up-regulated and 278 genes were down-regulated.

Full-size DOI: 10.7717/peerj.12452/fig-2

Staphylococcus aureus infection, and systemic lupus erythematosus pathways based on the
Stromalscore (Fig. 4B).

Survival analysis of DEGs
To screen out the genes associated with the prognosis of CRC, we divided the 789 DEGs
into high and low expression groups according to their median expression and performed
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Figure 3 The KEGG and GO analysis of differentially expressed genes. (A) KEGG analysis of the 789
differentially expressed genes (DEGs). (B) GO Biological Process of the 789 differentially expressed genes
(DEGs).

Full-size DOI: 10.7717/peerj.12452/fig-3

survival analysis. A total of 121 survival-related prognostic genes were extracted (p< 0.05).
The survival curves of some of the prognostic genes are shown in Fig. 5A.

Construction of PPI networks between genes
To better understand the interactions between the identified prognostic genes, we used the
STRING database to obtain a PPI network consisting of 35 nodes and 36 edges (Fig. 6).
We identified tightly linked modules (green parts) in the network and defined the tightly
coupled module genes as the core prognostic genes (N = 22). GO analysis and KEGG
enrichment analysis were performed on 22 core prognostic genes. The results of the
enrichment analysis are shown in Figs. 7A–7B (the top 10 genes were selected for display).

Identification of the core prognostic genes
The 22 core prognostic genes obtained were validated in the GEO dataset, and all 22 genes
were expressed normally. Survival analysis of the 22 core prognostic genes was performed

Zhu et al. (2021), PeerJ, DOI 10.7717/peerj.12452 8/25

https://peerj.com
https://doi.org/10.7717/peerj.12452/fig-3
http://dx.doi.org/10.7717/peerj.12452


A

B

Figure 4 The results of the enrichment analysis of KEGG pathway in GSEA. (A) Enrichment analysis
based on immunescore. (B) Enrichment analysis based on stromalscore.

Full-size DOI: 10.7717/peerj.12452/fig-4

in this dataset and identified only one gene consistent with the TCGA results (P < 0.05).
The results of the gene survival analysis are shown in Fig. 5B.

Regulation of the core prognostic genes by ncRNA/TF
Based on the 51913 ncRNA-mRNA interaction relationship in the RAID2.0 database, we
searched for the pivot node (ncRNA) of the regulatory function module. When the p
value < 0.05, we obtained four ncRNAs that regulated the core prognosis gene (Table 3),
including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) (associated
with tumor cell proliferation and metastasis), colorectal neoplasia differentially expressed
(CRNDE) (promotes colorectal cancer cell proliferation), FOXF1 adjacent noncoding
developmental regulatory RNA (FENDRR) and taurine upregulated gene 1 (TUG1)
(regulation of resistance to colorectal cancer methotrexate).
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Figure 5 The Kaplan–Meier survival curve of the PRIM1 gene. (A) Kaplan–Meier survival curve of the
PRIM1 gene (TCGA database). A total of 121 survival-related prognostic genes were extracted (p< 0.05).
(B) Kaplan–Meier survival curve of the PRIM1 gene (GEO database).

Full-size DOI: 10.7717/peerj.12452/fig-5
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Figure 6 PPI network. The PPI network consisting of 35 nodes and 36 edges. A total of 22 core genes
that associated with CRC prognosis were defined.

Full-size DOI: 10.7717/peerj.12452/fig-6
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Figure 7 The KEGG and GO analysis of 22 core prognostic genes. (A) KEGG analysis of the 22 core
prognostic genes. (B) GO Biological Process of the 22 core prognostic genes.
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Table 3 Pivot (ncRNA).

ncRNA Connection P value

MALAT1 7 0.000346134
CANDE 6 0.000878654
FENDRR 8 0.000451542
TUG1 7 0.000286648

Notes.
Abbreviations: MALAT1, Metastasis-associated lung adenocarcinoma transcript 1; CRNDE, colorectal neoplasia differen-
tially Expressed; FENDRR, FOXF1 adjacent non-coding developmental regulatory RNA; TUG1, taurine upregulated gene1.

Table 4 Pivot (TF).

TF Connection P value

ATF1 3 0.000124081
CEBPB 4 0.000733944
E2F3 2 0.00026685
ETV4 2 0.001742111
PAX3 3 6.68E−07
SOX10 3 1.63E−05
SP11 2 0.035007145
DSF1 2 0.40192337
USF2 2 0.18026951
YBX1 2 0.004397422
YY1 3 0.021654705

Notes.
Abbreviations: ATF1, activating transcription activator 1; CEBPB, CCAAT/enhancer binding proteins C/EBP beta; E2F3,
E2F transcription factor 3; ETV4, ETS translocation variant 4; YBX1, Y-box protein 1; PAX3, Paired box 3; SOX10, SRY-
related HMG-box 10; SP11, Synaptophysin 11; DSF1, Double-skin façade 1; USF2, Upstream stimulus factor 2; YY1, Yin
Yang 1.

Based on the interaction relationships of 9396 human TF-mRNAs contained in the
TRRUST v2 database, the pivot node (TF) of the regulatory function module was searched.
When p value < 0.05, 11 TFs with regulatory effects on the core prognostic genes were
obtained (Table 4), including a number of cancer-related transcription factors, such as
activating transcription activator 1 (ATF1), CCAAT/enhancer binding proteins C/EBP
beta (CEBPB), E2F transcription Factor 3 (E2F3), ETS translocation variant 4 (ETV4), and
Y-box protein 1 (YBX1). The visualization of the core prognostic genes and ncRNA/TF
interactions is shown in Fig. 8A.

Target gene-TF regulatory network of the 22 hub genes
Human TF-mRNA regulatory relationships were downloaded from the TRRUST V2
database to screen for transcription factors interacting with the 22 hub genes, including
MYB, FOXD3, NFKB1, etc. (Fig. 8B).

Target gene-miRNA regulatory network of the 22 hub genes
A total of 21,363,630 human miRNA-mRNA targeting relationships were downloaded
from TargetScan. A total of 502,652 human miRNA-mRNA targeting relationships were
downloaded from the miRTarBase database. A total of 1,102,737 human miRNA-mRNA
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targeting relationships were downloaded from the miRDB database. Based on the human
miRNA-mRNA targeting relationships in the TargetScan, miRTarBase and miRDB
databases, 22 hub gene targeting relationships were screened, and 81 pairs of targeting
relationships existed in all three databases (Fig. 8C).
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Mutation analysis of the hub genes
As shown in Fig. 9, the 22 hub gene samples had mutations only in 90 samples. Among
these, ERBB2 had the highest mutation rate, most of which were missense mutations, and
most of the samples had mutations of C > T.

The ROC curve based on the hub genes
The area under the curve (AUC) of the 22 hub genes ranged from 0.344 to 0.669. Twelve
hub genes, ENO2, GRP, HIST1H2AC, HIST1H2AK, HIST1H4H, HIST4H4, HOXB4,
HSPB1, MIFT, POMC, QRFP, and TNFAIP6, had weak value in predicting the survival of
colorectal cancer with >0.5 AUCs (Fig. 10).

Immune infiltration analysis of the hub genes
As shown in Fig. 11, most of the hub genes were significantly correlated with plasma cells,
M1 macrophages and other immune cells.

Exploration of drugs for the treatment of colorectal cancer
For the core prognostic genes and related regulatory factors, we used the hypergeometric
distribution test to screen related drugs in the context of drug-gene interactions in
DrugBank. Finally, two markers of CRC regulation were obtained (Table 5). Among
them, quercetin can significantly inhibit the action of cancer-promoting agents, inhibit
the growth of isolated malignant cells, and inhibit the DNA, RNA and protein synthesis of
Ehrlich ascites cancer cells.

DISCUSSION
In the current work, we identified tumor microenvironment-related genes that contribute
to CRC overall survival in the TCGA database and found that both the immune score
and matrix score were significantly correlated with the patient survival time. Importantly,
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we were able to validate 789 DEGs. In addition, 121 prognostic genes were found to be
associated with survival. Twenty-two genes were identified as core prognostic genes. Four
ncRNAs that regulate the core prognostic genes, 11 TFs that had a regulatory effect on the
core prognostic genes, and 2 drugs that have regulatory effects on CRC were also identified.

Both the immune score and the matrix score can predict the purity of the tumor, as
well as the number of stromal and immune cells. The more stromal and immune cells
there are, the lower the purity of the tumor. In a study of immune scoring by Galon et
al., patients with early TNM (stage I and II) were followed up for survival and recurrence
of colon cancer, and it was found that patients with high immune scores had a longer
survival period. Ninety-five percent of patients with a high score had no tumor recurrence
within 18 years after surgery. Fifty percent of patients with low scores had a recurrence
within 2 years after surgery (Galon et al., 2012). In 2018, Pages et al. reported that immune
scores could provide a reliable assessment of the risk of recurrence of colon cancer, which
supports the use of immune scores as part of the new TNM immunotyping (Pagès et al.,
2018). Therefore, as a perfect supplement to the TNM staging system, the immune score
will be a superior staging system for predicting the survival of tumor patients.

Searching for more metastatic genes related to CRC and studying their biological
characteristics and the specific mechanism of metastasis can help control tumor metastasis,
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Table 5 Pivot (drug).

Drug Connection P value

Pseudoephedrine 2 1.79E−05
Quercetin 2 9.57E−05

prevent recurrence and improve the prognosis of patients. In terms of multigene early
diagnosis and a prognostic model of CRC, Marshall et al. obtained an early diagnostic
model of CRC based on the gene expression profile of the peripheral blood of CRC patients
(Marshall et al., 2010). Sveen et al. (2012) proposed a prognostic model by studying gene
expression in tumor tissues, which has potential prognostic value in stage IV and V CRC
patients. In addition, a large number of genes, including P53 (Lüchtenborg et al., 2004),
K-ras (Andreyev et al., 1990), B-raf (De Roock et al., 2010), and N-ras (Parsons et al., 2012),
have been shown to be associated with the prognosis of CRC.

In the present study, 22 genes were identified as the core prognostic genes of CRC.
Among them, MAPK8 (Slattery, Lundgreen & Wolff, 2012), HSPB1 (Nadin et al., 2012),
IL1B (Sanabria-Salas et al., 2017), PRIM1 (Cloutier et al., 1997) and so on were shown to
be associated with the susceptibility to or prognosis of CRC. However, only the PRIM1
gene was validated in the GEO database.
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PRIM1 (primase) plays a key role in the process of DNA synthesis initiation by
synthesizing RNA primers for Okazaki fragments (Cloutier et al., 1997). Mutations in
PRIM1 cause extensive apoptosis of retinal neurons through activation of the DNA damage
checkpoint and tumor suppressor p53 (Yamaguchi et al., 2008). PRIM1 plays an important
role in the strict control of the DNA replication fork during tumor cell proliferation and
was shown to be involved in estrogen-induced breast cancer formation through activation
of the G2/M cell cycle checkpoint (Lee et al., 2018). In addition, PRIM1 (Job et al., 2018)
has been reported to be associated with CRC progression, and this gene is likely to be a
prognostic marker of the CRC immune microenvironment. However, the mechanism by
which PRIM1 affects CRC is not clear.

A total of four core ncRNAs were obtained that could regulate the core prognostic
genes in the present study. MALAT1 is a long noncoding RNA with important biological
functions and is located on chromosome llql3.1 (Zhang et al., 2017). MALT1 expression
is upregulated in CRC tumor cells. A-kinase anchoring protein 9 (AKAP9) is a target
gene for the cancer-promoting effect of MALAT1. AKAP9 is related to the polarization of
cell spinning chains, and the overexpression of MALAT1 in normal intestinal epithelial
cells causes them to divide and differentiate and promotes tumorigenesis (Xu et al., 2011).
In vitro experiments have demonstrated that its knockout can inhibit the migration of
p-catenin from the cytoplasm to the nucleus, resulting in decreased expression of c-MYC
and MMP-7, whereas overexpression of MALAT1 can activate the Wnt/p-catenin pathway
and promote the invasion andmetastasis of CRC (Ji et al., 2013). Zheng et al. (2014) further
confirmed that MALAT1 was significantly upregulated in CRC tissues and was associated
with a poor prognosis in stage II/III CRC patients.

CRNDE was first identified as a biomarker of CRC. High expression of IncRNA CRNDE
was detected in more than 90% of colorectal adenomas and adenocarcinoma cells (Ning
et al., 2014). Experiments showed that the regulatory effect of CRNDE was related to the
IGF signaling pathway and was involved in the carcinogenic process of intestinal epithelial
cells (Huan et al., 2017). CRNDE can activate the Wnt/x-catenin signaling pathway in CRC
patients, thus promoting tumor cell proliferation, invasion and other processes (Clevers &
Nusse, 2012). In addition, Li et al. (2018) showed that CRNDE can be used as a potential
noninvasive serum marker to predict the efficacy of first-line FOLFOX regimens for
metastatic colorectal cancer and it is associated with a poor prognosis. Although CRNDE
can enhance the proliferation, migration and invasion of CRC cell lines, the mechanism by
which CRNDE promotes the proliferation and migration of CRC cells remains unclear.

Taurine upregulated gene 1 (TUGl) is a newly discovered carcinogenic lncRNA located
on chromosome 22q12 (Li et al., 2016). Numerous studies have demonstrated that TUGl
expression levels are significantly elevated in CRC tissues and cell lines. The expression level
of TUGl in CRC tissues was 4-6 times higher than that in adjacent noncancerous tissues
(Sun et al., 2016). In vitro tests, overexpression of TUGl can induce the formation of tumor
cell colonies and activate the expression of EMT-related genes to improve the invasion
and metastasis of tumors and promote liver metastasis of CRC (Sun et al., 2018). TUGl
promotes cancer cell proliferation, migration, invasion, and epithelial-mesenchymal
transition (EMT) and inhibits tumor cell apoptosis through complex mechanisms,
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including competitive inhibition of miRNA function. Nevertheless, the specific oncogenic
mechanism of TUGl remains to be further elucidated (Huang et al., 2016).

Transcription factors activate the transcription of downstream target genes by binding
to the target gene promoter region. Studies have found that transcription factors are closely
related to tumors. A total of 11 TF genes regulating the core prognosis were obtained
in the present study. We are particularly interested in ATF1, CEBPB, E2F3, and ETV4.
ATF1 belongs to the cAMP response element binding protein (cyclic AMP response
element binding protein, after CREB) family (Huang et al., 2016). A study found that ATF1
in a wide variety of tumors plays a role as both an oncogene and a tumor suppressor
gene by influencing the cell signal transduction pathways involved in tumor cells related to
biological processes, such as proliferation, apoptosis, angiogenesis, migration, invasion, and
immune surveillance, which affects the occurrence and development of tumors (Pu, Storr
& Ahmad, 2018). In mouse colorectal cancer cells, active phosphorylated CREB is elevated
(Sampurno et al., 2013), and p300 can assist the phosphorylation of CREB and activate
intestinal stem cell transcription factors, including Myb, that regulate the proliferation of
intestinal epithelial cells (Ramaswamy et al., 2018). It was speculated that ATF1 is involved
in human colorectal cancer cell proliferation through the p300-MYB-CREB axis.

The transcription factorCEBPB is involved in a number of biological processes, including
cell differentiation, metabolic balance, proliferation, tumorigenesis, apoptosis, immune
and stress responses, energy metabolism, and blood production (Ramji & Foka, 2002).
Some studies have shown that CEBPB affects tumorigenesis by interacting with other genes
to form a regulatory network during tumorigenesis and development (Abreu & Sealy,
2010). Other studies have also shown that the LIP subtype of the C/EBP transcription
factor can induce apoptosis of human breast cancer cells and induce its own phagocytosis,
which may be acting as a tumor suppressor by inducing tumor autophagy (Koslowski et al.,
2009).

Additionally, the E2F transcription factor is an important regulator of G1 phase entry
into S phase in the cell cycle, and it is closely related to tumor occurrence and cell
apoptosis (Leone et al., 1998). Hurst et al. (2008) showed that E2F3 inhibited pRb and P53
through two important pathways of cell proliferation regulation and tumor monitoring,
p16(Ink4a)-cycd/cdk4-rb-e2f and Arf/mdm2-p53, respectively, leading to the disorder of
cell cycle regulation and thus promoting the occurrence and development of tumors.Wang,
Zhao & Yuan (2011) found that the expression of E2F3 was high in colorectal carcinoma.
There is a positive correlation with the expression of E2F3 in colorectal carcinoma.

Furthermore, ETV4 is a member of the polyomavirus enhancer activator 3 (PEA3)
subfamily of ETS transcription factors, in which transcription factors can recognize and
bind toGGAA/T sequences to regulate the expression ofmultiple target genes, thus affecting
the occurrence and development of diseases. Existing studies have found that ETV4’s ability
to promote cancer migration is closely related to MMP (Fung et al., 2016). For example, in
breast cancer, ETV4 can promote the migration of cancer cells by promoting the expression
of MMP2 (Bièche et al., 2004); in esophageal cancer, ETV4 can promote the metastasis of
cancer cells by promoting the expression of MMP1 (Keld et al., 2010). In addition, ETV4
was found to promote the invasion andmetastasis of cancer cells by promoting the greening
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of COX2 (Subbaramaiah, 2002). Of course, the mechanisms of the pro-proliferative and
pro-migratory effects of ETV4 in CRC are not fully understood.

Notably, we also predicted that quercetin might be a drug that regulates CRC. Quercetin
is a flavonoid with a wide range of biological activities, including antioxidant activity,
scavenging oxygen free radicals, antifibrosis activity, lowering blood pressure, lowering
blood glucose, protecting heart muscle and antitumor activity (Nguyen et al., 2017). In
recent years, many studies have found that quercetin can inhibit a variety of cancer cells,
especially colon cancer. Quercetin can not only inhibit the proliferation and induce the
apoptosis of colon cancer cells but also reduce the number of abnormal gland crypts
in the colon (Miyamoto, Yasui & Ohigashi, 2010). However, there are few studies on the
effect of quercetin on colon cancer, and the specific molecular mechanism is still not fully
understood. Luo et al. (2014) reported that quercetin may inhibit cell proliferation and
induce apoptosis through the bcl-2 and c-myc genes. Park et al. (2005) found that quercetin
could significantly inhibit the transcriptional activity of catenin/Tcf signals in SW480 colon
cancer cells by reducing the protein levels of large-catenin and Tcf in the nucleus. Thus,
quercetin can be used as an adjuvant drug to inhibit the growth of colon cancer cells and
has potential value in the drug treatment of colon cancer.

CONCLUSIONS
In summary, from the functional enrichment analysis of the TCGA database
applied by ESTIMATE algorithm-based immune scores, we extracted a list of tumor
microenvironment-related genes. These genes could be useful for determining the prognosis
of CRC patients. In addition, further investigation of these genes as well as their regulators,
including ncRNAs and TFs, provides a stronger predictor of survival than individual genes.
Finally, the detection of drugs that regulate CRC could lead to novel insights into potential
treatments for CRC.
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