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ABSTRACT
Selenoprotein P (SEPP1) distributes selenium (Se) throughout the body via the
circulatory system. For vertebrates, the Se content of SEPP1 varies from 7 to 18
Se atoms depending on the species, but the reason for this variation remains
unclear. Herein we provide evidence that vertebrate SEPP1 Sec content correlates
positively with Se requirements. As the Se content of full length SEPP1 is genetically
determined, this presents a unique case where a nutrient requirement can be
predicted based on genomic sequence information.
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INTRODUCTION
Selenium (Se) is an essential trace element required for selenocysteine (Sec) residues

inserted during mRNA translation into Se dependent proteins, termed selenoproteins

(Brigelius-Flohé, 1999). Selenocysteine is a relatively rare Se containing analogue of the

essential amino acid cysteine (Cys) (Papp et al., 2007; Penglase, 2014). The number of

genes coding for selenoproteins varies among species, with mammals having 24 to 25,

birds 25, and bony fish 35 to 38 (Mariotti et al., 2012). Most selenoproteins are redox

enzymes that contain a single Se atom present within a catalytically active Sec residue

(Papp et al., 2007). An exception is the Se rich glycoprotein, selenoprotein P (SEPP1; aka

SeP, SEPP, SEPP1a), which in vertebrates contains 7 to 18 Sec residues, depending on the

species (Lobanov, Hatfield & Gladyshev, 2008). The high Sec content of SEPP1 is thought

to facilitate Se distribution throughout the body. In mammals, the liver is a major site of

SEPP1 expression, where it is synthesised utilising Se obtained from food. Hepatic SEPP1

is then secreted into the blood plasma (Kato et al., 1992). Of the Se that is present in the

bioavailable pool, plasma SEPP1 accounts for around 80% of the total Se in plasma (Hill

et al., 1996; Hill et al., 2007), and 8% of the total body Se (Read et al., 1990). Tissues utilise

a combination of receptor mediated endocytosis and pinocytosis to obtain SEPP1 from

the plasma, where it is then catabolised to release Se for de nova selenoprotein synthesis

(Burk & Hill, 2009; Burk et al., 2013).

Several features of SEPP1 are conserved among vertebrates including, (i) a single

N-terminal domain Sec residue present within a thioredoxin like motif (UXXC, where U is

Sec), (ii) a histidine rich region in the mid region of the protein, and (iii) an apolipoprotein
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Figure 1 The receptor binding sites and selenocysteine (Sec) residues of vertebrate selenoprotein P
(SEPP1). From the N-terminal side, SEPP1 is comprised of a conserved N-terminal domain Sec residue,
followed by several proposed heparin binding sites which include a histidine rich region. Following this,
there is the shorter Sec residue rich C-terminal domain which contains an APOER2 binding site. The
C-terminal domain can be further divided into two subdomains. The first subdomain exists on the
N-terminal side of the APOER2 binding site and contains a region with a low conservation of Sec residues
among vertebrates (mainly due to Sec to cysteine (Cys) conversions (Lobanov, Hatfield & Gladyshev,
2008)). The second subdomain is located downstream of the APOER2 binding site and contains five
Sec residues that are conserved across vertebrate species. Several species of amphibians also have an
additional Sec residue in the C-terminal end of this region (Lobanov, Hatfield & Gladyshev, 2008). The
proposed heparin binding sites/histidine rich regions are based on rat SEPP1 found by Hondal et al.
(2001). Similar histidine rich regions are found in the SEPP1’s of other species (selenodb.org). Cys
residues outside the C-terminal domain are not shown. Red lines, conserved Sec residues; Black lines,
Cys or Sec residues; Green lines, Cys/Sec residues within the APOER2 binding site; Green box grids,
proposed heparin binding sites.

E receptor-2 (APOER2; aka LRP8) binding site followed by five Sec residues in proximity

to the C-terminal (Fig. 1) (Lobanov, Hatfield & Gladyshev, 2008). APOER2 is widely

expressed in human tissues (www.humanproteomemap.org; Kim et al., 2014). APOER2

facilitated uptake of plasma SEPP1 is an essential (testes) or important (brain and foetus)

pathway in some, but not all (muscle, kidney, liver or whole body) tissues for maintaining

Se homeostasis in vivo (Burk et al., 2007; Olson et al., 2007; Hill et al., 2012; Burk et al.,

2013). In contrast, the histidine rich regions of SEPP1 presumably interact with multiple

receptors, including megalin (LRP2). A megalin facilitated uptake pathway minimises

excretion of Se by binding SEPP1 fragments in the kidney (Olson et al., 2008; Kurokawa et

al., 2014) and plays a role in maintaining tissue Se homeostasis (Steinbrenner et al., 2006;

Chiu-Ugalde et al., 2010). Additionally, the histidine rich regions are associated with the

heparin binding properties of SEPP1. It is postulated that the heparin binding properties of

SEPP1 allow the N-terminal Sec of SEPP1 to provide antioxidant protection for endothelial

cells at sites of inflammation (Hondal et al., 2001; Saito et al., 2004).

In contrast, other domains in SEPP1 have low conservation among species. For exam-

ple, single-nucleotide mutations causing Sec to cysteine (Cys) substitutions in the SEPP1
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C-terminal domain upstream and including the APOER2 binding site have occurred

frequently throughout the vertebrate linage (Fig. 1) (Lobanov, Hatfield & Gladyshev, 2008).

The reason why Sec content plasticity is observed only within this region of SEPP1 is

unclear, but it appears to be responsible for most of the variation between the SEPP1

Sec content among vertebrates (Lobanov, Hatfield & Gladyshev, 2008). Furthermore, why

SEPP1 Sec content differs among species also remains unknown. Several lines of evidence

suggest vertebrate SEPP1 Sec number may be a direct function of Se utilisation. For in-

stance, vertebrate SEPP1 Sec content correlates positively with selenoproteome size, tissue

Se levels, and Se bioavailability in the environment (Lobanov, Hatfield & Gladyshev, 2008).

If a direct relationship between SEPP1 Sec content and Se requirements exists, the

SEPP1 Sec content of a species could predict its Se requirements, or vice versa. In doing

so, this would provide a new insight into how the genome affects nutrient utilisation.

Additionally, such a relationship would allow considerable scope for implementing the

3R’s (replace, reduce, refine). For example, this relationship would indicate the dietary Se

levels to focus on when investigating the Se requirements for novel species. Such knowledge

would reduce both the number of animals required and the risk of exposure to Se levels

that may compromise animal welfare in such experiments.

In the following work, we compared the Sec content of mammalian, avian and bony

fish SEPP1s predicted in silico with their Se requirements determined in vivo. We found

a strong positive non-linear correlation (R2
= 0.78) between the two, suggesting Se

requirements can be predicted from the Sepp1 gene sequence. The correlation was dictated

by the Sec content within the C-terminal domain upstream and including the APOER2

binding site of SEPP1s. The model was limited, as it could not predict Se requirements in

species whose SEPP1 Sec content was >15 residues, as found in the majority of bony fish

species. The predicted Se requirements for vertebrate species based on their SEPP1 Sec

content are provided.

MATERIALS AND METHODS
The in silico predicted species specific Sec content of SEPP1 (SEPP1a in fish) were obtained

from Lobanov, Hatfield & Gladyshev (2008), the open access selenoprotein database

(selenodb.org; Romagné et al., 2014) or by analysing genomic Sepp1 sequences (NCBI)

for Sec content (http://seblastian.crg.es/), an open access online software for this purpose

(Mariotti et al., 2013). The SEPP1 Sec content of five bony fish species; loach (Paramisgur-

nus dabryanus), cobia (Rachycentron canadum), grouper (Epinephelus malabaricus), gibel

carp (Carassius auratus gibelio) and yellowtail kingfish (Seriola lalandi); were assumed

to be within the 15 to 17 residue range found for fish in general (Lobanov, Hatfield &

Gladyshev, 2008) (see Table S2). Protein alignments and a phylogenetic tree for vertebrate

SEPP1 are provided in Figs. S2 and S3, respectively. The species specific Se requirement

data were obtained from published studies and from the National Research Council of

the USA (NRC) nutrient requirement reports (NRC, 1963; Hilton, Hodson & Slinger,

1980; Gatlin & Wilson, 1984; NRC, 1985; NRC, 1994; NRC, 1995; Weiss et al., 1996; NRC,

1997; Weiss et al., 1997; Lei et al., 1998; Wedekind, Yu & Combs, 2004; Lin & Shiau, 2005;
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Fischer et al., 2008; Jensen & Pallauf, 2008; Sunde et al., 2009; Liu et al., 2010; Sunde &

Hadley, 2010; Han et al., 2011; NRC, 2011; Le & Fotedar, 2013; Hao, Ling & Hong, 2014;

Penglase et al., 2014). See Table S1 for further information regarding these animal Se

requirement studies. Where multiple Se requirement studies for a species are available, the

dietary Se requirements to fulfil the requirements of the actively growing juvenile stage

were selected. Data were analysed in GraphPad Prism (GraphPad Software, San Diego,

California, USA, V. 5.04). Data were fitted with a horizontal line (null hypothesis) and then

tested against more complex models in the following sequence; first order polynomial,

second order polynomial and five parameter logistic equation (5PL) asymmetric

sigmoidal; until the simplest model that explained the data was found (p < 0.05). Other

vertebrate classes (reptiles and amphibians) were excluded from the analyses because of the

absence of Se requirement studies.

RESULTS AND DISCUSSION
The selenocysteine content of selenoprotein P correlates strongly
with selenium requirements
The Sec content of SEPP1s were identified for a total of 14 species; three bony fish, three

birds and eight mammals; for which the Se requirements are also published (Table S1).

Using this data, a positive non-linear correlation (R2
= 0.78) was found between Se

requirements and SEPP1 Sec number (Fig. 2). This reflects the positive correlation between

SEPP1 Sec content and selenoprotein number in vertebrates found previously (Kryukov

& Gladyshev, 2000; Lobanov, Hatfield & Gladyshev, 2008). A linear relationship between

Se requirements and SEPP1 Sec content was moderately strong (R2
= 0.68) but was

statistically rejected (p = 0.048) in favour of the non-linear model mentioned above.

All fish annotated to date have SEPP1 (aka SEPP1a in fish) with 15 to 17 Sec residues (see

Table S2). Based on this, an additional five bony fish species with known Se requirements

were assumed to have SEPP1s with 17 Sec residues and added to the data set, which was

then re-analysed. This resulted in an asymmetric sigmoidal trend with a plateau at 17.0

(Fig. 2), suggesting that a species SEPP1 is only useful for predicting Se requirements

prior to this plateau (≤16 Sec residues). When a species SEPP1 has >16 Sec residues, as is

found in many fish species, this curve predicts a minimum requirement (0.24 mg/Se kg dry

matter (DM)) but not a maximum (there is no correlation between SEPP1 Sec content and

Se requirements above this level). Modelling the data with alternative SEPP1 Sec content

(15 or 16 Sec) for these five fish species shifts the plateau height towards those values,

but retains the general features of the model. The asymmetric sigmoidal model (Fig. 2,

segmented line) differs from the second order polynomial model (Fig. 2, solid line), which

only predicts Se requirements for species with SEPP1s containing up to 15 Sec residues

(0.20 mg/Se kg, Table 1).

The model (Fig. 2) demonstrates the broad range of Se requirements found for bony fish

(0.25 to 5.56 mg Se/kg dry feed) that occurs over a small range of SEPP1 Sec contents (15

to 17 Sec residues). The reason/s for this are unknown. Limitations to increasing SEPP1 Sec

content above 17 residues may have led fish to utilise regulatory mechanisms to increase
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Figure 2 The relationship between the selenocysteine content of selenoprotein P and selenium re-
quirements in vertebrates. The solid line with the solid circles (•) is the best fit model for the SEPP1 Sec
content versus Se requirements (mg Se/kg dry matter (DM)) from 14 species with representatives from
the mammalian bird and bony fish classes where the genome sequences were available (second order
polynomial, R2

= 0.78, y = 3.3 + 93x − 175x2). The broken line represents the same data modeled with
an additional five bony fish species with known Se requirement levels ( ), but unannotated genomes.
SEPP1 Sec content in these fish were assumed to be within the likely range of 15–17 Sec residues found
for fish in general (5PL Asymmetric sigmoidal, R2

= 0.86, y = −9.98+ (26.9/((1+10((−2.23397−X)×

4.661))1.910)). Shaded boxes group animals within classes. The X axis is log transformed.

Table 1 The Se requirements (mg Se/kg DM) predicted by
the model (Fig. 2, solid line) with changes in the selenocys-
teine (Sec) content of selenoprotein P (SEPP1).

Class Sec no. Predicted Se
requirementa

?b 6 0.03 ± 0.03

7 0.04 ± 0.03

8 0.06 ± 0.02

9 0.07 ± 0.02

10 0.09 ± 0.01

11 0.10 ± 0.02

12 0.12 ± 0.03

13 0.14 ± 0.04

Mammals

14 0.17 ± 0.05

15 0.20 ± 0.04

Bony fish 16+ >0.20

Notes.
a mg Se/kg feed DM, mean (±95% confidence interval, when shown).
b There are currently no known species with full length SEPP1 contain-

ing 6 Sec residues.
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Se supply to peripheral tissues. For example Sepp1 mRNA expression is elevated in fish,

particularly in the kidneys, in comparison to mammals (Lobanov, Hatfield & Gladyshev,

2008). This suggests plasma SEPP1 in fish may be replenished by SEPP1 synthesised

from Se scavenged in the kidneys. On the other hand, the single nucleotide mutation

required to change a Sec to a Cys codon (Lobanov, Hatfield & Gladyshev, 2008) may have

allowed mammals to decrease SEPP1 Sec content in line with Se requirements, resulting

in the large range of SEPP1 Sec contents (7 to 15 Sec residues) found in mammals. The

Se requirements versus SEPP1 Sec content in vertebrates predicted by the second order

polynomial model (Fig. 2, solid line) are provided in Table 1.

It is essential to note that the correlation between SEPP1 Sec content and Se require-

ments does not prove causation. Another factor/s may be involved in the simultaneous

increase in SEPP1 Sec content and Se requirements observed in this study, such as the

environmental availability of Se. For example, within vertebrate classes, species with Sec

poor SEPP1s are often found in habitats with lower background levels of Se. Both guinea

pigs and naked mole rats (Heterocephalus glaber) have Sec poor SEPP1s (7 residues),

low Se requirements (Jensen & Pallauf, 2008; Kasaikina et al., 2011) and inhabit the

Andes or East Africa respectively, both regions of low Se status (FAO, 1992; Rachel et al.,

2013). Freshwater habitats often have lower background levels of Se than marine habitats

(Combs & Combs, 1986; Santos et al., 2015) and freshwater fish have on average less Sec

in SEPP1 than marine fish (Table S2). Furthermore, SEPP1 appears to have originated

in invertebrates, but thus far SEPP1 (along with greater number of selenoproteins), has

only been found in invertebrates inhabiting marine environments (Lobanov, Hatfield &

Gladyshev, 2009; Liang, Jiazuan & Qiong, 2012). Added to this, if a direct relationship does

exist between SEPP1 Sec content and Se requirements, it is unclear which factor is causing

the other.

Overall, we hypothesise that environmental Se availability was an evolutionary pressure

to decrease Se utilisation as animals progressed from Se rich marine environments into

fresh water and terrestrial habitats where environmental Se levels are generally lower.

Selection then occurred for decreased Se utilisation (Se requirements), which resulted in

decreased selection pressure on maintaining, and then decreases in, SEPP1 Sec number.

The results were new species-specific equilibriums between environmental Se availabilities,

Se requirements and SEPP1 Sec contents.

A hypothesis for the Sec number plasticity or conservation in
different domains of vertebrate SEPP1
As discussed, most of the difference in the SEPP1 Sec content between species is a result

of differences in the Sec content found upstream and including the APOER2 binding site

within the C-domain of SEPP1 (Fig. 1 and Table S2). When we analysed the Sec content

in this region in relation to a species Se requirement (Fig. S1), we found a similar positive

correlation as found for full-length SEPP1 and Se requirements (Fig. 2), supporting this

statement. Recently it was found that SEPP1 Sec residues closer to the C-terminal are trans-

lated with greater efficiency than those towards the N-terminal (Shetty, Shah & Copeland,

2014). Premature termination of SEPP1 translation at Sec codons appears to be a common
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event. For instance, four rat SEPP1 isoforms have been identified in plasma, whereby in

addition to the full length protein, shorter variants are synthesised when translation is

terminated at the second, third or seventh Sec codon (Ma et al., 2002). Thus, on average

each plasma SEPP1 in mice contains 5 Sec residues, not the 10 Sec residues expected if only

the full length protein is present (Hill et al., 2007). As a consequence of this, a proportion of

translated SEPP1 proteins will not contain the APOER2 binding site (Fig. 1).

Thus, as discussed we hypothesise that decreases in Se requirements are an evolutionary

adaption to Se availability. Secondly, we hypothesise that the Se requirements of the brain

among species is similar on a weight basis, despite differences in the Se requirements of

the whole body. For instance, compared to mice, naked mole rats have lower levels (−30

to −75%) of Se in most tissues except the brain (Kasaikina et al., 2011). And lastly, low Se

availability can stall translation of selenoproteins at Sec codons (Weiss Sachdev & Sunde,

2001), and may be a reason for the truncated forms of SEPP1 translated in vivo. Thus, Sec

to Cys substitutions in SEPP1 may have occurred specifically in the region downstream

and including the APOER2 binding site as it aids the translation of full-length protein

under Se limiting conditions, such as those faced by naked mole rats and guinea pigs.

The subsequent retention of the APOER2 binding site would allow the continuation of a

controlled Se supply to critical organs, such as the brain, that utilise APOER2 mediated

uptake of SEPP1.

CONCLUSION
The Sec content of SEPP1 correlates with Se requirements in vertebrates with ≤15 Sec

residue SEPP1s. No correlation occurred between SEPP1 Sec content and Se requirements

for species with >15 Sec residue SEPP1s; however, a minimum Se requirement of 0.20 mg

Se/kg DM for these species was predicted. This study suggests that genome evolution is

affected directly by nutrient availability in the environment, and provides novel evidence

that the genomic sequence can be used to predict a nutrient requirement.
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