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In Bayesian phylogenetic inference, marginal likelihoods are estimated using either the
path-sampling or stepping-stone-sampling algorithms. Both algorithms are computationally
demanding because they require a series of power posterior Markov chain Monte Carlo
(MCMC) simulations. Here we introduce a general parallelization strategy that distributes
the power posterior MCMC simulations and the likelihood computations over available
CPUs. Our parallelization strategy can easily be applied to any statistical model despite our
primary focus on molecular substitution models in this study. Using two phylogenetic
example datasets, we demonstrate that the runtime of the marginal likelihood estimation
can be reduced significantly even if only two CPUs are available (an average performance
increase of 1.96x). The performance increase is nearly linear with the number of available
CPUs. We record a performance increase of 11.4x for cluster nodes with 16 CPUs,
representing a substantial reduction to the runtime of marginal likelihood estimations.
Hence, our parallelization strategy enables the estimation of marginal likelihoods to
complete in a feasible amount of time which previously needed days, weeks or even
months. The methods described here are implemented in our open-source software
RevBayes which is available from http://www.RevBayes.com.
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ABSTRACT13

In Bayesian phylogenetic inference, marginal likelihoods are estimated using either the path-sampling

or stepping-stone-sampling algorithms. Both algorithms are computationally demanding because they

require a series of power posterior Markov chain Monte Carlo (MCMC) simulations. Here we introduce a

general parallelization strategy that distributes the power posterior MCMC simulations and the likelihood

computations over available CPUs. Our parallelization strategy can easily be applied to any statistical

model despite our primary focus on molecular substitution models in this study. Using two phylogenetic

example datasets, we demonstrate that the runtime of the marginal likelihood estimation can be reduced

significantly even if only two CPUs are available (an average performance increase of 1.96x). The

performance increase is nearly linear with the number of available CPUs. We record a performance

increase of 11.4x for cluster nodes with 16 CPUs, representing a substantial reduction to the runtime of

marginal likelihood estimations. Hence, our parallelization strategy enables the estimation of marginal

likelihoods to complete in a feasible amount of time which previously needed days, weeks or even

months. The methods described here are implemented in our open-source software RevBayes which

is available from http://www.RevBayes.com.
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INTRODUCTION28

Model selection in Bayesian phylogenetic inference is performed by computing Bayes factors, which29

are ratios of the marginal likelihoods for two alternative models (Kass and Raftery, 1995; Sullivan and30

Joyce, 2005). The Bayes factor indicates support for a model when the ratio of the marginal likelihoods is31

greater than one. This procedure is very similar to likelihood ratio tests with the difference being that one32

averages the likelihood over all possible parameter values weighted by the prior probability rather than33

maximizing the likelihood with respect to the parameters (Posada and Crandall, 2001; Holder and Lewis,34

2003). More specifically, the marginal likelihood of a model, f (D|M), is calculated as the product of the35

likelihood, f (D|θ ,M), and the prior, f (θ |M), integrated (or marginalized) over all possible parameter36

combinations,37

f (D|M) =
∫

f (D|θ ,M) f (θ |M)dθ . (1)38

In the context of Bayesian phylogenetic inference, this quantity is computed by marginalizing over the39

entire parameter space, namely over all possible tree topologies, branch lengths, substitution model40

parameters and other model parameters (Huelsenbeck et al., 2001; Suchard et al., 2001).41

The computation of the marginal likelihood is intrinsically difficult because the dimension-rich in-42

tegral is impossible to compute analytically (Oaks et al., 2019). Monte Carlo sampling methods have43
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been proposed to circumvent the analytical computation of the marginal likelihood (Gelman and Meng,44

1998; Neal, 2000). Lartillot and Philippe (2006) introduced a technique called thermodynamic integra-45

tion, (also called path-sampling; Baele et al., 2012), to approximate the marginal likelihood. A similar46

method, stepping-stone-sampling (Xie et al., 2011; Fan et al., 2011), has more recently been proposed47

(see also Baele et al., 2012; Baele and Lemey, 2013; Friel et al., 2014; Oaks et al., 2019, for a summary48

and comparison of these methods). The fundamental idea of path-sampling and stepping-stone-sampling49

is to use a set of K importance distributions, or power posterior distributions, from which likelihood sam-50

ples are taken (Gelman and Meng, 1998; Neal, 2000; Lartillot and Philippe, 2006; Friel and Pettitt, 2008).51

The sampling procedure for each importance distribution is performed by a Markov chain Monte Carlo52

(MCMC) algorithm. That is, instead of running a single MCMC simulation, as is commonly done to es-53

timate posterior probabilities (Huelsenbeck et al., 2001, 2002), K (usually between K=30 and K=200)54

MCMC simulations are needed to estimate the marginal likelihood of a model of interest. Obviously, this55

strategy can be very time consuming considering that a single MCMC simulation may take from hours56

to several weeks of computer time. The high computational time poses a major challenge for Bayes fac-57

tor computations for many important problems, for example, comparing molecular substitution models58

(Posada and Crandall, 2001), selecting between complex diversification rate models (FitzJohn, 2012),59

and evaluating competing continuous trait processes (e.g., Uyeda and Harmon, 2014).60

In the present article we demonstrate how power posterior simulations can be performed on parallel61

computer architectures and report the achieved computational gain. The idea of parallel power poste-62

rior simulations is very similar to parallel Metropolis coupled MCMC algorithm (Altekar et al., 2004),63

with the important difference that power posterior simulations can be parallelized even more easily be-64

cause no communication between processes is necessary. Additionally we show how our parallelization65

scheme can combined with existing parallelization techniques for distributed likelihood computation66

(e.g., Aberer et al., 2014) to maximize usage of available CPUs.67

METHODS68

The algorithm underlying path-sampling and stepping-stone-sampling can be separated into two steps:69

(1) likelihood samples are obtained from a set of K power posterior simulations; and (2) the marginal70

likelihood is approximated either by numerical integration of the likelihood samples over the powers71

(path-sampling) or by the likelihood ratio between powers (stepping-stone-sampling). The first step is72

the same for both methods and is the computationally expensive part. Thus, once samples from the73

power posterior distributions are obtained, it is possible to rapidly compute both the path-sampling and74

stepping-stone-sampling marginal likelihood estimates.75

Power posterior sampling76

Both stepping-stone-sampling and path-sampling techniques construct and sample from a series of impor-77

tance distributions. Lartillot and Philippe (2006) define the importance distributions as power posterior78

distributions, which are obtained by modifying the posterior probability density as79

fβi
(θ) = f (Y |θ ,M)βi f (θ |M) . (2)80

Here, β represent a vector of powers between 0 and 1. Then, for every value of βi a draw from the81

power posterior distribution is needed and its likelihood score, li, is recorded (Lartillot and Philippe,82

2006; Friel and Pettitt, 2008). In principle, one such likelihood sample per power posterior distribution83

is sufficient, although multiple samples improve the accuracy of the estimated marginal likelihood con-84

siderably (Baele et al., 2012). We will use the notation li j to represent the jth likelihood sample from the85

ith power posterior distribution.86

We illustrate the mean log-likelihood over different values of β in Figure 1. Commonly, the values of87

the powers β are set to the ith quantile of a beta(0.3,1.0) distribution (Xie et al., 2011; Baele et al., 2012).88

The rationale is that more narrowly spaced intervals are needed for the range of β where the expected89

likelihood changes most rapidly, i.e., for β values close to 0 (Figure 1).90

Draws from the power posterior distribution are obtained by running a modified Markov chain Monte91

Carlo (MCMC Metropolis et al., 1953; Hastings, 1970) algorithm:92

1. Let θ j denote the current parameter values at the jth iteration, initialized at random at the start of93

the MCMC algorithm.94
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Figure 1. An example curve of mean log-likelihood samples over a range of different powers. The

vertical, dashed lines show which values of powers were used when K = 11 and βi = (i/(K −1))1.0/0.3

for i ∈ {0,K −1}. The curve shows explicitly over which range of powers the log-likelihood changes

most drastically; when β is small and thus the importance distribution is close to the prior. Hence, a

good numerical approximation of the log-likelihood curve is obtained when most powers take small

values.

2. Propose a new values θ ′ drawn from a proposal kernel with density q(θ ′|θ j).95

3. The proposed state is accepted with probability

α = min

(

1,
f (D|θ ′)βi

f (D|θ j)βi
× f (θ ′)

f (θ j)
× q(θ j|θ ′)

q(θ ′|θ j)

)

. (3)

4. Set θ j+1 = θ ′ with probability α and to θ j+1 = θ j otherwise.96

As can be seen from this brief description of the modified MCMC algorithm, only the likelihood values97

need to be raised to the power βi. All remaining aspects of the MCMC algorithm stay the same as the98

standard implementations in Bayesian phylogenetics (Huelsenbeck and Ronquist, 2001; Drummond and99

Rambaut, 2007; Lakner et al., 2008; Lartillot et al., 2009; Höhna and Drummond, 2012).100

It is important to note that every MCMC simulation for each power β j ∈ β necessarily includes its101

own burn-in period before the first sample can be taken. The power posterior analysis can be ordered102

to start from the full posterior (βK−1 = 1.0) and then to use monotonically decreasing powers until the103

prior (β0 = 0.0) has been reached. Thus, the last sample of the previous power posterior run can be104

used as the new starting state. This strategy has been shown to be more efficient because it is easier to105

disperse from the (concentrated) posterior distribution to the (vague) prior distribution thereby reducing106

the burn-in period significantly (Baele et al., 2012).107

Parallel power posterior analyses108

The sequential algorithm of a power posterior analysis starts with a pre-burnin phase to converge to109

the posterior distribution. Then, consecutive power posterior simulations are performed sequentially,110

starting with βK−1 = 1.0 (i.e., the posterior) to β0 = 0.0 (i.e., the prior). Each power posterior simulation111

contains L iterations, with the likelihood of the current state recorded every T th iteration. These ‘thinned’112

samples are less correlated than the original draws from the MCMC simulation. The number of samples113

taken per power is n= L/T . At the beginning of each run a short burn-in phase is conducted, for example114

10% or 25% of the run length.115

The parallel algorithm for a power posterior analysis is set up almost identically to the sequential116

algorithm (see Figure 2). Let us assume we have M CPUs available. Then, we split the set of powers117

into M consecutive blocks; the mth block containing the powers from β⌊
K− (m−1)

M K−1
⌋ to β⌊K−(mK/M)⌋,118
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Figure 2. Schematic of the parallelization and workload balance between the master CPU and the

worker CPUs. In this example we have M=4 CPUs and K=128 power posterior simulations (stones).

The first CPU is the designated master and the remaining CPUs are the workers/helpers. The power

posterior simulations are divided into two blocks from β127 to β64 and β63 to β0. The first two CPUs

work on the first block of power posterior simulations and the last two CPUs work on the second block.

Each pair of CPUs shares the likelihood computation between them. Each CPU starts with its own

pre-burnin phase. Then, each CPU runs its block of power posterior simulations. Finally, the master

combines the likelihood samples and computes the marginal likelihood estimate. Thus, the only barrier

is after all the single power posterior simulations, which is after each single CPU has finished its

respective job.

e.g., the first out of four blocks for 128 analyses contains {β127, . . . ,β96}, the second block contains119

{β95, . . . ,β64}, etc. If the set of β cannot be split evenly into blocks then some blocks have one additional120

simulation, which is enforced by using only the integer part of the index. This block-strategy ensures that121

each CPU works on a set of consecutive powers which has the advantage of a shorter burn-in between122

simulations because the importance distributions are more similar to one another.123

Regardless, each parallel sampler needs to start with an independent pre-burnin phase which creates124

an additional overhead. Thus, instead of running only one pre-burnin phase, as under the sequential125

power posterior analysis, we need to run M pre-burnin phases. This overhead could be removed only if126

it would be possible to draw initial values directly from the power posterior distribution.127

Figure 2 shows a schematic of our parallelization algorithm. After the initial pre-burnin phase, the128

workload is divided into blocks and equally distributed over the available CPUs. Note that CPUs can129

be combined for distributed likelihood computation. No synchronization or communication between130

samplers is necessary because each power posterior simulation is independent. The only parallelization131

barrier occurs at the end when all power posterior simulations have finished. Finally, the master CPU132

collects all likelihood samples, combines the results, and computes the marginal likelihood using one of133

equations given below. These equations are computationally cheap compared with obtaining the likeli-134

hood samples. We thus expect that the performance gain is close to linear with the number of available135

cores. The algorithm described here is implemented in the open-source software RevBayes (Höhna136

et al., 2014; Höhna et al., 2016), available at http://www.RevBayes.com.137
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Path-Sampling138

Path-sampling was the first numerical approximation method developed for marginal likelihood compu-139

tation in Bayesian phylogenetic inference (Lartillot and Philippe, 2006). Path-sampling uses the trape-140

zoidal rule to compute the integral of the log-likelihood samples between the prior and the posterior141

(see Figure 1), which equals the marginal likelihood (Lartillot and Philippe, 2006). The equation of the142

trapezoidal rule for a single likelihood sample from each power posterior simulation is143

ln f (D|M) =
K−1

∑
k=0

(ln(lk)+ ln(lk+1))∗ (βk+1 −βk)

2
. (4)144

Samples of the log-likelihood have a large variance. Hence, it is more robust to take many log-likelihood145

samples and use the mean instead. This yields the equation to estimate the marginal log-likelihood,146

ln f (D|M) =
K−1

∑
k=0





n

∑
i=1

ln(lk,i)

n
+

n

∑
i=1

ln(lk+1,i)

n



∗ (βk+1 −βk)

2
(5)147

which was proposed by Baele et al. (2012).148

Stepping-Stone-Sampling149

Stepping-stone-sampling approximates the marginal likelihood by computing the ratio between the like-150

lihood sampled from the posterior and the likelihood sampled from the prior. However, this ratio is151

unstable to compute and thus a series of intermediate ratios is computed: the stepping-stones (Xie et al.,152

2011; Fan et al., 2011). The stepping-stones can be chosen to be exactly the same powers as those used153

for path-sampling. The equation to approximate the marginal likelihood using stepping stone sampling154

is155

f (D|M) =
K−1

∏
k=0





1

n

n

∑
i=1

l
βk+1

k,i

l
βk

k,i



156

=
K−1

∏
k=0

(

1

n

n

∑
i=1

l
βk+1−βk

k,i

)

. (6)157

Numerical stability of the computed marginal likelihood can be improved by retrieving first the high-158

est log-likelihood sample, denoted by maxk, for the kth power. Re-arranging Equation 6 accordingly159

yields160

ln( f (D|M)) =
K−1

∑
k=0

[

ln

(

n

∑
i=1

exp
(

(ln(lk,i)−maxk)∗(βk+1−βk)
)

n

)

+(βk+1 −βk)∗maxk

]

. (7)161

As seen in Equation 5 and Equation 7, only the set of likelihood, or log-likelihood, samples is needed162

to approximate the marginal likelihood. Both marginal likelihood estimates approach the true marginal163

likelihood when the number of samples and powers increases. Since both computations are comparably164

fast, they can be applied jointly and, for example, be used to test for accuracy without additional time165

requirements.166

Simulation design167

The objective of the simulation study was to test the performance gain when using multiple CPUs. Thus,168

we tested the performance of the parallel power posterior analyses using two phylogenetic examples; a169

smaller and a larger dataset. As the small example dataset we chose 23 primate species representing the170

majority of primate genera. We used only a single gene sequence, the cytochrome b subunit, containing171

1141 base pairs. For the large example data set we chose an alignment with 4 genes from 305 taxa172

of the superfamily Muroidea (Schenk et al., 2013). For both examples we used the same model with173

the only difference that the larger dataset was partitioned into four subsets of sites (see protocols 1174

and 2 from Höhna et al., 2017). We assumed that molecular evolution can be modeled by a general175
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Figure 3. The average runtime of a marginal likelihood estimation on a simple phylogenetic model

recorded over 10 repeated runs. The analyses were performed on the San Diego supercomputer cluster

Gordon using 1, 2, 4, 8, 16, 32 and 64 CPUs. The runtimes were measured in seconds. The left graph

shows the mean runtime as a function of the number of CPUs. The right graph shows the performance

increase (fraction of time needed) compared with a single CPU. Both graphs show the actual

performance increase and the expected performance increase (if there were no overhead between

CPUs).

time reversible (GTR) substitution process (Tavaré, 1986) with four gamma-distributed rate categories176

(Yang, 1994). Furthermore, we assumed a strict, global clock (Zuckerkandl and Pauling, 1962) and177

calibrated the age of the root. As a prior distribution on the tree we used a constant-rate birth-death178

process with diversified taxon sampling (Höhna et al., 2011; Höhna, 2014) motivated by the fact that one179

representative species per genus was sampled, which is clearly a non-random sampling approach. The180

specific models correspond to the protocols described in Höhna et al. (2017) and can also be found as181

tutorials at https://revbayes.github.io/tutorials/.182

Each analysis consisted of a set of K=128 power posterior simulations (see Figure 2 for a schematic183

overview). The analyses started with a pre-burnin period of 10,000 iterations to converge to the poste-184

rior distribution. Then, each power posterior analysis was run for 10,000 iterations and samples of the185

likelihood were taken every 10 iterations. The 25% initial samples of each power posterior distribution186

were discarded as additional burnin. The marginal likelihood was estimated using both path-sampling187

and stepping-stone-sampling once all power posterior simulations had finished as they contribute to per-188

formance overhead in practice. We ran each analysis 10 times and measured the computation time on189

the San Diego Supercomputer (SDSC) Gordon. The experiment was executed using 1, 2, 4, 8, 16, 32190

and 64 CPUs, respectively. For each number k of CPUs used, we repeated the analyses by assigning191

1, 2, 4, . . . 64 CPUs to parallelizing the likelihood computation instead of distributing the stones. Thus,192

we additionally tested if parallelization over stones, the likelihood computation, or a mixture is most193

efficient.194

RESULTS195

We present the results of the average runtime as a function of the number of CPUs used in Figure 3.196

Performance gains are most pronounced when few CPUs are used. The runtime is almost halved when197

compared between 1 and 2 CPUs or 2 and 4 CPUs. For example, our primate analyses took on average198

11.39 hours when using only a single CPU. By contrast, the analyses took only 5.95 hours and 3.15199

hours when we used 2 CPUs and 4 CPUs respectively. Virtually the same runtime improvements were200

achieved for the larger Murdoidea dataset (Figure 3).201

The performance increase levels off quickly once 8 or 16 CPUs are used. This is simply due to the202

fact that twice as many CPUs are needed each time to roughly halve the computational time. Hence,203

the gain from 1 to 4 CPUs is approximately equivalent to the gain from 16 to 64 CPUs. Additionally,204

the overhead (i.e., the independently run pre-burnin for each chain) which each CPU needs to perform205
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Figure 4. The average performance improvement (runtime reduction) when estimating the marginal

likelihood on a simple phylogenetic model without pre-burnin phase, recorded over 10 repeated runs.

The analyses were performed on the San Diego supercomputer cluster Gordon using 1, 2, 4, 8, 16, 32

and 64 CPUs. The runtimes were measured in seconds. The graph shows the actual and the expected

performance increase compared with a single CPU, where performance is nearly linear.

reduces the performance gain for larger number of CPUs.206

We computed the expected runtime to assess whether our implementation achieved the largest pos-207

sible performance gain. For example, we wanted to explore if there is an additional overhead for using208

parallelization that was possibly introduced by our specific implementation. Having M CPUs available,209

each CPU needs to run at most ⌈K/M⌉ power posterior simulations, which is the ratio of the total num-210

ber of power posterior simulations to CPUs rounded upwards (ceiling). Additionally, each CPU runs211

its own pre-burnin phase, which had the same length as a single power posterior simulation in our tests.212

Therefore, we can compute the average runtime of a single power posterior simulation by dividing the213

runtime of the single CPU analysis by K +1. Then, the expected runtime for M CPUs, tM , is given by214

E[tM] = t1 ×
⌈K/M⌉+1

K +1
(8)215

where t1 corresponds to the runtime when only one CPU was available. In general, our implementation216

seems to perform close to the expected optimal performance (Figure 3). However, we observe an in-217

creasing discrepancy between the expected and the observed performance gain when many CPUs were218

used. This discrepancy is most likely due to bottlenecks in competing hardware allocations. For ex-219

ample, we noticed that I/O operations performed on a network filesystem, which are commonly used220

among large computer clusters, significantly influenced the performance, especially when many CPUs221

frequently wrote samples of the parameters to a file.222

We performed an additional performance analysis where we omitted the pre-burnin phase. This223

scenario could be realistic when one has already performed a full posterior probability estimation and224

only wants to compute the marginal likelihoods for model selection. In this case, the samples from the225

posterior distribution can be used to specify starting values of the power posterior analysis. Here we226

see that the performance improvement becomes more linear with the number of CPUs (see Figure 4).227

Although this case might not happen frequently in practice, we use this to demonstrate that only the228

pre-burnin phase prevents us from having an almost linear, and thus optimal, performance increase.229

We also investigated whether the performance overhead (observed in Figure 3) is correlated with230

the number of stepping stones per CPU. For example, we observed the largest difference between the231

expected and actual runtime when 64 CPUs were used (each CPU ran only one or two power posterior232

simulations plus the pre-burnin phase). Thus, we tested if there was an effect of small numbers of233

power posterior simulations by running analysis with K ∈ {2,3,5,10,20,30,40,50} on a single CPU. As234
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phylogenetic model for different number of powers posterior simulations K. The runtimes were

measured in seconds. The graph shows the actual runtime and the expected runtime which is based on

the mean runtime per power posterior simulation when K = 50.

M\N 1 2 4 8 16 32 64

2 21768 22268 - - - - -

4 11275 11434 12088 - - - -

8 6253 6136 6185 6969 - - -

16 3336 3189 3162 3562 4612 - -

32 1856 1709 1651 1846 2393 4738 -

64 1112 944 880 966 1217 2406 11363

Table 1. Runtime using M CPUs (rows) of which N CPUs (columns) are assigned to the likelihood

computation. Here we show the results of the primates dataset.

the expected runtime, we computed the mean runtime per individual power posterior simulation when235

K = 50. Our results, shown in Figure 5, demonstrate that there is an intrinsic overhead for small number236

of power posterior simulations. This overhead seemed to be the cause of the discrepancy between our237

expected and observed performance increase in the parallel power posterior algorithm (Figure 3). Part of238

the overhead is caused by the additional time to start the process, load the data, allocate memory, receive239

file handles and all other tasks that need to be performed before and after a power posterior analysis.240

Finally, we compared the performance increase when parallelizing the power posterior analysis, the241

likelihood computation, or both. For this combined parallelization scheme we implemented a hierarchi-242

cal parallelization structure as describe by Aberer et al. (2014). For example, when 4 CPUs are available243

we can divide the likelihood computation over 2 CPUs and divide the power poster analysis into 2 blocks244

(see Figure 1). This test thus includes the parallelization approach over the likelihood function as sug-245

gested by Baele and Lemey (2013). We tested the performance difference using M = {2,4,8,16,32,64}246

CPUs of which we assigned N to share the likelihood computation. We observed the best overall runtime247

reduction when we applied a combined likelihood and power posterior analysis parallelization (Table 1248

and Table 2). Furthermore, the improvement of each parallelization yields diminishing returns when249

many CPUs are used, which additionally supports the utility of a combined parallelization scheme. We250

conclude that using N = ⌊
√

M⌋ will give the overall best performance and set this distribution of CPUs251

as the default option in RevBayes.252
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M\N 1 2 4 8 16 32 64

2 171797 * - - - - -

4 92858 92212 90432 - - - -

8 52329 51072 50244 53411 - - -

16 28248 26426 26792 27573 29297 - -

32 15418 14423 14126 14599 15371 18450 -

64 9365 8234 7705 7649 8173 9641 18272

Table 2. Runtime using M CPUs (rows) of which N CPUs (columns) are assigned to the likelihood

computation. Here we show the results of the Muroidea dataset. * Runs using M=2 CPUs with N=2

CPUs per likelihood did not finish within the wall-time provided by XSEDE.

CONCLUSION253

Modern phylogenetic analyses depend on increasingly complex models and increasingly large data set254

sizes. Even phylogenetic analyses which do not use molecular sequence data (for example, diversifica-255

tion rate analyses (FitzJohn, 2012), continuous trait analyses (Uyeda and Harmon, 2014), and historical256

biogeography analyses (Landis et al., 2013)) have grown more complex and use time-intensive likelihood257

calculations that are not always easily parallelizable. Both trends lead to longer runtimes, which is even258

more pronounced for Bayesian model selection exercises using marginal likelihoods (Oaks et al., 2019);259

the path-sampling and stepping-stone-sampling algorithms used for approximating marginal likelihoods260

are inherently computationally demanding. In the present paper we have developed a simple parallel al-261

gorithm to speed up the computation of marginal likelihoods for Bayesian phylogenetic inference. In our262

simulation study, which serves mostly as a proof of concept, we showed that performance improvement263

is close to linear for few CPUs, i.e., between one and 16 CPUs. An analysis that previously took 8 weeks264

on a single CPU can now be completed in four days when 16 CPUs are available.265

Our new parallel power posterior analysis can be more than an order of magnitude faster than or-266

dinary, sequential algorithms. The presented parallel algorithm should be straightforward to be imple-267

mented in other software or applied to a variety of different model types. Finally, the described paral-268

lelization scheme should be applicable to alternative methods for computing marginal likelihood (e.g.,269

Fan et al., 2011) and Bayes factors (Lartillot and Philippe, 2006; Baele et al., 2013) because all these270

approaches rely on a set of power posterior analyses.271
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