First characterization of the probiotic potential of Lactic Acid Boacteria isolated from 1 2 Costa Rican pineapple silages 3 Jannette Wen Fang Wu Wu¹, Mauricio Redondo-Solano², Lidieth Uribe³, Rodolfo WingChing-4 Jones⁴, Jessie Usaga⁵, Natalia Barboza^{1, 5, 6} 5 ¹ Food Technology Department, University of Costa Rica, San Jose, Costa Rica 6 7 ² Research Center for Tropical Diseases (CIET) and Food Microbiology Laboratory, College of Microbiology, University of Costa Rica (UCR), San Jose, Costa Rica 8 9 ³ Agronomic Research Center (CIA), University of Costa Rica (UCR), San Jose, Costa Rica ⁴Animal Science Department, Animal Nutrition Research Center (CINA), University of Costa 10 11 Rica (UCR), San Jose, Costa Rica ⁵ National Center for Food Science and Technology (CITA), University of Costa Rica (UCR), San 12 13 Jose, Costa Rica ⁶ Center for Research in Cellular and Molecular Biology (CIBCM), University of Costa Rica 14 (UCR), San Jose, Costa Rica 15 16 17 Corresponding author: Natalia Barboza^{1, 5, 6} 18 19 San Jose, 11501-2060, Costa Rica 20 Email address: natalia.barboza@ucr.ac.cr 21

22

23

带格式的:突出显示

带格式的:突出显示

批注 [HQ1]:

The present study described the isolation of several lactic acid bacteria (LAB) from Costa Rican pineapple silage and characterization of their probiotic potential. As a result, an LAB strain, Lacticaseibacillus paracasei_6714, was identified as a promising probiotic candidate. The work was well-designed and presented.

Maior concerns:

1. The antimicrobial activity needs to be evaluated using more LAB strains of different species. 2. The safety of the LAB isolates needs to be tested. 3. In vivo experiments are suggested to evaluate the probiotic ability of the LAB. 4.Well-identified reference LAB strains need to be included as controls in all the assays. 5. The novelty and innovation of the study should be highlighted.

6.The manuscript should be

revised by native English speakers.

Minor points:

1.The layout of the tables and figures should be optimized. 2. The references should be a consistent style. 3.Line 1, lactic acid bacteria 4.Line 33, species 5.Lines 144-145, A 1.5- kb fragment.....the primer pair 27F/1492R 6.Line 273, a 1-kb 7.Lines 278 and 295, HeLa 8.Lines 327-328, L. paracasei 9.Line 331. GenBank 10.Line 397. 0.3%

带格式的:突出显示 带格式的:突出显示

带格式的: 突出显示

Abstract

30

31

32

34

35

37

39

41

42

43

44

45

46

47

48

Background. Agro-industrial waste from tropical environments could be an important source of

lactic acid bacteria (LAB) with probiotic potential.

33 **Methods.** Twelve LAB strains were isolated from pineapple silages. The species identification

was carried out considering 16S rRNA and pheS genes. Experiments to evaluate probiotic

potential of the isolates included survival under simulated gastrointestinal environment, in vitro

36 antagonistic activity (against Salmonella spp. and Listeria monocytogenes), antibiotic

susceptibility, presence of plasmids, adhesiveness to epithelial cells and antagonistic activity

38 against Salmonella in HeLa cells.

Results. Lacticase paracasei, Lentilactobacillus parafarraginis, Limosilactobacillus

40 fermentum, and Weissella ghanensis were identified. Survival of five of the isolates was 90% or

higher after exposure to acidic conditions (pH: 2) and lysozyme, and the isolates showed at

least 61% survival after exposure to bile salts. The three most promising isolates, based on

survivability tests, showed a strong antagonistic effect against Salmonella. However, only L.

paracasei_6714 showed a strong Listeria inhibition pattern; this strain was resistant to some of

the tested antibiotics but was not found to harbor plasmids. It also showed a high capacity for

adhesion to epithelial cells and prevented invasion of Salmonella in HeLa cells. After further in-

vivo evaluations, L. paracasei 6714 may be considered a probiotic candidate for food industry

applications and may have promising performance in acidic products due to its origin.

带格式的:突出显示

带格式的:突出显示

带格式的:突出显示

带格式的:突出显示

带格式的:突出显示

带格式的:突出显示

带格式的:突出显示

带格式的:突出显示

带格式的: 突出显示

Introduction

57

58

59

60

61

62

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Currently, the development and intake of functional foods containing probiotic microorganisms have grown considerably due to their known health benefits and ability to prevent certain diseases (Nami et al., 2018). Probiotics are recognized as live microorganisms which, when administered in adequate amounts for a period of time, may confer health benefits on the host (Isolauri et al., 2002; Hossain et al., 2017). These microorganisms are capable of enduring 63 gastrointestinal (GI) tract conditions, surviving host metabolic processes to colonize the intestinal environment and supply health effects through modulation of GI microbiota and immunogenic responses, or by producing certain beneficial metabolites of interest (Meybodi & Mortazavian, 2017; Nami et al., 2018). Delivery of health-promoting microorganisms is commonly done through the consumption of fermented products, most frequently dairy (Nascimento et al., 2019). However, with the increased incidence of lactose intolerance, vegetarianism and other consumer demands, interest in the development of non-dairy probiotic foods has grown. Nevertheless, changes in matrix properties may imply variations in the probiotic physiological dynamics (Dey, 2018). The majority of probiotic bacteria belong to the lactic acid bacteria (LAB) group. LAB are Grampositive, catalase negative non-spore-forming cocci, bacilli or rods. The main energetic pathway of this group is based on the fermentation of carbohydrates, mainly glucose, to produce lactic acid alone (homofermentation) or lactic acid, CO2 and ethanol (heterofermentation) (Ayala et al., 2019). In addition to their associated health benefits, many LAB are capable of producing antimicrobial compounds such as lactic acid and bacteriocins (Soccol et al., 2010), which makes them suitable as probiotics and bio-control organisms due to their ability to inhibit other microorganisms through the production of different metabolites with a wide range of inhibitory

effects or by competitive exclusion (Vieco-Saiz et al., 2019).

带格式的:字体颜色:红色

The genera Lactobacillus and Bifidobacterium are commonly used probiotics. However, 82 Lactococcus, Streptococcus, Enterococcus and selected yeasts can potentially be used as 83 probiotics as well (de Vrese & Offick, 2010; Ayala et al., 2019). The selection and 84 characterization of novel microorganisms as potential probiotics must take into account certain properties such as tolerance to low pH and high bile salt concentrations, as these conditions mimic the GI tract environment during digestion processes (García-Ruiz et al., 2014; Byakika et al., 2019). Recent studies have also suggested the importance of evaluating other features such as adhesiveness to intestinal mucosa, prolonged and stable persistence in the GI tract, and antimicrobial properties (García-Ruiz et al., 2014). In the last years, probiotics have been obtained mostly from fermented dairy products or the human GI tract (Kook et al., 2019). Nonetheless, with the increasing demand for novel 92 probiotics with improved health and processing properties, the search for organisms from non-93 traditional sources has been intensified (Kumar et al., 2015). Some of the unconventional 94 sources that have recently been screened for potential probiotics include traditional fermented 95 foods and beverages, vegetables and vegetable wastes (Sornplang & Piyadeatsoontorn, 2016; 96 Ruiz-Rodríguez et al., 2019). Different intrinsic characteristics of these matrices are considered significant factors leading to the diversity of species or strains that can be found (Sornplang & 98 Piyadeatsoontorn, 2016). In fact, LAB isolated from non-traditional foods can show better performance and high competitiveness as food additives (Somashekaraiah et al., 2019). 100 Multiple sources to isolate LAB with probiotic potential can be found in tropical and subtropical 101 environments. However, few studies have been performed in the Latin-American region in terms 102 of screening and evaluation of new LAB strains with health-promoting properties. Most of the 103 studies have focused on the isolation of strains from local foods (Maldonado et al., 2011; 104 Melgar-Lananne et al., 2013; Ramos, 2013; Agostini et al., 2018), food animals (Iñiguez-Palomares et al., 2007) and traditional beverages (Romero-Luna et al., 2017). A minor portion of the studies have evaluated strains obtained from environmental sources such as fruits (Veron

81

85

86

87

88

89

90

91

97

99

105

106

带格式的:突出显示

107 et al., 2017) and the rain forest (Benavides, 2016). In terms of LAB isolation from agro-industrial 108 by products, to the authors knowledge, just one study from Brazil has evaluated the 109 characteristics of strains obtained from cocoa fermentation (Santos et al., 2016). 110 In the case of pineapple, it has been associated with the presence of diverse groups of LAB 111 such as Lactobacillus and Weisella; these bacteria are adapted to the hostile conditions 112 imposed by the nature of this matrix. These factors, along with characteristics common to other 113 known probiotics, make these organisms important probiotic candidates (Ruiz-Rodríguez et al., 114 2019). Studies performed in fresh-cut pineapple (Russo et al., 2014; Amorim et al., 2018) 115 confirmed the presence of LAB strains with probiotic potential. As in Costa Rica, pineapple 带格式的: 突出显示 116 production is one of the most important activities within the agro-industrial sector, it is possible 117 that an important diversity of strains with biotechnological potential could be found both in the 118 fresh fruit or the abundant waste material derived from the pineapple-derived industry that may 119 be use for silages production. 120 The aim of this research was to assess the probiotic potential of autochthonous LAB isolated 121 from Costa Rican pineapple peel silages. Selected LAB strains were identified using molecular 带格式的:突出显示 122 markers and subjected to a series of in-vitro analyses to evaluate a) resistance to GI tract 带格式的:突出显示 123 conditions; b) antimicrobial properties, c) antibiotic resistance, and d) adhesion to epithelial cells. 124 These evaluations were done as a preliminary screening for strains with potential application in 125 fermented food applications. This is the first report of the evaluation of LAB with promissory 126 probiotic traits from silages of pineapple residuals from the tropics.

Materials & Methods

127

128

129

130

131

Isolation of bBacterial Sstrains

Lactic acid bacteria were isolated from pineapple peel samples that were vacuum-ensiled for 30 days. The samples were obtained from a Costa Rican company dedicated to pineapple juice

production. Twenty-five grams of each sample were homogenized with 0,1-% w/v peptone water (PW) (Oxoid, Basingstoke, UK) and serially diluted in tubes containing 9 mL of deionized water. Each dilution was used to streak De Man, Rogosa and Sharpe agar plates (MRS) (Difco, Le Pont de Claix, France) that were incubated at 35 ± 2 °C overnight in anaerobic conditions. Selected colonies were subjected to Gram staining and a posterior morphological identification. The cultures were stored as glycerol stocks (20-% (v/v) at -80 °C until analyzed. All accessions are kept (with the same name indicated on this research) in the Bacteriology Collection at Faculty of Microbiology and in the Bacteriology Collection at the National Center for Food Science and Technology (CITA), University of Costa Rica.

带格式的:突出显示

批注 [HQ2]: LAB are facultative anaerobes, if the conditions were optimal for bacterial isolation?

带格式的:突出显示 带格式的:突出显示

DNA Extraction and PCR Amplification

Korea).

Total nucleic acids were extracted from each isolate using a miniprep protocol (Birnboim & Doly, 1979). A __1_500__kb_p fragment of the 16S rRNA gene was amplified using the primer pair 27F and _/1492R (Edwards et al., 1989). The PCR was done considering the conditions of an initial denaturation step at 94_°C for 1 min, 30 cycles of 94-°C for 40 s, 55-°C for 1 min, 72-°C for 1 min, and a final extension at 72 °C for 5 min. The master mix contained a final volume of 25 µl and included 1X reaction buffer, 0.2 mM dNTPs, 0.2 µM of each primer, 1.5 mM MgCl2, 1 U Taq DNA polymerase (Bio-Rad, Hercules, CA, USA) and 50 ng of DNA. In addition, a ~490 bp fragment of the phenylalanyl-tRNA synthase (*pheS*) gene was amplified by PCR using the primer pair combination pheS-21-F/pheS-22-R (Naser et al., 2005). The reaction was performed using iProof High-Fidelity DNA polymerase (Bio-Rad) and 50 ng of DNA. The following cycling conditions were used: 98 °C for 30 s, 35 cycles of 98 °C for 30 s, 60 °C for 30 s, and 72 °C for 30 s; and a final extension at 72 °C for 10 min. PCR products were visualized by electrophoresis in a _1-% agarose gel and stained with GelRed (10_-000 X) (Biotium, Fremont, CA, USA). The amplified gene fragments were sequenced in both orientations by Macrogen® (Seoul, South

带格式的:突出显示

#格式的: 突出显示 #格式的: 突出显示

带格式的: 下标, 突出显示

带格式的:突出显示

带格式的: 上标

158 159 Sequencing aAnalysis 160 The Staden package was used to assemble the obtained sequences. Sequences were aligned 带格式的:突出显示 161 using the MUSCLE algorithm (MEGA 7) (Kumar et al., 2016). Sequences were compared with 162 those available in the databases with the BlastN tool (Altschul et al., 1990). Costa Rican 163 sequences were deposited in the GenBank (Table S1). A total of 25 LAB sequences (12 164 isolates from this study and 13 obtained from GenBank) were used for phylogenetic comparison. 165 A region of 1299 nucleotides (nt) corresponding to 16S rRNA gene and a fragment of 420 nt for 166 the pheS gene, were selected. A phylogenetic tree was constructed using Bayesian 167 phylogenetic analysis. Ten million generation, eight chain, a mixed model with sampling every 168 1,000 generations was considered (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 169 2003). As an external group, the sequences of L. delbrueckeii subsp. lactis KTCT 3034 was 170 considered for phylogenetic analysis of both genes. Sequences obtained on this research are 171 shown in bold font. 172 173 Assays of Resistance to the Gastrointestinal Tract 174 Tolerance to pH 2.0. All isolates were exposed to pH 2.0 (Ramos et al., 2013), in order to 175 evaluate tolerance to acidic conditions. Each strain was cultivated in MRS broth (Difco) at 35 ± 带格式的: 突出显示 176 2-°C for 24 h and pH 7.0. The cCells were centrifuged at 5,000 rpm for 5 min at 24 °C, washed 177 two times in PW (Oxoid) and resuspended in PW (Oxoid) to a concentration of about 108 178 CFU/mL. A 1 mL aliquot of the final bacterial suspension was used to inoculate 50 mL of MRS 179 broth (Difco) adjusted to pH 2.0 using 1 N HCI (Thermo Fisher Scientific, Waltham, 带格式的:突出显示 180 Massachusetts, USA) and cultures were incubated at 35 ± 2 °C for 3 h. After 3 hours of 181 incubation, the effect of acidity was neutralized with 1N NaOH (Thermo Fisher Scientific, 182 Waltham, Massachusetts, USA). To quantify the final bacterial population, 1 mL aliquots 183 obtained at time 0 and after 3 h incubation were serially diluted in PW (Oxoid), plated on MRS

184 agar (Difco), and incubated in anaerobic jars for 72 h at 35 ± 2 °C. The assay was conducted in 带格式的:突出显示 185 triplicate. 186 187 Lysozyme resistance. Lysozyme resistance was evaluated using a modified version of the 188 method described by Zago et al. (2011). One milliliter of LAB cells was cultured in MRS broth (Difco) at $30 \pm 2^{\circ}$ C for 24 h. After incubation, an aliquot of the culture was centrifuged at 5,000 189 带格式的:突出显示 190 rpm for 5 min at 24 °C and washed twice in phosphate buffer (0.1 M, water pH 7.0). The bottom 191 was resuspended in 2 mL of Ringer solution (8.5 g/L NaCl, 0.4 g/L KCl, 0.34 g/L hydrated CaCl₂) 192 (Sigma Aldrich, St. Louis, MO, USA). A sterile electrolyte solution (SES) (0.22 g/L CaCl₂, 6.2 g/L 193 NaCl, 2.2 g/L KCl, 1.2 g/L NaHCO₃) containing 100 mg/L of lysozyme (Sigma Aldrich) was used 194 to resuspend each LAB (108 CFU/mL). Bacterial suspensions in SES without lysozyme were 195 used as negative controls. Each sample was incubated in a water bath at 37 °C for 0, 30 and 196 120 min. After incubation, serial dilutions were made in PW (Oxoid) and samples were plated in 197 duplicate on MRS and incubated for 72 h at 35 °C under anaerobic conditions. Cell counts were 198 done, and survival was determined according to the population described as percentage of 199 CFU/mL after 30 and 120 min relative to the bacterial population in CFU/mL at time zero. 200 Assays were carried out in triplicate. 201 202 Resistance to Bbile Salts. LAB tolerance to bile salts was evaluated with minor modifications 203 (García-Ruiz et al., 2014). The isolates that showed a survival greater than 90% after exposure 204 to pH 2 and lysozyme were selected. The strains were grown overnight in MRS (Difco) and 205 independently inoculated (2-% v/v) in fresh MRS broth (Difco) supplemented with 0.3-% bile salt 带格式的:突出显示 带格式的:突出显示 206 (w/v) (Sigma-Aldrich). The LAB were incubated in tilted tubes at 35 ± 2 °C for 24 h and shacked 207 at 250 rpm in a rotary benchtop incubated shaker (Lab Companion model SI-600R, Jeio Tech

Company, South Korea). Counts were performed following the procedure previously described.

208

A sample without bile salts was used as a control. Every experimental trial was performed in triplicate and the growth percentage of each culture was compared to the control.

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230231

232

233

234

209

210

Antimicrobial aAssays

Antagonistic activity against pathogens. The antagonistic activity of all isolated LAB strains against Listeria monocytogenes and Salmonella enterica was evaluated using a modified version of the overlay protocols (Booth et al., 1977; Hütt et al., 2006; Soleimani et al., 2010). Five L. monocytogenes strains were used, including four isolates from processed meat products and one reference strain (ATCC 19116). The five Salmonella isolates used in the study included one Salmonella serovar Typhimurium, one Salmonella S. Typhi and three isolates of undefined serotype. Before the experiments, each LAB and pathogen strain was individually grown at 35.0 ± 0.5 °C for 24 ± 2 h in MRS (Difco) or Fryptic Ssoy bBroth (TSB) (Oxoid), respectively. After incubation, each LAB was inoculated on MRS agar plates in a thick straight line approximately 7 cm in length and 0.5 cm from the edge; streaked plates were incubated under capnophilic conditions at $35_{.7}0 \pm 0_{7.5}$ °C for 24 ± 2 h. The MRS plates were then overlaid with approximately 5 ml of Borain heart Infusion aAgar (BHI) (Oxoid). After solidification, plates were swabbed with a cocktail suspension prepared with the overnight cultures of each pathogen. Petri dishes were incubated at 35.0 ± 0.5 °C for 24 ± 2 h under aerobic conditions. The plates were then examined for a clear inhibition zone around the line of each LAB. Clear zones were measured, and inhibitory activity was determined (Pan et al., 2009). Inhibition zones with a diameter larger than 6 mm were considered confirmation of strong antagonistic activity.

Antimicrobial activity of the supernatants. The antimicrobial activity of the cell-free supernatants

was determined against the same pathogenic strains by using a previously described protocol

with modifications (Lourenço & Pinto, 2011). The strain L. paracasei_6714, which showed

inhibition zones with a diameter larger than 6 mm for both pathogens, was cultured in MRS

批注 [HQ3]: More strains of different species need to be evaluated

带格式的:突出显示

带格式的:字体:倾斜,突出显示

带格式的:突出显示

带格式的:突出显示

带格式的:突出显示

broth (Oxoid) at 35 ± 0.5 °C for 24 ± 2 h. The LAB cultures were centrifuged at 1.500 rpm for 15 min and the supernatant was decanted and filtered (0.2 μm) into sterile test tubes. To avoid an inhibitory effect due to acid lactic exposure, the pH of the supernatant was adjusted to 7.00 with a solution of 0.1 M NaOH (Thermo Fisher Scientific, Waltham, Massachusetts, USA) and the supernatant was used immediately. An isolated colony of each pathogenic strain grown overnight on tTryptic Ssoy Aagar (TSA) (Oxoid) was suspended in PW (Oxoid) to obtain a McFarland standard of 0.5; equal volumes of each strain suspension were mixed to obtain the cocktail solutions used in the experiments. The wells of a 96-well microplate were filled with a 50 μL of sterile TSB (Oxoid), 50 μL of the indicator pathogen solution, and variable volumes (50, 45, 40, 35, 30, 25, 20 and 15 μL) of filtered supernatant adjusted to 50 μL with sterile MRS (Difco). Positive and negative controls were included. The positive control was prepared with 50 μL of sterile TSB (Oxoid), 50 μL of the indicator pathogen, and 50 μL of sterile MRS (Difco). Negative controls did not contain the pathogen, and the volume was adjusted with 50 µL of sterile PW (Oxoid). Microplates were incubated aerobically at 35.0 ± 0.5°C for 24 ± 2 h in high humidity conditions and the absorbance at 620 nm was measured in an Ultra Microplate Reader (Biotek instruments, Winooski, VT, USA). The results were adjusted by subtracting the absorbance value obtained for the negative control. All determinations were performed in triplicate. To analyze the inhibitory effect of the supernatant solutions on the two pathogens, two-way analysis of variance (ANOVA) followed by Tukey's honest significant difference test were performed using JMP version 11 (SAS Institute Inc., USA). Differences were considered significant at a P-value of < 0.05.

257 Safety Assays

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

258

259

260

Antibiotic resistance. The antibiotic sensitivity of strain *L. paracasei_*6714 was evaluated by following the swab and agar disk diffusion method (Hudzicki, 2013). A complete set of antibiotics comprising different families was used. The LAB strain was cultured in MRS broth

261	(Oxoid) at 35 \pm 0.5 °C for 24 \pm 2h and the suspension of the test strain was swabbed on	
262	solidified Müller-Hinton agar (Oxoid) using a sterile cotton-swab. Antibiotic disks impregnated	
263	with ciprofloxacin (5 μ g), vancomycin (30 μ g), penicillin (10 IU), amoxycillin with clavulanic acid	
264	(30 μ g), erythromycin (15 μ g), amikacin (30 μ g), streptomycin (10 μ g), tetracycline (30 μ g) and	
265	chloramphenicol (30 µg) (Liofilmchem, Vie a Scozia, Italy) were placed on the agar plates.	
266	Plates were incubated at 35 \pm 0.5 °C for 24 \pm 2 in capnophilic conditions. After incubation, the	
267	diameter of the inhibition zones was measured and compared with the standards established by	
268	the Clinical and Laboratory Standard Institute (Sharma et al., 2016; Wolupeck et al., 2017).	
269	Experimental trials were performed in triplicate.	
270		
271	Plasmid DNA isolation. L. paracasei_6714 was cultured in MRS broth (Oxoid) at 35 ± 0.5 °C for	
272	24 ± 2h. Plasmid DNA was extracted using a QIAprep Spin Miniprep Kit (Qiagen, Hilde,	带格式的: 突出显示
273	Alemania, Country??). The DNA was run and visualized in a 0,8-% agarose gel stained with	带格式的:突出显示
274	GelRed® (Biotium, Fremont, CA, USA). Plasmid size was estimated using a 1_k MassRuler	带格式的: 突出显示
275	DNA ladder (Thermo Fisher Scientific).	
276		
277	Cell Culture Assays	
278	Preparation of Cell Mmonolayer. The in-vitro adhesion of L. paracasei_6714 was assayed	
279	using HeLaA cells (kindly supplied by the Research Center for Tropical Diseases (CIET),	带格式的: 突出显示
280	University of Costa Rica). Cells were cultured in a monolayer of Eagle's Minimum Essential	
281	Media (EMEM) (Thermo Fisher Scientific) supplemented with 1.0-% v/v fetal bovine serum, 20	带格式的: 突出显示
282	μM <mark>ef</mark> -glutamine per mL, 50 U <mark>ef-</mark> penicillin G and 50 μg/mL of streptomycin. Cultured cells were	
283	incubated at 35 ± 0,5 °C in a modified atmosphere of 5-% CO2 and 95-% O2 until used. Before	带格式的:突出显示
284	experiments were conducted, the EMEM (Thermo Fisher Scientific) was discarded and cells	带格式的: 突出显示
285	were washed with 5 mL of 10X ₽phosphate-Bbuffered sSolution (PBS) (Sigma-Aldrich, San	
286	Luis, Missouri, USA). Cells were then covered with a solution of 2.5 mL of trypsin and EDTA	

287 0.05 (GIBCO, Thermo Fisher Scientific) with phenol red (GIBCO, Thermo Fisher Scientific) and 288 incubated for 3 min to promote cell separation. Detached cells were resuspended in 2.5 ml of 289 EMEM (Thermo Fisher Scientific) and a small volume was obtained for cell quantification using 290 a Neubauer chamber. A 12-well microplate was filled with different volumes of cell suspensions 291 and 2 mL of EMEM (Thermo Fisher Scientific) to obtain a cell concentration of 10⁶ cells/ml and 292 then incubated for 48 h as previously indicated. 293 294 In- vitro cell adhesion assay. A modified version of a previously published methodology was 295 used (Gopal et al., 2001; Tsai et al., 2005). L. paracasei 6714, at a concentration of about 10⁷ 296 CFU/mL in EMEM (Thermo Fisher Scientific), was placed over a monolayer of HeLA2 cells 带格式的:突出显示 297 previously grown on a glass slide incubated inside a 12-well microplate. Microplates were then 298 incubated for 2 h at 35 ± 0.5 °C. After incubation, cells were washed twice with PBS (Sigma-带格式的:突出显示 299 Aldrich), fixed with 10-% of paraformaldehyde for 10 min, washed twice with PBS (Sigma-带格式的:突出显示 300 Aldrich), and then stained with crystal violet for 5 min. The stained slides were washed with PBS 301 (Sigma-Aldrich) to remove the excess dye and observed under a light microscope. LAB 302 adhesion was evaluated by quantifying the mean number of bacterial cells attached to the HeLa 303 cell monolayer in 5 randomly selected microscopic fields. L. paracasei counts were determined 304 for an average of 26 epithelial cells. A positive control with L. fermentum_6702 (low adhesion 305 capacity strain determined in preliminary assays not included here) was included for comparison. 306 307 Antagonistic Effect of L. paracasei Against Salmonella Invasion in HeLa Cells 308 Treatment assay. A modified version of a previous methodology was used (Giannella et al., 309 1973). Salmonella serovar Thypimurium was grown on TSB (Oxoid) at 35 ± 0.5 °C for 24 ± 2 h 带格式的: 突出显示 310 and diluted in antibiotic-free EMEM to obtain a concentration of about 10⁷ CFU/mL. L. 311 paracasei_6714 was grown in MRS (Oxoid) incubated under the same conditions and then 312 diluted as described for Salmonella. A volume of 1 mL of each culture suspension was added to

313 each cell monolayer inside the 12-well microplate. Plates were centrifuged at 1,600 rpm for 5 314 min and then incubated for 0, 3 and 24 h under the same conditions described for cell 315 maintenance. After incubation, wells were washed two times with PBS and then kept for 1 h in 316 fresh EMEM (Thermo Fisher Scientific) medium containing 100 µg/mL of gentamicin. After 317 gentamicin exposure, each well was washed twice with PBS (Sigma-Aldrich) and cells were then lysed with ultrapure water for 10 min. Appropriate dilutions in PW (Oxoid) were spread onto 318 带格式的:突出显示 319 TSA (Oxoid) and Xxylose Llysin decoxycholate Aagar (XLD) (Oxoid). The pelates were 带格式的: 突出显示 320 incubated at 35 ± 0.5 °C overnight. Bacterial counts were used to calculate the invasion rate. A 321 positive control of Salmonella was included. Experiments were performed in triplicate. 322 Protection aAssay. The protocol described for the treatment assay was modified to include pre-323 exposure of each cell monolayer to L. paracasei_6714 for 3 and 24 h before infection with 324 Salmonella. 325 Results 326 327 A total of twelve different LAB morphotypes were isolated from pineapple silages. Considering 带格式的:突出显示 328 the 16S rRNA sequence and pheS gen the isolates correspond to Lacticaseibacillus L. 329 paracasei (seven strains), Lentilactobacillus parafarraginis (two strains), Limosilactobacillus 带格式的:突出显示 330 fermentum (two strains), and Weissella-W. ghanensis (one strain) (Table 1, and Table S1). 331 When the sequences obtained in this research and those selected from GenBbank 332 (www.genbank.com) were considered, a clear cluster was established. Equivalent length 333 portions of both genes were used to resolve the species groups obtained. The species were 334 renamed according to novel classification of Zheng et al. (2020). 335 After exposure to acidic conditions (pH 2.0) all LAB strains were viable, but at least seven 336 showed a population reduction above 90-%. No reduction was observed in the population of the 带格式的:突出显示 337 control samples (pH 6.0) as expected (data not shown). Higher rate of survival was observed for

338	L. parafarraginis_6719, L. paracasei (isolates: 6710 and 6715), and L. fermentum (isolates:	
339	6702 and 6704). On the other hand, the survival to lysozyme ranged between 7.7.5 and 100-%,	带格式的: 突出显示
340	with similar results after 120 min of exposure. Five of the LAB isolates with 9 <mark>0-%</mark> or higher	带格式的: 突出显示
341	survival after exposure to lysozyme also showed high resistance to acidic conditions, according	
342	to the established criteria. These strains were selected and further evaluated for resistance to	
343	bile salt and survival was higher than 6 <mark>1-%</mark> for all strains subjected to a medium containing	带格式的:突出显示
344	0.3-% bile salts. Survival data for all strains exposed to simulated GI conditions are summarized	带格式的:突出显示
345	in Table 2.	
346	The antagonistic activity of the twelve isolates from this study against selected pathogens is	
347	shown in Table 3 and Figure S1. Three strains produced strong inhibition zones against	
348	Salmonella. Nevertheless, when the strains were evaluated against L. monocytogenes, only one	
349	strain (L. paracasei_6714) produced an inhibition zone with a diameter greater than the	
350	reference criteria (6 mm). According to these results, the antimicrobial activity of the supernatant	
351	of <i>L. paracasei</i> _6714 was evaluated and the results are shown in Table 4. Significant inhibition	
352	of <i>Salmonella</i> was observed with 20 μL of the supernatant, while up to 50 μL were required to	带格式的:突出显示
353	obtain the same effect for Listeria.	
354	The antibiotic susceptibility of <i>L. paracasei_</i> 6714 is shown in Table 5. The strain was resistant	
355	to most of the tested compounds. The only exceptions were amoxicillin with clavulanic acid and	
356	erythromycin, where an intermediate sensitivity was observed. In addition, the $\it L.$	
357	paracasei_6714 strain isolated was not found to harbor plasmids, which indicates a low	
358	probability of transferring the antibiotic resistance feature (data not shown).	
359	Results-The results for the adhesion to HeLa cells are found in Table 6. According to the cell	
360	counts, the adhesion capacity of <i>L. paracasei_</i> 6714 was 2 <mark>00-%</mark> higher than that of <i>L. fermentum</i>	带格式的:突出显示
361	(control isolate). The enological capacity of the studied strain to prevent pathogen invasion is	
362	shown in Table 7. In the treatment assay, adhesion of the pathogen was reduced by	

approximately 1,1-%. On the other hand, in the protection assay, pathogen reduction was

带格式的:突出显示

带格式的:突出显示

364 between 10-% and 20-%.

Discussion

363

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

Lactobacilli were the most common group found in this research. Thise results is are similar to other reports of LAB isolated from fermented products (Sáez et al., 2018), particularly from pineapple and pineapple waste (Mardalena & Erina, 2016; Arshad et al., 2018). This finding is not surprising due to the exceptional genetic diversity of the Lactobacillus genus, which has recently divided in 23 novel genera (De Bruyne et al., 2010; Dicagno et al., 2010; Zheng et al., 2020). On the other hand, many Weissella isolates have been obtained from fermentation processes and characterized as heterofermentative bacteria. In fact, W. ghanensis was first isolated from cacao fermentation (De Bruyne et al., 2010). Isolates were further characterized for their probiotic potential to provide favorable effects on the human gut (Pan et al., 2009). Probiotic evaluation of novel strains must include tolerance to the GI tract, antimicrobial activity, susceptibility to antibiotics and adhesion to mammalian cells (Byakika et al., 2019). The group of tests for GI tolerance are aimed to evaluate whether the strains are able to survive exposure to acid and enzymes and eventually the transit through the stomach and intestines (Ramos et al., 2013; García-Ruiz et al., 2014; Hernández-Alcántara, 2018). In this study, a high tolerance to low pH was observed for all the strains (Tripathi and & Giri, 2014), with the exception of L. paracasei_6709 which showed the lowest survival response. It is important to point out the need to evaluate hundreds of strains to select those that can survive acidic environments (Ramos et al., 2013). It is hypothesized that high tolerance to acidic conditions observed in this study may be related with the ensilage process, in which the LAB that survive the last stages were subjected to acidic pH for a prolonged period of time (Muraro et al., 2021). Besides, these results indicate that some of the isolates may be able to survive the normal gastric environment. It is worth noting that the average pH during human digestion is around 2.0 - 3.0 with gradients from 1.8 to 4.0 during 2 to 3 h periods (Maragkoudakis et al., 2006). Also, the high survival of LAB to lysozyme exposure in this study was similar to the results previously reported (García-Ruiz et al., 2014) where survival greater than 80-% were 带格式的:突出显示 observed for strains of L. pentosaceus, L. casei and L. plantarum after incubation for 120 min; however, survival was around 50-% for some strains. Lysozyme resistance of LAB has been 带格式的:突出显示 attributed to the peptidoglycan structure in the bacteria cell wall, the physiological state of cells and the enzyme concentration in the medium (Cunningham et al., 1991; Delfini et al., 2004). The ability to survive in the presence of bile is another important characteristic of potential probiotic strains (García-Ruiz et al., 2014, Hernández-Alcántara et al., 2018). In the case of probiotics, it was established that survival limits for bile salts should be 50-% or higher after 带格式的:突出显示 exposure to a concentration of 0,3-% (Mathara et al., 2008). Using these criteria, five strains 带格式的:突出显示 selected in this study (after pH and lysozyme tests) were classified as bile-resistant. Similar results have been reported for Bifidobacterium, other Lactobacillus strains, Pediococcus pentosaceus and some yeasts (Delgado et al., 2008; Jensen et al., 2012; Turchi et al., 2013; García-Ruiz et al., 2014). To obtain an accurate colonization of the host GI tract, a high bile tolerance is a desirable characteristic for bacteria aimed to be used as probiotics (Luo et al., 2012; Byakika et al., 2019). In this research, it was found that bile survival is strain-related instead of LAB species-related and these data are in agreement with previous reports (Delgado et al., 2008; Maldonado et al., 2012). Inhibitory activity against foodborne pathogens is a desirable trait for bacteria with probiotic potential (Hütt et al., 2006). Previous reports have shown that some LAB strains are able to inhibit both Gram positive and Gram negative bacteria by the secretion of organic acids or other antimicrobial compounds such as bacteriocins (Alakomi et al., 2000; Vieco-Saiz et al., 2019). For example, a strong antimicrobial potential was reported for L. acidophilus NIT against Salmonella Typhimurium, Escherichia coli and Clostridium difficile (Pan et al., 2009). Similar 带格式的: 突出显示

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414 findings were observed from this study as L. paracasei_6714 was active against both 415 Salmonella and L. monocytogenes. A previous report by Hütt et al. (2006) also found an 416 important level of diversity in the antimicrobial activity of different LAB strains, highlighting the 417 importance of an extensive evaluation of newly isolated strains. 418 The antimicrobial capacity of L. paracasei_6714 in solid media was further corroborated with the 419 supernatant test. Bacterial metabolites in the medium such as lactic acid, acetic acid, diacetyl, 420 and others may be responsible for the observed inhibitory effect (Çon & Gökalp, 2000). 421 Inhibition by L. paracasei 6714 was still observed, even though the supernatant was previously 422 neutralized with NaOH. This suggests that other compounds, such as extracellular proteins as 423 bacteriocins, may be responsible for the observed effect. Several lactobacilli species are able to 424 excrete antimicrobial proteins (Mora-Villalobos et al., 2020). This property is advantageous in 425 terms of host colonization and competition with other bacteria as other microorganisms are 426 inhibited by the excreted metabolites or through competitive exclusion mechanisms based on 427 competition for binding sites and nutrients (Vieco-Saiz et al., 2019). L. paracasei_6714 is able to 428 synthesize extracellular compounds that are able to inhibit both Salmonella and L. 429 monocytogenes and it may be able to inhibit pathogens during in vivo applications. 430 Concerning susceptibility to antibiotics, an important level of resistance was observed for L. 431 paracasei_6714, especially to vancomycin. This antibiotic is considered one of the last resource 432 treatments for multidrug-resistant pathogens, and as a result, this trait is a major concern 433 (Sharma et al., 2016). Previous studies have linked intrinsic resistance to glycopeptides in 434 lactobacilli with the ability to replace the terminal d-alanine residue with d-lactate or d-serine in 435 the muramyl pentapeptide, which prevents vancomycin binding (Sharma et al., 2016). Antibiotic 436 resistance is considered an advantage for probiotic strains as it facilitates the process of host 437 colonization and survival to eventual exposure to an antibiotic treatment (Bacha et al., 2010; 438 Sharma et al., 2014). Nevertheless, there may be a risk of transfer of this feature from antibiotic 439 resistant strains to foodborne pathogens, since most of the resistance genes are located in

gene hotspots along mobile elements such as plasmids (Oliveira et al., 2017). However, as no plasmids were detected in *L. paracasei_*6714, the risk for transferring antibiotic resistance traits to other bacteria during *in vivo* applications should be low.

Finally, the cell culture test was performed to evaluate the ability of *L. paracasei_*6714 to adhere to intestinal epithelial cells and mucosal surfaces. This is a prerequisite for gut colonization by probiotics (Janković et al., 2012). Colonization and adhesion may be determined by aggregation of LAB cells (Collado et al., 2007), which is favored by the formation of a film that contributes to the exclusion of pathogens (Gopal et al., 2001; Tsai et al., 2005). Precisely, *L. paracasei_*6714 showed a significant level of adhesion to HeLa cells associated with a reduced level of cell infection by *Salmonella*. Likewise, it was found that LAB reduced cell infection by *E. coli* by

带格式的:突出显示

Conclusions

3<mark>1-% to 52-%</mark> (García-Ruiz et al., 2014).

To our knowledge, this is the first study analyzing bacteria with potential probiotic features from Costa Rican sources and one of few studies obtaining LAB with biotechnological potential from agro-industrial waste in Latin America. The rResults from this study confirm that agro-industrial byproducts, specifically silages, may be an important source of promising LAB strains with potential probiotic profile. At least one of the isolates (*L. paracasei_6714*) obtained could be a potential probiotic candidate based on its *in-_vitro* characteristics and behavior. Although this strain survived simulated GI conditions, additional studies, including encapsulation, could improve survival in the GI environment. This strain showed important antagonistic activity against pathogens of public health concern, antibiotic resistance without the presence of plasmids, and a good adhesion pattern in cell cultures. Further studies to assess its potential use as a beneficial culture in the food industry are highly recommended. Additional tests may include, among others, tolerance to sodium chloride, production of bile salt hydrolase, *in-_vivo*

465 tests using animal models, experiments to evaluate the behavior of the strain in different food 466 matrices and production of exopolysaccharides. 467 Acknowledgements 468 469 This work was supported by the technical assistance of Henry Castro, Arturo Pacheco and 470 María Fernanda Miranda at the Food Microbiology Laboratory and Molecular Biology Laboratory 471 from UCR. Also, the authors acknowledge M2Sc. Marlen Cordero Serrano from CIET for her 472 technical support during the cell culture assays. 473 474 References 475 Agostini C, Eckert C, Vincenzi A, Machado BL, Jordon BC, Kipper JP, Dullius A, Dullius 476 CH, Lehn DN, Sperotto RA, Pozzobon A, Granada CE, Maciel MJ, Volken de Souza CF. 477 2018. Characterization of technological and probiotic properties of indigenous Lactobacillus spp. 带格式的:突出显示 from south Brazil. 3 Biotech 8(11):451 DOI 10.1007/s13205-018-1469-7. 带格式的:突出显示 478 479 Alakomi HL, Skyttä E, Saarela M, Mattila-Sandholm T, Latva-Kala K and Helander IM. 2000. 480 Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Applied 481 Environmental Microbiology **66**:2001–2005 DOI 10.1128/aem.66.5.2001-2005.2000. 482 Altschul SF, Gish W, Miller W, Lipman DJ. 1990. Basic local alignment search tool. Journal of 483 Molecular Biology 215:403-410 DOI 10.1016/S0022-2836(05)80360-2. 484 Amorim JC, Piccoli RH, Duarte WF. 2018. Probiotic potential of yeasts isolated from 485 pineapple and their use in the elaboration of potentially functional fermented beverages. Food 486 Research International 107:518-527 DOI 10.1016/j.foodres.2018.02.054.

487	Arshad FA, Mehmood R, Hussain S, Annus-Khan M, Khan MS. 2018. Lactobacilli as	
488	probiotics and their isolation from different sources. British Journal of Research 5:43 DOI	
489	10.21767/2394-3718.100043.	
490	Ayala DI, Cook PW, Franco JG, Bugarel M, Kottapalli KR, Loneragan GH, Brashears MM,	
491	Nightingale KK. 2019. A systematic approach to identify and characterize the effectiveness	
492	and safety of novel probiotic strains to control foodborne pathogens. Frontiers in Microbiology	
493	10 :1108 DOI 10.3389/fmicb.2019.01108	
494	Bacha K, Mehari T, Ashenafi M. 2010. Antimicrobial susceptibility patterns of LAB isolated	
495	from Wakalim, a traditional Ethiopian fermented beef sausage. Journal of Food Safety 30:213-	带格式的: 突出显示
496	223 DOI 10.1111/j.1745-4565.2009.00201.x	
497	Birnboim HC, Doly J. 1979. A rapid alkaline extraction procedure for screening recombinant	
498	plasmid DNA. Nucleic Acids Research 7:1513–23 DOI 10.1093/nar/7.6.1513.	
499	Booth SJ, Johnson JL, Wilkins TD. 1977. Bacteriocin production by strains of Bacteroides	
500	isolated from human feces and the role of these strains in the bacterial ecology of the colon.	
501	Antimicrobial Agents Chemotherapy 11:718–724 DOI 10.1128/aac.11.4.718.	
502	Byakika S, Mukisa IM, Byaruhanga YB, Muyanja C. 2019. A Review of criteria and methods	
503	for evaluating the probiotic potential of microorganisms. Food Reviews International 35:427–466	
504	DOI 10.1080/87559129.2019.1584815	
505	Collado M, Meriluoto J, Salminen S. 2007. Adhesion and aggregation properties of probiotic	
506	and pathogen strains. European Food Research Technology 226:1065–1073 DOI	
507	10.1007/s00217-007-0632-x.	
508	Çon AH, Gökalp HY. 2000. Production of bacteriocin-like metabolites by lactic acid cultures	
509	isolated from sucuk samples. <i>Meat Science</i> 55 :89–96. DOI 10.1016/S0309-1740(99)00129-1	带格式的: 突出显示
510	Cunningham F, Proctor V, Goestsh S. 1991. Egg-white vzozyme as a food preservative: an	带格式的:突出显示
511	overview. Worlds Poultry Science Journal 47:141–163.	

512	De Bruyne K, Camu N, De Vuyst L, Vandamme P. 2010. Weissella fabaria sp. nov., from a
513	Ghanaian cocoa fermentation. International Journal of Systematic and Evolutionary
514	Microbiology 60 :1999–2005 DOI 10.1099/ijs.0.019323-0.
515	de Vrese M and Offick B. 2010. Probiotics and prebiotics: effects on diarrhea. In: Watson R
516	and Preedy V, eds. Bioactive Foods in Promoting Health: Probiotics and Prebiotics. Academic
517	Press, London, pp.205–227
518	Delfini C, Cersosimo M, Del Prete V, Strano M, Gaetano G, Pagliara A, Ambrò S. 2004.
519	Resistance screening essay of wine lactic acid bacteria on lysozyme: efficacy of lysozyme in
520	unclarified grape musts. Journal of Agricultural and Food Chemistry 52:1861–1866 DOI
521	10.1021/jf034824m.
522	Delgado R, O'Sullivan E, Fitzgerald G, Mayo B. 2008. In vitro evaluation of the probiotic of
523	human intestinal Bifidobacterium species and selection of new probiotic candidates. Journal of
524	Applied Microbiology 104 :1119–1127 DOI 10.1111/j.1365-2672.2007.03642.x.
525	Dey G. 2018. Non-dairy probiotic foods: innovation and market trends. In: Panda SK and Shetty
526	PH, eds. Innovations in technologies for fermented food and beverage industries, Springer
527	International Publishing, Cham. pp. 1-339
528	Di Cagno R, Cardinali G, Minervini G, Antonielli L, Rizzello CG, Ricciuti P, Gobbetti M.
529	(2010). Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple
530	(Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing. Food
531	Microbiology 27:381–389 DOI 10.1016/j.fm.2009.11.012.
532	García-Ruiz A, González de Llano D, Esteban-Fernández A, Requena T, Bartolomé B,
533	Moreno-Arribas MV. 2014. Assessment of probiotic properties in lactic acid bacteria isolated
534	from wine. Food Microbiology 44: 220–225 DOI 10.1016/j.fm.2014.06.015.
535	Giannella RA, Washington O, Gemski P, Formal SB. 1973. Invasion of HeLa cells by
536	Salmonella typhimurium: A model for study of invasiveness of Salmonella. Journal of Infectious
537	Disease 128:69–75 DOI 10.1093/infdis/128.1.69.

带格式的: 突出显示

540	RNA. Nucleic Acids Research 17:7843–7853 DOI 10.1093/nar/17.19.7843.	
541	Gopal PK, Prasad J, Smart J, Gill HS. 2001. In vitro adherence properties of Lactobacillus	
542	rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against	
543	an enterotoxigenic Escherichia coli. International Journal of Food Microbiology 67:207–216 DOI	
544	10.1016/s0168-1605(01)00440-8.	
545	Hernández-Alcántara AM, Wacher C, Llamas MG, López P and Pérez-Chabela ML. 2018.	
546	Probiotic properties and stress response of thermotolerant lactic acid bacteria isolated from	
547	cooked meat products. LWT - Food Science Technology 91:249–257 DOI	
548	10.1016/j.lwt.2017.12.063.	
549	Hossain MI, Sadekuzzaman M, Ha S Do. 2017. Probiotics as potential alternative biocontrol	
550	agents in the agriculture and food industries: A review. Food Research International 100:63–73.	
551	Huelsenbeck JP and Ronquist F. (2001). MRBAYES: Bayesian inference of phylogenetic trees.	
552	Bioinformatics 17:754–755 DOI 10.1016/j.foodres.2017.07.077.	
553	Hudzicki J. 2013. Kirby-Bauer disk diffusion susceptibility test protocol. American Society of	
554	Microbiology 1–25.	
555	Hütt P, Shchepetova J, Lõivukene K, Kullisaar T, Mikelsaar M. 2006. Antagonistic activity of	
556	probiotic lactobacilli and bifidobacteria against entero- and uropathogens. Journal of Applied	
557	Microbiology 100:1324–1332 DOI 10.1111/j.1365-2672.2006.02857.x.	
558	Iñiguez-Palomares C, Pérez-Morales R, Acedo-Félix E. 2007. Evaluation of probiotic	
559	properties in Lactobacillus isolated from small intestine of piglets. Microbiología 49(3-4):46-54.	带格式的:
560	Isolauri E, Ouwehand AC, Salminen S. 2002. Probiotics: An overview of beneficial effects.	
561	Antonie van Leeuwenhoek, International Journal of General Molecular Microbiology 82:279–289.	

Janković T, Frece J, Abram M, Gobin I. 2012. Aggregation ability of potential probiotic

Lactobacillus plantarum strains. International Journal of Sanitary Engineering Research 6:19–24.

Edwards U, Rogall T, Blöker H, Emde M and Bötter E. 1989. Isolation and direct complete

nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal

538

539

562

563

带格式的:字体:倾斜,突出显示

564	Jensen H, Grimmer S, Naterstad K, Axelsson L. 2012. In vitro testing of commercial and
565	potential probiotic lactic acid bacteria. International Journal Food Microbiology 153:216–222
566	DOI 10.1016/j.ijfoodmicro.2011.11.020.
567	Kook SY, Chung EC, Lee Y, Lee D, Kim S. 2019. Isolation and characterization of five novel
568	probiotic strains from Korean infant and children faeces. PLoS One 14:e0223913 DOI
569	10.1371/journal.pone.0223913.
570	Kumar H, Salminen S, Verhagen H, Rowland I, Heimbach J, Bañares S, Young T, Nomoto
571	K, Lalonde M. 2015. Novel probiotics and prebiotics: road to the market. Current Opinion
572	Biotechnology 32:99–103 DOI 10.1016/j.copbio.2014.11.021.
573	Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis
574	Version 7.0 for bigger datasets. <i>Molecular Biology and Evolution</i> 33 :1870–1874. DOI
575	10.1093/molbev/msw054.
576	Lourenço FR, Pinto T. 2011. Antibiotic microbial assay using kinetic-reading microplate system.
577	Brazilian Journal of Pharmaceutical Sciences 47:573–584. DOI 10.1590/S1984-
578	82502011000300015
579	Luo Y, Ma B, Zou L, Cai YH, Kang JP, Li B, Gao XH, Wang P, Xiao JJ. 2012. Identification
580	and characterization of lactic acid bacteria from forest musk deer feces. African Journal of
581	Microbiology Research 6 :5871–5881. DOI:10.5897/AJMR12.807
582	Maldonado N, Ruiz C, Otero M, Sesma F, Nader-Macías ME. 2012. Lactic acid bacteria
583	isolated from young calves characterization and potential as probiotic. Research Veterinary
584	Science 92 :342–349 DOI 10.1016/j.rvsc.2011.03.017.
585	Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E.
586	2006. Probiotic potential of Lactobacillus strains isolated from dairy products. International Dairy
587	Journal 16:189–199 DOI 10.1016/j.idairyj.2005.02.009

带格式的:字体:倾斜,突出显示

带格式的:突出显示

588	Mardalena SS, Erina S. 2016. Molecular characteristics and identification of lactic acid bacteria	
589	of pineapple waste as probiotics candidates for ruminants. <i>Pakistan Journal of Nutrition</i> 15 :519–	
590	523 DOI 10.3923/pjn.2016.519.523	
591	Mathara JM, Schillinger U, Guigas C, Franz C, Kutima PM, Mbugua SK, Shin HK,	
592	Holzapfel WH. 2008. Functional characteristics of Lactobacillus spp. from traditional Maasai	
593	fermented milk products in Kenya. International Journal of Food Microbiology 126:57–64 DOI	
594	10.1016/j.ijfoodmicro.2008.04.027.	
595	Melgar-Lalanne G, Rivera-Espinoza Y, Reyes Méndez Al, Hernández-Sánchez H. 2013. <i>In</i>	
596	vitro evaluation of the probiotic potential of halotolerant Lactobacilli isolated from a ripened	
597	tropical Memexican cheese. Probiotics Antimicrobial Proteins 5(4):239-51 DOI 10.1007/s12602-	带格式的:突出显示
598	013-9144-0.	
599	Meybodi N, Mortazavian A. 2017. Probiotic supplements and food products: a comparative	
600	approach. Biochemical Pharmacology 06 :227.	
601	Mora-Villalobos JA, Montero-Zamora J, Barboza N, Rojas-Garbanzo C, Usaga J,	
602	Redondo-Solano M, Schroedter L, Olszewska-Widdrat A, López-Gómez JP. 2020.	
603	Multi-product lactic acid bacteria fermentations: A review. Fermentation 6:1–23 DOI	
604	10.3390/fermentation6010023.	
605	Muraro GB, de Almeida Carvalho Estrada P, de Oliveira Pasetti MH, Santos MC, Nussio	带格式的:突出显示
606	LG. 2021. Bacterial dynamics of sugarcane silage in the tropics. Environmental Microbiology	
607	DOI 10.1111/1462-2920.15428	
608	Nami Y, Haghshenas B, Vaseghi Bakhshayesh R, Jalaly HM, Eslami S, Hejazi MA. 2018.	
609	Novel autochthonous lactobacilli with probiotic aptitudes as a main starter culture for probiotic	
610	fermented milk . Lwt. 98 :85–93 DOI 10.1016/j.lwt.2018.08.035.	带格式的:突出显示

611	Nascimento LCS, Casarotti SN, Todorov SD, Penna ALB. 2019. Probiotic potential and	
612	safety of enterococci strains. Annals of Microbiology 69:241–252 DOI 10.1007/s13213-018-	
613	1412-5.	
614	Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P, Vancanneyt M, Swings J. 2005.	
615	Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus	
616	species based on rpoA and pheS genes. Microbiology 151:2141–2150 DOI	
617	10.1099/mic.0.27840-0.	
618	Oliveira PH, Touchon M, Cury J, Rocha EPC. 2017. The chromosomal organization of	
619	horizontal gene transfer in bacteria. Nature Communications 8:1–11.	
620	Pan X, Chen F, Wu T, Tang H, Zhao Z. 2009. The acid, bile tolerance and antimicrobial	
621	property of Lactobacillus acidophilus NIT. Food Control 20:598–602 DOI	
622	10.1016/j.foodcont.2008.08.019	
623	Ramos CL, Thorsen L, Schwan RF, Jespersen L. 2013. Strain-specific probiotics properties of	
624	Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from	
625	Brazilian food products. Food Microbiology 36 :22–29 DOI 10.1016/j.fm.2013.03.010.	
	Biazilian 1000 products. Pood Microbiology 30 :22–29 DOI 10.1010/j.im.2013.03.010.	
626	Romero-Luna HE, Hernández-Sánchez H, Dávila-Ortiz, G. 2017. Traditional fermented	
626 627	·	
	Romero-Luna HE, Hernández-Sánchez H, Dávila-Ortiz, G. 2017. Traditional fermented	
627	Romero-Luna HE, Hernández-Sánchez H, Dávila-Ortiz, G. 2017. Traditional fermented beverages from Mexico as a potential probiotic source. <i>Annals of Microbiology</i> 67 :577–586 DOI	
627 628	Romero-Luna HE, Hernández-Sánchez H, Dávila-Ortiz, G. 2017. Traditional fermented beverages from Mexico as a potential probiotic source. <i>Annals of Microbiology</i> 67:577–586 DOI 10.1007/s13213-017-1290-2.	
627 628 629	Romero-Luna HE, Hernández-Sánchez H, Dávila-Ortiz, G. 2017. Traditional fermented beverages from Mexico as a potential probiotic source. <i>Annals of Microbiology</i> 67:577–586 DOI 10.1007/s13213-017-1290-2. Ruiz-Rodríguez LG, Mohamed F, Bleckwedel J, Medina R, De Vuyst L, Hebert EM, Mozzi F.	
627 628 629 630	Romero-Luna HE, Hernández-Sánchez H, Dávila-Ortiz, G. 2017. Traditional fermented beverages from Mexico as a potential probiotic source. <i>Annals of Microbiology</i> 67:577–586 DOI 10.1007/s13213-017-1290-2. Ruiz-Rodríguez LG, Mohamed F, Bleckwedel J, Medina R, De Vuyst L, Hebert EM, Mozzi F. 2019. Diversity and functional properties of lactic acid bacteria isolated from wild fruits and	
627 628 629 630 631	Romero-Luna HE, Hernández-Sánchez H, Dávila-Ortiz, G. 2017. Traditional fermented beverages from Mexico as a potential probiotic source. <i>Annals of Microbiology</i> 67:577–586 DOI 10.1007/s13213-017-1290-2. Ruiz-Rodríguez LG, Mohamed F, Bleckwedel J, Medina R, De Vuyst L, Hebert EM, Mozzi F. 2019. Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in northern Argentina. <i>Frontiers in Microbiology</i> 10:1091 DOI	
627 628 629 630 631 632	Romero-Luna HE, Hernández-Sánchez H, Dávila-Ortiz, G. 2017. Traditional fermented beverages from Mexico as a potential probiotic source. <i>Annals of Microbiology</i> 67:577–586 DOI 10.1007/s13213-017-1290-2. Ruiz-Rodríguez LG, Mohamed F, Bleckwedel J, Medina R, De Vuyst L, Hebert EM, Mozzi F. 2019. Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in northern Argentina. <i>Frontiers in Microbiology</i> 10:1091 DOI 10.3389/fmicb.2019.01091.	
627 628 629 630 631 632 633	Romero-Luna HE, Hernández-Sánchez H, Dávila-Ortiz, G. 2017. Traditional fermented beverages from Mexico as a potential probiotic source. <i>Annals of Microbiology</i> 67:577–586 DOI 10.1007/s13213-017-1290-2. Ruiz-Rodríguez LG, Mohamed F, Bleckwedel J, Medina R, De Vuyst L, Hebert EM, Mozzi F. 2019. Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in northern Argentina. <i>Frontiers in Microbiology</i> 10:1091 DOI 10.3389/fmicb.2019.01091. Russo P, de Chiara ML, Vernile A, Amodio ML, Arena MP, Capozzi V, Massa S, Spano G.	

带格式的: 突出显示

636	Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed	
637	models. Bioinformatics 19:1572–1574 DOI 10.1093/bioinformatics/btg180.	
638	Sáez GD, Flomenbaum L, Zárate G. 2018. Lactic acid bacteria from Agreentinean fermented	带格式的: 突出显示
639	foods: Isolation and characterization for their potential use as starters for fermentation of	
640	vegetables. Food Technology Biotechnology 56 :398–410 DOI 10.17113/ftb.56.03.18.5631.	
641	Santos TT, Ornellas RMS, Arcucio LB, Oliveira MM, Nicoli JR, Dias CV, Trovatti AP,	
642	Vinderola CG. 2016. Characterization of lactobacilli strains derived from cocoa fermentation in	
643	the south of Bahia for the development of probiotic cultures. LWT- Food Science and	
644	Technology 73:259–266 DOI 10.1016/j.lwt.2016.06.003.	
645	Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R. 2014. Antibiotic resistance among	
646	commercially available probiotics. Food Research International 57:176–195 DOI	
647	10.1016/j.foodres.2014.01.025.	
648	Sharma P, Tomar SK, Sangwan V, Goswami P, Singh R. 2016. Antibiotic resistance of	
649	Lactobacillus sp. isolated from commercial probiotic preparations. Journal of Food Safety	带格式的: 突出显示
650	36 :38–51 DOI 10.1111/jfs.12211.	
651	Soccol CR, Vandenberghe LPS, Spier MR, Medeiros ABP, Yamaguishi CT, De Dea	
652	Lindner J, Pandey A, Thomaz-Soccol V. 2010. The potential of probiotics: A review. Food	
653	Technology Biotechnology 48 :413–434.9.	带格式的: 突出显示
654	Soleimani NA, Kermanshahi RK, Yakhchali B, Sattari TN. 2010. Antagonistic activity of	
655	probiotic lactobacilli against Staphylococcus aureus isolated from bovine mastitis. African	
656	Journal of Microbiology Research 4 :2169–2173	
657	Somashekaraiah R, Shruthi B, Deepthi BV, Sreenivasa MY. 2019. Probiotic properties of	
658	lactic acid bacteria isolated from neera: a naturally fermenting coconut palm nectar. Frontiers in	带格式的: 突出显示
659	Microbiology 10 DOI 10.3389/fmicb.2019.01382	
660	Sornplang P, Piyadeatsoontorn S. 2016. Probiotic isolates from unconventional sources: a	
661	review. Journal of Animal Science Technology 58:26 DOI 10.1186/s40781-016-0108-2.	

662	Tripathi M, Giri S. 2014. Probiotic functional foods: survival of probiotics during processing and
663	storage. Journal of Functional Foods 9:255–241 DOI 10.1016/j.jff.2014.04.030.
664	Tsai CC, Hsih HY, Chiu HH, Lai YY, Liu JH, Yu B, Tsen HY. 2005. Antagonistic activity
665	against Salmonella infection in vitro and in vivo for two Lactobacillus strains from swine and
666	poultry. International Journal of Food Microbiology 102:185–194 DOI
667	10.1016/j.ijfoodmicro.2004.12.014.
668	Turchi B, Mancini S, Fratini F, Pedonese F, Nuvoloni R, Bertelloni F, Ebani VV, Cerri D.
669	2013. Preliminary evaluation of probiotic potential of Lactobacillus plantarum strains isolated
670	from Italian food products. World Journal of Microbiology and Biotechnology 29:1913–1922 DOI
671	0.1007/s11274-013-1356-7.
672	Veron HE, Di Risio HD, Isla MI, Torres S. 2017. Isolation and selection of potential probiotic
673	lactic acid bacteria from Opuntia ficus-indica fruits that grow in Northwest Argentina. LWT -
674	Food Science and Technology 84 :231-240 DOI 10.1016/j.lwt.2017.05.058.
675	Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D. 2019.
676	Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic
677	growth promoters during food-animal production. Frontiers in Microbiology 10:57 DOI
678	10.3389/fmicb.2019.00057
679	Wolupeck HL, Morete CA, DallaSanta OR, Luciano FB, Madeira HM, Freitas de Macedo RE.
680	2017. Methods for the evaluation of antibiotic resistance in <i>Lactobacillus</i> isolated from
681	fermented sausages. Ciência Rural 47:8.
682	Zago M, Fornasari ME, Carminati D, Burns P, Suàrez V, Vinderola G, Reinheimer J, Giraffa
683	G . 2011. Characterization and probiotic potential of <i>Lactobacillus plantarum</i> strains isolated from
684	cheeses. Food Microbiology 28:1033–1040 DOI 10.1016/j.fm.2011.02.009.
685	Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O'Toole PW, Pot B,
686	Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. 2020. A

带格式的:字体:倾斜,突出显示

带格式的:字体:倾斜

带格式的:字体:倾斜,突出显示

带格式的:字体: 11 磅,字体颜 色:自动设置,图案:清除,突 出显示

687	taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended		带格式的:	字体:	倾斜,	突出显示	
688	description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and		带格式的:				<u> </u>
689	Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology 70:2782–		带格式的:			突出显示	<u>;</u>
690	2858 DOI 10.1099/ijsem.0.004107.		带格式的:	字体:	倾斜,	突出显示	=
691		Ì	带格式的:	字体:	倾斜,	突出显示	;
692	Table legends						
693	Table 1 Sequence of primers used for identification of lactic acid bacteria (LAB) from this						
694	research. Notes. ^a Location on the genome of strain <i>L. paracasei</i> ATCC 334 (GenBank						
695	accession no. CP000423) of the primers.						
696	Table 2 Resistance/tolerance to pH 2.0, lysozyme and bile salts of LAB isolated from						
697	pineapple silage. <i>ND</i> , not determined. Mean values (\pm standard deviation, $n = 3$).						
698	Table 3 Inhibition halos of Salmonella enterica and Listeria monocytogenes grown on		带格式的:	突出显	!示		_
699	culture media pre-inoculated with different LAB strains isolated from pineapple silage. +						
700	Inhibition zone between 0- and 3-mm diameter (weak), ++ Inhibition zone between 3- and						
701	6-mm diameter (good), +++ Inhibition zone larger than 6 mm diameter (strong).						
702	Table 4 Absorbance values obtained to evaluate the antimicrobial activity of the						
703	supernatant of <i>L. paracasei_</i> 6714 against <i>Salmonella</i> and <i>L. monocytogenes</i> Mean values						
704	(\pm standard deviation, $n=3$). Values not sharing a common letter represent significantly						
705	different values ($P < 0.05$).						
706	Table 5 Antibiotic resistance/susceptibility of <i>L. paracasei_</i> 6714. Mean values (± standard						
707	deviation, $n = 3$). R , resistant. I , intermediate.						
708	Table 6 Adhesion of <i>L. paracasei_</i> 6714 to HeLa cells per microscopic field.						
709	Table 7 Antagonistic effects of <i>L. paracasei_</i> 6714 on <i>Salmonella</i> Typhimurium invasion of						
710	HeLa cells. Mean values (\pm standard deviation, $n=3$). Values not sharing a common letter						
711	represent significantly different values (P < 0.05). Notes. ^a Post-inoculation time with						
712	Salmonella Typhimurium.						

713	Figure legends
714	Figure 1 Phylogeny based on Bayesian analysis and considering the partial sequences of
715	the 16S rRNA gene (1299 nucleotides (nt)) (a) and phenylalanyl-tRNA synthase gene
716	(pheS) (420 nt) (b) of lactic acid bacteria (LAB) isolated from ensiled pineapple peels.
717	Probabilities are indicated at nodes. As an external group. L. delbrueckeii subsp. lactis KTCT
718	3034 was used as an external sequence for both figures. Sequences obtained on this research
719	are shown in bold font.
720	
721	SUMPELENTAL MATERIAL
722	Table S1 GenBank accession numbers of 16S rRNA gene and phenylalanyl-tRNA
723	synthase gene (pheS) sequences from lactic acid bacteria (LAB) isolated from pineapple
724	peel silage.
725	Figure S1 Picture of plaques and the observed inhibition halos of L. paracasei_6712 and
726	L. paracasei_6714 against L. monocytogenes (a, b) and Salmonella sp. (c, d).
727	