Conserved molecular signatures in the spike protein provide evidence indicating the origin of SARS-CoV-2 and a Pangolin-CoV (MP789) by recombination(s) between specific lineages of Sarbecoviruses.

RESULTS

The distribution patterns of the identified signatures (CSIs) and sequence similarity studies reveal that the SARS-CoV-2 (Covid-19)-related viruses have originated from the recombination of a Bat-CoVZC/Prc31-related virus and a SARS (or SARS-related) virus. Our results also show that recombination between a virus very closely related to SARS-CoV-2 (>70% of the sequence for this virus known) and Bat-CoVZC/Pc31 virus has led to the formation of Pangolin-CoV (MP789).

CONCLUSIONS

Several other CSIs reported here are specific for other clusters of sarbecoviruses. Structural mapping studies show that the identified CSIs form distinct loops/patches on the surface of the spike protein. It is hypothesized that these novel loops/patches on the spike protein should play important roles in the biology/pathology of SARS-CoV-2 virus.

The CSIs specific for different clades of sarbecoviruses including the SARS-CoV-2r cluster provide novel means for identification of these viruses and other potential applications.