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ABSTRACT
Background. In the past decade, RNA sequencing and mass spectrometry based quan-
titative approaches are being used commonly to identify the differentially expressed
biomarkers in different biological conditions. Data generated from these approaches
come in different sizes (e.g., count matrix, normalized list of differentially expressed
biomarkers, etc.) and shapes (e.g., sequences, spectral data, etc.). The list of differentially
expressed biomarkers is used for functional interpretation and retrieve biological
meaning, however, it requires moderate computational skills. Thus, researchers with
no programming expertise find difficulty in data interpretation. Several bioinformatics
tools are available to analyze such data; however, they are less flexible for performing
the multiple steps of visualization and functional interpretation.
Implementation. We developed an easy-to-use Shiny based web application (named
as OMnalysis) that provides users with a single platform to analyze and visualize the
differentially expressed data. The OMnalysis accepts the data in tabular form from
edgeR, DESeq2, MaxQuant Perseus, R packages, and other similar software, which
typically contains the list of differentially expressed genes or proteins, log of the fold
change, log of the count per million, the P value, q-value, etc. The key features of the
OMnalysis are multiple image type visualization and their dimension customization
options, seven multiple hypothesis testing correction methods to get more significant
gene ontology, network topology-based pathway analysis, and multiple databases
support (KEGG, Reactome, PANTHER, biocarta, NCI-Nature Pathway Interaction
Database PharmGKB and STRINGdb) for extensive pathway enrichment analysis.
OMnalysis also fetches the literature information from PubMed to provide supportive
evidence to the biomarkers identified in the analysis. In a nutshell, we present the
OMnalysis as a well-organized user interface, supported by peer-reviewed R packages
with updated databases for quick interpretation of the differential transcriptomics and
proteomics data to biological meaning.
Availability. The OMnalysis codes are entirely written in R language and freely
available at https://github.com/Punit201016/OMnalysis . OMnalysis can also be accessed
from - http://lbmi.uvlf.sk/omnalysis.html. OMnalysis is hosted on a Shiny server at
https://omnalysis.shinyapps.io/OMnalysis/. The minimum system requirements are: 4
gigabytes of RAM, i3 processor (or equivalent). It is compatible with any operating
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system (windows, Linux or Mac). The OMnalysis is heavily tested on Chrome web
browsers; thus, Chrome is the preferred browser. OMnalysis works on Firefox and
Safari.

Subjects Bioinformatics, Computational Biology, Molecular Biology
Keywords Omics, Shiny, Transcriptomics, Proteomics, Bioinformatics tool, Functional profiling,
RNA-seq, Data exploration

INTRODUCTION
High-throughput techniques have emerged as powerful tools to study differential omics.
RNA-sequencing (RNA-seq) and liquid chromatography coupled with mass spectrometry
(LC-MS) based quantitative approaches are increasingly being used (Lagarrigue et al.,
2013; Milanez-Almeida et al., 2020; Wang, Gerstein & Snyder, 2009). The low-cost data
generation and available computational power have enabled the multi-omics studies
in the past decade. Omics is composed of multiple layers (genomics, epigenomics,
transcriptomics, proteomics, metabolomics, microbiomics, and phenomics), however,
transcriptomics and proteomics remain the most commonly used omics (Gomez-Cabrero
et al., 2014; Hasin, Seldin & Lusis, 2017; Yan et al., 2018). Transcriptomics and proteomics
experiments require high-cost instrumental setup, labor-intensive sample preparation,
and technical skills (Darville & Sokolowski, 2018; Hrdlickova, Toloue & Tian, 2017). As a
result, researchers often outsource samples to core facilities and obtain log-transformed or
normalized expression data, which require to be interpreted into biological relevance using
bioinformatic tools. These tools are either scattered or lack updated algorithms or fail to
use up-to-date annotated repositories, which are the prerequisites of the correct biological
interpretation of the data (Mangul et al., 2019).

In the case of transcriptomics, the data-intensive preprocessing often delivers a data
matrix (the output) that contains columns of identified genes, the magnitude of the change
against control (e.g., log fold change), significance value (P value), and transcript count
(log counts per million). The output usually depends on the type of statistical package and
function used, for example, EdgeR (Robinson, McCarthy & Smyth, 2010), DESeq2 (Love,
Huber & Anders, 2014) and Cuffdiff (Trapnell et al., 2012). On the other hand, in the case
of quantitative proteomics the data analyzed for quality check, peptide identification,
protein quantification, and normalization (Darville & Sokolowski, 2018) deliver a table
containing columns of identified proteins, the magnitude of change in abundance against
control and FDR-adjusted P-value. Such data matrices can be analyzed using different
bioinformatic tools depending on the study type and level of regulation. Myriad tools and
web applications were developed to analyze the count data from the transcriptomics and
list of the proteins from proteomics study. Some of them are iDEP (integrated differential
expression and pathway analysis) (Ge, Son & Yao, 2018), IRIS (integrated RNA-seq data
analysis and interpretation system) (Monier et al., 2019) and DEBrowser (Kucukural et al.,
2019), which performpre-processing, heatmaps construction, unsupervised learning, DEGs
filtering, pathway analysis and submission to gene expression omnibus public repository.
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Such approaches, however, have limitations in addressing the user-friendliness, level of
complication, input data requirements, publication-ready visualization (image formats),
multiple database coverage, and access to the published research article.

In omics studies, it is often difficult to narrow down 2–5 top biomarkers from
thousands of differentially expressed genes (DEGs) or protein (DEPs). It requires moderate
computational effort, iterative re-testing, and use of the multiple databases. Towards this
end, we developed an R Shiny based web-tool—the OMnalysis, that accepts the list of
transcriptomics and proteomics normalized quantitative expression data generated from
bioinformatics tools like edgeR version 3.32.0 (Robinson, McCarthy & Smyth, 2010) and
Perseus version 1.6.15.0 (Tyanova et al., 2016). Using the flexdashboard with R Shiny,
we designed the flexible and easy-to-use platform, that integrates the highly reviewed
R packages. Shiny based applications are known for the ease to build an interactive
web application from R, providing higher flexibility, integration of other programming
languages (JavaScript actions, Html, CSS), and standalone hosting on the webpage. The
OMnalysis includes real-time accession ID conversion using: biomaRt version 2.46.3
(Durinck et al., 2009). It also enables multiple visualization options with customization
of the resolution, dimension, and image format. In addition, it is also supported by
KEGG, Reactome, biocarta, PANTHER, nature pathway interaction database (NCI),
pharmGKB, and STRING to perform in-depth significant enrichment analysis and increase
the annotation coverage of the input set of genes and proteins. Furthermore, it can analyze
up to four treatments simultaneously with no additional requirement of metadata. Using
Europe PMC (Levchenko et al., 2018), this tool also provides access to the millions of
published scientific literature to acquire relevant information on the biomarkers analyzed.

MATERIAL AND METHODS
Software packages and implementation
OMnalysis is an interactive R Shiny based web application composed of multiple sectioned
user interface (UI) in the form of tabs. It is built to perform exploration of differential
expression data efficiently and iteratively. R packages used for the development of the UI
and its components are as follows: R Shiny version 1.6.0 (Chang et al., 2017), flexdashboard
version 0.5.2 (Iannone, Allaire & Borges, 2018), Shiny Themes version 1.2.0 (Chang et al.,
2018), rmarkdown version 2.8 (Allaire et al., 2020), knitr version 1.33 (Xie, 2019) and Shiny
dashboard version 0.7.1 (Chang, Ribeiro & Barbara, 2019). Each sectioned UI is further
divided into interactive and display panels. The interactive panel works on the Shiny’s
reactivity property, which automatically updates the values in the output panel when the
user interacts or changes the input components (plots, tables, actions, etc.). The biological
analysis is supported by the following R packages: biomaRt version 2.46.3 (Durinck et al.,
2009), clusterProfiler version 3.18.1 (Yu et al., 2012), reactomePA version 1.34.0 (Yu &
He, 2016), reactome.db version 1.74.0 (Ligtenberg, 2019), pathview version 1.30.1(Luo &
Brouwer, 2013), SPIA version 2.42.0 (Tarca et al., 2009), SBGNview version 1.4.1 (Dong
et al., 2021), STRINGdb version 2.2.2 (Szklarczyk et al., 2019), org.Hs.eg.db, org.Gg.eg.db,
org.Ss.eg.db, org.Bt.eg.db, (org.Mm.eg.db), (org.Rn.eg.db), (org.Cf.eg.db), (org.Dm.eg.db)
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Figure 1 Workflow of OMnalysis web application. The OMnalysis pipeline starts with the DEGs or
DEPs, allowing ID conversion, statistical filtering, functional annotation, pathway analysis, literature
search, and finally provides information for the selection of significant biomarkers.

Full-size DOI: 10.7717/peerj.12415/fig-1

and (org.Ce.eg.db)version 3.12.0 (Carlson, 2019). Visualization of the results from the
analysis is backed by the following packages: EnhancedVolcano version 1.8.0 (Blighe,
Rana & Lewis, 2020), gplots version 3.1.1 (Warnes et al., 2016), ggbiplot version 0.55 (Vu,
2016), ggplot2 version 3.3.3 (Wickham, Chang & Wickham, 2016), VennDiagram version
1.6.20 (Chen & Boutros, 2011), wordcloud version 2.6 (Fellows, 2018), dplyr version 1.0.5
(Wickham et al., 2015) and DT version 0.18 (Xie, Cheng & Tan, 2018).

To enhance the user experience and proper execution of the OMnalysis pipeline (Fig. 1),
peer-reviewed R packages were streamlined in multi-tabbed UI as follows: Upload data,
PCA, Plots, Statistical filtering, GO enrichment analysis, GO heatmaps, Pathway enrichment
analysis, Enriched pathway visualization, Literature info and Help.

The web application is designed to analyze two types of quantitative omics, the
transcriptomics and proteomics. For transcriptomics, RNA-Seq data generated previously
by us and deposited in ArrayExpress was used (http://www.ebi.ac.uk/arrayexpress).
Expression analysis was performed on human brain microvascular endothelial cells
(hBMEC) induced with various pathogens: Borrelia burgdorferi (Treatment1, Table S1,
retrieved from ArrayExpress accession number E-MTAB-8053), Neisseria meningitidis
(Treatment2, Table S2, E-MTAB-8008), Streptococcus pneumoniae (Treatment3, Table S3,

Tyagi and Bhide (2021), PeerJ, DOI 10.7717/peerj.12415 4/22

https://peerj.com
https://doi.org/10.7717/peerj.12415/fig-1
http://www.ebi.ac.uk/arrayexpress
http://dx.doi.org/10.7717/peerj.12415#supp-1
http://dx.doi.org/10.7717/peerj.12415#supp-2
http://dx.doi.org/10.7717/peerj.12415#supp-3
http://dx.doi.org/10.7717/peerj.12415


E-MTAB-8054), and West Nile Virus (Treatment4, Table S4, E-MTAB-8052). Table S1
to Table S4 are in text format processed from the TSV file generated from the edgeR’s
glmTreat function (Robinson, McCarthy & Smyth, 2010). Three columns (logFC, logCPM,
and P value) from each of those supplemental files were copied to make a master file in
CSV format (Table S5). For the sake of simplicity, Table S5 is explained in Table 1.

In the case of proteomics, the data matrix was generated from one of the differential
abundance analysis software Perseus version 1.6.15 (Tyanova et al., 2016). To check the
functionality, we retrieved the .xlsx format file from the experiment performed to quantify
protein abundance in the milk whey collected at different time points from the cow with
Streptococcus uberis infection (Mudaliar et al., 2016). The columns in this data matrix were
arranged in the following order: UniProt ID, FDR-adjusted P-value, and Fold Change
in an excel file for each experimental condition (4 time points in this case, designated as
Treatment1, Treatment2, Treatment3, and Treatment4; Table S6).

Data modification and ID conversion
We used the read.csv function of Utils package version 3.6.2 (Team, 2013) to upload the
CSV format file (Table S5) to the OMnalysis using a tab ‘‘differentially expressed example
data’’. Whereas, for proteomics, we used the import_list function of rio package version
0.5.26 (Chan et al., 2018) to upload the data (Table S6) using a tab ‘‘proteomics abundance
example data’’. For proteomics data, three functions were used to convert data from
Table S6 to make input table for the OMnalysis. First, the rio package was used to convert
Treatment sheets to Treatment column. Second, the boldlog2 function of base R was used
to transform the Fold Change column values to logFC (log Fold Change), and the third,
Colnames function was used to change the treatment column name to Treatments. The
duplicate proteins in the treatments were identified using the group_by function of dplyr
version 1.0.5 (Wickham et al., 2015) and the mean function of base R to obtain the mean
of their log fold change value. Such conversion is not necessary in case of transcriptomic
data.

Transcriptomic data matrix contains Ensembl IDs, while proteomic data comes with
UniProt IDs. To convert these IDs into five different ID types (Ensemble gene ID, gene
name, HGNC symbol, gene description, and UniProtKB/Swiss-Prot ID) we used the
getBM function of biomaRt package version 2.46.3 (Durinck et al., 2009) to fetch the latest
information from the Ensembl database (Yates et al., 2020). We have incorporated the
possibility of ID conversion for 9 species (Human, Chicken, Pig, Cow, Mouse, Rat, Dog,
Drosophilla melanogaster and C.elegans) in OMnalysis.

Principle component analysis (PCA)
To perform PCA, following the data matrix upload, the UI PCA tab (Fig. 2A) was included.
In the interactive panel (Fig. 2B) for PCA, checkboxes and dropdown menu were inserted
for Variable PCA and Biplot PCA. The fviz_pca_var function of factoextra package version
1.0.7 (Kassambara & Mundt, 2017) and prcomp function of stat version 3.6.2 (Team, 2013)
were used for Variable PCA and Biplot PCA, respectively. The biplot function of ggbiplot
version 0.55 (Vu, 2016) was used for the visualization (example data is shown in Figs. 2C
and 2D).
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Table 1 Representative part of the input data for OMnalysis. The table presents part of Supplemental file 5. The underlined part in the table explains the source and it
is not a part of the data matrix. Please note that the input table must contain the following headers: ENSEMBLGENE, logFC, logCPM and P value. The first column must
be Ensembl IDs and then logFC, logCPM and Pvalue of each treatment in order as shown in table. col –column. In Pvalue column, user can add either P value or FDR ad-
justed P value.

Ensembl IDs Treatment1 Treatment2 Treatment3 Treatment4

col. 1 col. 2 col. 3 col. 4 col. 5 col. 6 col. 7 col. 8 col. 9 col. 10 col. 11 col. 12 col. 13

ENSEMBLGENE logFC logCPM Pvalue logFC logCPM Pvalue logFC logCPM Pvalue logFC logCPM Pvalue
ENSG00000000003 −0.74375 4.557846 0.267133 −0.90616 4.557846 0.141092 0.417361 4.557846 0.581714 −0.35996 4.557846 0.640167
ENSG00000000419 0.108453 4.758842 0.890174 0.096469 4.758842 0.902259 −0.12866 4.758842 0.872534 −0.78139 4.758842 0.254466
ENSG00000000460 −0.45651 1.782839 0.559013 −0.13903 1.782839 0.8607 −1.43246 1.782839 0.043123 0.792963 1.782839 0.277646
ENSG00000000971 −0.45012 6.933399 0.553369 −0.32462 6.933399 0.676356 0.131856 6.933399 0.868554 −0.62059 6.933399 0.380078
ENSG00000001036 −0.06613 5.462408 0.934619 −0.35845 5.462408 0.642259 −0.29022 5.462408 0.710371 0.171774 5.462408 0.827248
ENSG00000001084 −0.18668 4.100634 0.813381 −0.62329 4.100634 0.381325 0.057774 4.100634 0.941401 −0.01379 4.100634 0.986338
ENSG00000001167 0.414895 3.653166 0.584106 0.34253 3.653166 0.656407 −0.38414 3.653166 0.615672 0.178518 3.653166 0.820939
ENSG00000001461 −0.73107 5.259942 0.275607 −1.37751 5.259942 0.002377 −0.39492 5.259942 0.606211 −1.1324 5.259942 0.0298
ENSG00000001497 0.018868 4.674989 0.980772 0.013774 4.674989 0.985861 −0.41221 4.674989 0.589126 −0.54674 4.674989 0.454072
ENSG00000000003 −0.74375 4.557846 0.267133 −0.90616 4.557846 0.141092 0.417361 4.557846 0.581714 −0.35996 4.557846 0.640167
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Figure 2 PCA and visualization using OMnalysis. (A) The user interface for PCA. (B) An interactive
panel of OMnalysis to generate PCA plots and download them. (C) A variable PCA plot that shows the
variability and contribution of genes among treatments. Lesser is the angle between two arrows higher is
the positive correlation. (D) Biplot PCA presenting biomarkers and variability using the first two principal
components.

Full-size DOI: 10.7717/peerj.12415/fig-2

Plots
We have created UI tab Plots (Fig. 3A) for generation of the scatter and volcano plots.
An interactive panel (Fig. 3B) was created using flexdashboard version 0.5.2 (Iannone,
Allaire & Borges, 2018), which accommodates the following options to users: selection
checkboxes to compare the treatments and numeric input boxes to add values for P
value and log fold changes (P value and FC-cutoff in Fig. 3B). We also introduced three
checkboxes in the interactive panel for Scatter and Volcano plot for transcriptomics,
whereas, Volcano plot checkbox for proteomics. Multiple image format drop-down menu
and dimension correction numeric input options were also included to customize the
generated plot (Fig. 3B). EnhancedVolcano package version 1.8.0 (Blighe, Rana & Lewis,
2020) and ggplot2 package version 3.3.3 (Wickham, Chang & Wickham, 2016) were used to
generate an example volcano plot (Fig. 3C) and scatter plot (Fig. 3D) from DEGs or DEPs,
respectively.

Statistical filtering
Following the PCA and plots, we included the Statistical filtering option in the UI tab
(Fig. 4A). The interactive panel in this UI was populated with checkboxes to select
treatments (where user can select the treatments for filtering and comparison). A dropdown
menu ‘‘Omics Type’’ was added to select transcriptomics or proteomics. A numeric input
box ‘‘Statistical filtering’’ was added to insert values for cutoff. Various checkboxes under
the Venn Diagram and Histogram were added to plot the graphs based on cutoff values
(Fig. 4B). The VennDiagram package version 1.6.20 (Chen & Boutros, 2011) and ggplot2
package version 3.3.3 (Wickham, Chang & Wickham, 2016) were used to plot Venn diagram
(Figs. 4C and 4D) and histogram (Figs. 4E and 4F), respectively.
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Figure 3 Generation of plots using OMnalysis. (A) The user interface for the plot. (B) An interactive
panel to provide the input required to generate plots, customizable download dimensions, and image
formats. (C) An example of a volcano plot with significantly up and down regulated genes (orange dot
presents genes). (D) Example of the scatter plot providing information about differential expression using
log fold change vs. log count per million.

Full-size DOI: 10.7717/peerj.12415/fig-3

Gene ontology analysis
Once the data matrix was statistically filtered, we used clusterProfiler version 3.18.1
of Bioconductor packages (Yu et al., 2012) to obtain the functional interpretation of
the significantly expressed genes or proteins. Two enrichment analysis functions of the
clusterProfiler were used, the first, EnrichGO function on genes or proteins to perform over
representation analysis (ORA) and the second gseGO function on sorted genes or proteins
with respect to logFC values to perform gene set enrichment analysis (GSEA) (Fig. S1). To
support the enrichment analysis, AnnotationDbi version 1.52.0 of Bioconductor databases
(Pagès et al., 2020) was used. Mark Carlson species-specific genome-wide annotation
databases version 3.12.0 was used for human (org.Hs.eg.db), chicken (org.Gg.eg.db),
pig (org.Ss.eg.db), and cattle (org.Bt.eg.db), mouse (org.Mm.eg.db), rat (org.Rn.eg.db),
dog (org.Cf.eg.db), Drosophila melanogaster (org.Dm.eg.db) and C.elegans (org.Ce.eg.db)
(Carlson, 2019). P-value cutoff input and PAdjust function of ClusterProfiler with seven
multiple hypotheses testing correction methods ( Fig. S1) were used to avoid the influence
of false-positive results on the overall enrichment analysis.
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Figure 4 An overview of visualization after statistical filtering. (A) The user interface for Statistical fil-
tering and diagrams. (B) An interactive panel for user input, treatment selection, omics selection, visual-
ization type (Venn diagram or histogram), diagram customization, and download. (C) Split Venn diagram
of up and down regulated common and unique genes in treatments 1 and 2. (D) Present a Venn diagram
that shows the total number of differentially expressed genes in two treatments regardless of their up or
down regulation. (E) A histogram providing a range of up and down regulation plotted against the num-
ber of the genes. (F) A histogram overview of the up and down regulated genes in all treatments after sta-
tistical filtering.

Full-size DOI: 10.7717/peerj.12415/fig-4

Heatmap and word cloud
In the GO heatmaps UI tab (Fig. 5A) we included an interactive panel (Fig. 5B), which
was populated with checkboxes for selection of heatmap visualization method, treatments
checkboxes, numerical inputs boxes to adjust the font and color key size, word cloud
checkbox to plot a word cloud, etc. The wordcloud package version 2.6 (Fellows, 2018) was
employed to visualize a word cloud (Fig. 5C), while heatmap.2 function of gplots version
3.1.1 (Warnes et al., 2016) and rainbow function of the R base version 4.0.3 (RStudioTeam,
2015) were used to generate an example heatmap (Fig. 5D).

Pathway analysis
To get themechanistic insight from the list of DEGs orDEPs, four different pathway analysis
methods were explored (Fig. S2). To enrich the DEGs or DEPs against KEGG pathway
database (Kanehisa & Goto, 2000), two functions namely enrichKEGG and gseKEGG from
cluster profiler’s version 3.18.1 (Yu et al., 2012) were used.
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Figure 5 Enriched GO terms visualization using OMnalysis. (A) The user interface for GO heatmaps vi-
sualization. (B) An interactive panel to generate heatmaps and word cloud. (C) A word cloud providing an
overview of GO terms enriched in treatment. The larger is the font size indicated more genes mapped to
that GO term. (D) GO heatmap comparing gene expression among the treatment in a given GO term.

Full-size DOI: 10.7717/peerj.12415/fig-5

The network topology analysis (NTA) (Alexeyenko et al., 2012), was used against
reference databases such as biocarta (Rouillard et al., 2016), panther (Thomas et al., 2003),
NCI- nature pathway interaction database (Anthony et al., 2011), and pharmGKB (Klein
& Altman, 2004). For NTA, we used three function in R base version 4.0.3 namely merge,
cbind and gsub (RStudioTeam, 2015) to arrange the data matrix of DEGs or DEPs. Then,
we used the graphite pathway function of graphite package version 1.36.0 (GRAPH
Interaction from pathway Topological Environment) (Sales et al., 2012) to prepare the
reference pathway database. The graphite’s runSPIA function was used to perform network
topology analysis using the four reference databases mentioned above.

An enrichpathway function of ReactomePA version 1.34.0 (Yu & He, 2016) was used
to perform pathway analysis using the Reactome pathway database version 1.74.0 (Croft et
al., 2011).

A $new function in STRINGdb version 2.2.2 (Szklarczyk et al., 2019) was used to assign
the species, score threshold, and input directory. We used the stringdb$map function
of the STRINGdb package to map the DEGs or DEPs against several databases (GO
annotation, KEGG pathways, PubMed publications, Pfam domains, InterPro domains,
UniProt Keywords SMART domains).
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Figure 6 Enriched pathway visualization. (A) The user interface for pathway visualization. (B) An inter-
active panel to provide input for generating enriched pathway. Two types of KEGG pathways, one Reac-
tome pathway, and a string PPI can be selected. In the interactive panel, various treatments can be selected
for comparison and the generated pathways can be downloaded with a download button. (C) An example
of a KEGG pathway generated. The pathway is showing the level of expression of each gene (red–up reg-
ulation, yellow- no significant expression, blue-down regulation) identified in all four treatments. Please
note that the gene box is divided into the number of treatments automatically. (D) The expression value of
the mapped genes to the Reactome pathway in all treatments. Each gene box is divided into 4 parts (each
part showing the level of gene expression in color codes). (E) The protein–protein interaction network
(STRING PPI). The level of expression is depicted with a colored halo.

Full-size DOI: 10.7717/peerj.12415/fig-6

Enriched pathway visualization
Enriched pathway visualization tab of UI (Fig. 6A) was designed with an interactive panel
(Fig. 6B) that contains pathway visualization checkboxes to select a type of enrichment
method, a dropdown menu to select color code on the pathway, treatment checkboxes
to compare the treatments. Pathview package version 1.30.1 (Luo & Brouwer, 2013) was
used for the visualization of the pathways based on ORA or GSEA. An example of pathway
is presented in Fig. 6C. SBGNview package (overlay omics data onto sbgn pathway
diagrams) version 1.4.1 (Dong et al., 2021) was used to visualize the enriched pathway
from ReactomePA (example is depicted in Fig. 6D). The plot_network and post_payload
functions of STRINGdb package version 2.2.2 (Szklarczyk et al., 2019) were used to visualize
the network of protein-protein interaction network (example is presented in Fig. 6E).
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Literature information
A europepmc package version 0.4 was used to fetch abstracts, publication details, and
bibliography metadata in the Literature info UI tab of the OMnalysis web application.

User manual
To help researchers, a user manual is drafted that provides step-by-step guidelines
(Data S1).

RESULTS
Workflow for transcriptomics and proteomics data analysis
We performed ID conversion on transcriptomics and proteomics data taken as example
matrices using Ensembl ID and uniport ID, respectively. OMnalysis is built to assign the
most updated IDs. To the transcriptomic data matrix, the OMnalysis assigned 11,357
updated Ensembl IDs from a total of 11,398 uploaded Ensembl ID (Table S7). Next, to
those updated IDs, OMnalysis was successful in assigning 10,951 human gene names,
10,932 HGNC symbols, 11,354 gene descriptions, and 7,463 UniProtKB/Swiss-prot ID
(Table S7). In the case of proteomic data, 731 UniProt IDs were submitted to OMnalysis.
Please note that, these 731 IDs include several repeated UniProt IDs from 4 treatments.
From this list, 281 UniProt IDs were mapped to Ensembl gene ID, 277 to the gene name, 0
to HGNC symbol, 273 to gene description and 273 to UniProtKB/Swiss-Prot ID (Table S8).

Visualization, plotting and statistical filtering
When looking for the visualization, OMnalysis enables a user to generate separate plots as
shown in Figs. 2–4 for each treatment. It generates PCA plots to identify the relationship
and variability among the genes or proteins in the treatments. It produces scatter and
volcano plots to visualize the significantly up and down regulated gene or proteins in each
treatment. It makes Venn diagram to observe the intersection among genes or proteins
and histogram to identify level of expression (logFC) of DEGs or DEPs in each treatment.

Further, OMnalysis provides the user functionality to filter out the genes or proteins
which are not significantly expressed or identified. The software provides an option to set
the cutoff values for logFC, logCPM, and P value for transcriptomic data (Fig. 4A), whereas
logFC and P value for proteomic data. logFC± 1.2, Log CPM >3, and P value <0.001 were
set to select the DEGs from the transcriptomic data matrix. Whereas in proteomics logFC
±1.2 and P value <0.01 (FDR-adjusted P-value) were set to select the DEPs. The resultant
list of the differentially expressed candidates was automatically transferred to the next level
i.e., the functional and pathway analysis.

Functional and pathway analysis of example data
Gene ontology (GO) analysis were performed using ORA (at 0.05 q-value cutoff) and
GSEA (0.5 P value cutoff) on the differentially expressed candidates selected above (Fig.
S1). Using ORA (Table S9) and GSEA (Table S10), OMnalysis enriched the DEGs according
to their biological process, molecular function, and cellular component. To minimize the
chances of identification of false-positive GO IDs in ORA and GSEA, OMnalysis provides
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multiple hypothesis testing correction methods (Holm, Hochberg, Hommel, Bonferroni,
Benjamini and Hochberg, BY and FDR) that enable adjustment of P value (Fig. S1). In
OMnalysis, the user can select any single GO ID that is present in all the treatments and
compare the expression of the gene with the heat maps. An example of the heatmap is
presented in Fig. S3. In the same way, OMnalysis processed the set of the differentially
expressed proteins (Fig. 4A and 4B) using ORA (0.05 q-value cutoff; Table S11) and GSEA
(0.5 P value cutoff; Table S12) and enriched them according to the biological process,
molecular function, and cellular component. OMnalysis can generate the same type of
heatmaps as shown in Fig. S3 for proteomics.

For pathway analysis, OMnalysis used the list of differentially expressed candidates
(DEGs and DEPs) and enriched them using ORA (Table S13) and GSEA (Table S14)
against KEGG pathways (Fig. S2). For pathway enrichment analysis one of the multiple
hypothesis testing correction methods can also be selected (Fig. S2). The network topology
analysis (NTA) was also performed on OMnalysis to enrich the list of DEGs against various
databases such as biocarta, panther, NCI, PharmGKB (Table S15). OMnalysis was also
able to compare the list of differentially expressed candidates to the pathways available in
Reactome (Table S16).

OMnalysis was extended to include the STRINGdb, which covers several databases
(InterPro, SMART, PFAM domains, Reactome pathways, PubMed publications, UniProt
Keywords, GO terms, and KEGG) to enrich the DEGs (Table S17).

One of the main features of OMnalysis is the visualization of the level of expression
(using different color codes) of the given gene or protein in different treatments. As shown
in Fig. S4 , theOMnalysis enrichedDEGs from all four treatments to TNF signaling pathway
(using ORA against KEGG pathways) and assigned color codes based on their expression
values (logFC) in the gene box. This kind of representation gives a holistic view of the
ongoing molecular activities simultaneously in all treatments in a given pathway. In the
same way, OMnalysis used DEGs and visualized their level of elicitation on the enriched
Reactome pathway (Fig. S5). To extend the functionality, OMnalysis visualizes the level of
elicitation in protein-protein interaction network derived from STRINGdb in the form of
halo color codes (Fig. S6).

In the case of the proteomics study, OMnalysis processed the list of DEPs using ORA
(Table S18) and GSEA (Table S19) against the KEGG database. Whereas, the unavailability
of supporting databases for bovine proteome hindered the pathway enrichment analysis
using NTA and Reactome. While choosing STRINGdb, OMnalysis enriched the DEPs to
InterPro, SMART, PFAM domains, Reactome pathways, PubMed publications, UniProt
Keywords, GO terms, and KEGG (Table S20). For proteomics, OMnalysis can visualize the
generated pathway in the same way as in Figs. S4–S6.

OMnalysis output formats
OMnalysis was developed considering the maximum flexibility and customization of the
resulting output. Users were provided with the option to download the converted accession
IDs, results from GO enrichment analysis and pathway enrichment analysis in CSV file
format. All the diagrams produced in PCA, Plots, Statistical filtering, and GO heatmaps
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sections can be downloaded in TIFF, PNG, JPEG, and PDF format. In the case of the
enriched pathway section, the visualization output can be downloaded in PNG image
format. Furthermore, users have the option to adjust the dimension and resolution of the
images generated in each tab of OMnalysis.

DISCUSSION
Taking the advantage of Shiny, Bioconductor, flexdashboard, and markdown we were
able to integrate and develop a user-friendly web tool OMnalysis. Using this tool,
researchers can walk through various levels of exploration of quantitative data, which
includes publication-ready plots, functional interpretation, pathway analysis, and scientific
literature. Also, by leveraging the benefits of OMnalysis, the user will be able to analyze
four differential expression data simultaneously, derived from quantitative transcriptomics
or proteomics experiments. Till to date, few tools (iDEP, DEBrowser, IRIS-EDA, etc.)
are developed, which accept count data to analyze differential expression, however, this
approach is complicated for the biologist in terms of selecting the normalization methods.
The normalization methods that available are CPM (count per million), TPM (transcripts
per kilobase million), FPKM/RPKM (fragment/reads per kilobase of transcript per million
mapped reads), DESeq2 (median of rations) (Love, Huber & Anders, 2014), and EdgeR
(trimmed mean of M values) (Robinson, McCarthy & Smyth, 2010). Hence, biologists
often use data matrices that contain a list of genes or proteins with expression values
and statistical components for downstream differential expression analysis. Although the
later option inherits some limitations e.g., inability to perform differential expression
analysis using count or spectral data and lack of metadata table, it benefits the larger
research community by minimizing the time to obtain the result and to understand the
normalization methods. Some tools like iDEP (Dijk et al., 2018), ShinyNGS (Manning,
2016) and DEBrowser (Kucukural et al., 2019) require additional metadata table to provide
the information related to samples and study design. To this background, the OMnalysis
is built to provide the researcher with a user-friendly web application, with no metadata
dependency, and with streamlined analysis tabs. It covers peer-reviewed, curated, and
updated databases, and it enables advanced visualization in form of plots, mapping of the
expression data (logFC) on pathways and networks using pseudo colors. A single enriched
pathway decorated with the colored map of expression value, provides the user with a
holistic view of biological activities in different treatments.

We compared the OMnalysis with existing freeware used for DEGs analysis and
exploration (e.g., iDEP, IRIS-EDA, START app, DEBrowser, etc.), in terms of input data
requirements, types of visualization, ease of use, and database used for GO and Pathway
enrichment analysis. The details of this comparison are provided in Table 2. In contrast to
OMnalysis, IRIS-EDA and START app does not support gene ID conversion. The iDEP
web application requires a manual update of the database to support gene ID conversion.
DEBrowser although performs batch effect correction and DEGs analysis using count data,
it requires an R environment to generate a web interface, which could be a bottleneck in
analysis for most biologists as they hold minimum programming knowledge. In contrast,
OMnalysis is an online application and doesn’t depend on the R environment.
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Table 2 Comparison of a bioinformatics platform for downstream analysis.

iDEP IRIS-EDA START App ShinyNGS DEBrowser OMnalysis

Input data Count data,
meta-data

Count data Count or
expression data

Count or
expression data

Count data Expression data
(list of DEGs
or Proteins)

PCA
√ √ √ √ √ √

Volcano/Scatter plot
√ √ √

X
√ √

GO analysis
√

X X
√ √ √

Pathway analysis
√

X X X
√ √

Gene ID conversion
√

X X X X
√

Pathway databases KEGG, STRING API X X KEGG KEGG KEGG, Reactome,
NCI, Panther,
biocarta, PharmGKB,
STRING

Literature retrieval X X X X X
√

Application type Online Online Online Require R
for online

Require R
for online

Online

Stand-alone R code
√ √ √ √ √ √

Pathway visualization
and STRING network

√
X X X

√
KEGG, Reactome,
PPI network

Notes.
X and

√
indicates non-available and available function in the tool, respectively.

When it comes to the representation of data in the form of scatter and volcano plots to
demonstrate the level of expression against the level of significance (P value) or the number
of transcripts (logCPM), the OMnalysis provides an option with customizable resolution
and dimensions of the images, and enables various image format to download (png, jpeg,
tiff, and pdf). The iDEP generates scatter and volcano plots only in esp format, whereas
the IRIS-EDA and START applications produce plots only in png formats. For statistical
filtering of non-significant genes, the IRIS-EDA uses adjusted P value and fold change,
whereas in OMnalysis can filter out the non-significant genes based on fold change, P
values, or adjusted P value and log counts per million in case of transcriptomic data.

In the IRIS-EDA tool, the enrichment analysis and functional interpretation are extended
by providing the weblinks of third-party web servers (DAVID, UCSC Genome Browser,
etc.). Whereas, in OMnalysis the functional interpretation and enrichment analysis is
integrated and supported by ORA and its extension GSEA. ORA uses the hypergeometric
test (Falcon & Gentleman, 2008) and GSEA uses the Kolmogorov–Smirnov statistics
(Smirnov, 1948) to perform GO enrichment analysis. ORA and GSEA perform multiple
hypothesis testing using the gene set against the GO dataset, however in each run it may add
some false-positive results. To control false positives, OMnalysis supports adjustment of
the P value usingmultiple hypothesis correctionmethods (e.g., Holm, Hochberg, Hommel,
Bonferroni, Benjamini and Hochberg, BY and FDR) and a P value (P value cutoff) to gain
more reliable information. OMnalysis also provides options to segregate the DEGs or DEPs
into various GO classes (biological processes, molecular functions, cellular component
(Ashburner et al., 2000)), which is not available in the IRIS-EDA tool. Note that, when
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interpreting the result from GO and pathway enrichment analysis, a user must be cautious
and try a combination of methods and databases to obtain the comprehensive result. Thus,
OMnalysis integrated approach provides the user to perform the enrichment analysis and
functional prediction in one web application.

Heatmaps are one of the best representation tools to compare the level of expression
among various treatments. Users often use third-party heatmapper (Babicki et al., 2016)
web application, which requires an input (in manually arranged tabular form) populated
with columns such as unique gene or protein IDs, GO IDs, and expression values for
each treatment. To this end, we integrated the Heatmap function in the OMnalysis that
automatically arrange the table and generates the heatmaps. It also identifies duplicate
gene or protein names and filter out those redundancies. Furthermore, in comparison to
IRIS-EDA and START app, OMnalysis provides customizable (key size and font size) and
downloadable publication-ready heatmaps.

Finally, using the R Shiny platform and Bioconductor packages, we were able to
integrate the several functionalities into OMnalysis. The streamlined functionalities include
uploading of expression data, PCA to identify correlation and variability among treatments,
plots to visualize differential expressions, statistical filtering to segregate the candidate
according to the statistical significance, GO enrichment analysis, heatmaps to compare
expression among treatments, pathway enrichment analysis, and pathway visualization
capabilities. All together the OMnalysis provides the user with a comprehensive explanation
of the transcriptomics and proteomics data. To our knowledge, no integrated web tool
provides visualization of pathways based on KEGG and Reactome, and visualization of
PPI network using STRING in one place. OMnalysis with higher flexibility, easy-to-use
interface, multiple visualizations, and extensive coverages of curated databases outperforms
many of the currently available web application available to explore and analyze the
quantitative transcriptomics and proteomics data.

CONCLUSION
OMnalysis has integrated an array of scattered packages and curated databases to provide a
user-friendly data analysis tool. The overall functionality was tested on the four real datasets
of transcriptomics and proteomics. Using these datasets, we were able to perform series
of downstream analysis, starting from PCA and visualization of differentially expressed
candidates in single or multiple treatments in the form of scatter or volcano plots, Venn
diagram and histogram. Further, this tool was able to segregate gene sets based on any of the
three gene ontology classes (biological processes, molecular functions, cellular component)
with seven possible multiple hypothesis correction methods and two types of enrichment
analysis (ORA and GSEA). This tool provided different view on transcriptomics and
proteomics data using three enrichment methods (ORA, GSEA and ReactomePA) and
network topology analysis using four different databases (PANTHER, biocarta, NCI and
PharmGKB). Additionally, STRING gave overall picture of enrichment and interaction
amongmolecules. Comparing with the other tools, OMnalysis provides more customizable
and functional options. We envisage developing an advanced version of OMnalysis, which
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will include more animal species, omics types, additional pathway networks (e.g., Wiki
pathways, Pathbank, etc.), and characterization of functional units of discovered biomarkers
(genes, proteins, and metabolites). Currently, we have added an option to download the set
of codes, so that bioinformaticians can extend the functionality of the OMnalysis tool. With
the existing capabilities, we are confident that OMnalysis will be a useful web application
for researchers, with no or less bioinformatics experience, who want to analyze quantitative
transcriptomic and proteomic data into actionable biological insight.
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