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ABSTRACT
Sea turtles are threatened by climate change and human activity, and their global
populations continue to decline sharply. The Chinese government encourages artificial
breeding of sea turtles to reduce the use ofwild populations.However, artificial breeding
of sea turtles is still fairly difficult, and some facilities may illegally purchase wild turtle
eggs and then sell incubated turtles by marketing them as artificially bred turtles, which
adds another threat to an already endangered species. Therefore, it is necessary to find
a reliable method to distinguish the authenticity of artificially bred individuals. In this
study, we investigated a turtle farm in southern China, that contained more than 400
green turtles, which were claimed to have been bred in captivity. Parentage testing
of turtles from this farm was successfully conducted using two nuclear microsatellites
combined with amitochondrial D-loop DNAmarker. Genetic matching of all 19 adults
and randomly selected 16 juvenile turtles revealed that none of the juvenile turtles had
a matching parent combination among the adult turtles. Therefore, we speculated that
the green turtles in this farm were from the wild and that their origin of birth was
mainly the Sulu Sea. The methods and molecular markers used in this study could be a
reference for rapid authenticity testing of green turtles in future forensic enforcement
and population management.

Subjects Conservation Biology, Ecology, Genetics, Marine Biology, Zoology
Keywords Green turtles (Chelonia mydas), Paternity identification, Microsatellite DNA,
Mitochondria DNA

INTRODUCTION
Sea turtles are umbrella species of the marine ecosystem and flagship species of marine
conservation (Bouchard & Bjorndal, 2000; Hamann et al., 2010). However, the global
population and distribution of the sea turtle have sharply reduced due to long-term threats,
such as over-exploitation, illegal trade, marine pollution, and climate change (Chan et al.,
2007; Hawkes et al., 2009; Lam et al., 2011). All five sea turtle species distributed in China
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have been included in the list of Chinese National Fist-Level Key Protected Wild Animals
and the Appendix I of Convention on International Trade in Endangered Species of Wild
Fauna and Flora (CITES, 2019), indicating that sea turtles are strictly protected and the
international trade of these species is prohibited except when the purpose of the import is
not commercial.

The fast-growing demand for sea turtle displays from Chinese aquariums and private
individuals has led to a large-scale illegal trade of live turtles, seriously threatening the
survival of wild sea turtles (Lin et al., 2021). The Chinese government issued the ‘‘Sea Turtle
ConservationActionPlan (2019–2033)’’ in 2018 and the plan recommended ‘‘strengthening
research on the technology of artificial breeding of sea turtles and promoting the use of
artificial breeding sea turtles for aquarium display, publicity, and education to reduce
human demand for sea turtles in the wild’’ (Chinese Ministry of Agriculture and Rural
Affairs, 2019). Therefore, the number of institutions for artificial breeding of sea turtles is
expected to gradually increase in China. However, artificial breeding of sea turtles is still
fairly difficult and only a few successful cases have been reported worldwide, such as the
Cayman Islands, UK (Barbanti et al., 2019), Miami Seaquarium, FL, USA (Sizemore, 2002),
Sea Life Park, Hawaii, USA (Wood &Wood, 1980), and Ishigaki Island in Japan (Shimizu et
al., 2007). In China, only the Huidong Turtle National Nature Reserve in Guangdong and
Haichang Whale Shark Aquarium in Shandong have successfully bred turtles using wild
parent turtles under captive conditions (Gao, Ye & Chen, 2015; Li, 2016). Due to inefficient
breeding methods, some facilities illegally purchased wild turtle eggs from the South
China Sea or Southeast Asia, and then sold the incubated turtles to aquariums or private
organizations by marketing them as artificially bred turtles (Shanker & Pilcher, 2003; Lam
et al., 2011). It is well-known that turtle farms are usually the biggest purchasers of wild
turtles in China (Shi et al., 2007), and the origins of many turtles in captivity breeding and
trade are false or unclear (Parham & Shi, 2001; Parham et al., 2001). Therefore, to prevent
the illegal use of wild populations, it is necessary to develop reliable methods to distinguish
the authenticity of artificially bred sea turtles in forensic enforcement and population
management.

DNA analysis methods have been widely used in wildlife forensic enforcement. Among
these methods, the nuclear microsatellite gene is widely used in molecular marker-assisted
breeding and parentage test of captive animals; it has the advantages of high variability
and polymorphism, as well as codominance (Schlötterer & Pemberton, 1994). The nuclear
microsatellite gene can be stably passed from one generation to the other, that is, half of
the genetic material of the offspring is contributed by the father and half by the mother.
Therefore, on a specific microsatellite locus, two alleles of the offspring should be found in
the genotype of the father or the mother, otherwise, they do not have a parent–offspring
relationship (Huang & Wang, 2004; Zi-Tuo & Liu, 2014; Zhang et al., 2018). Mitochondrial
sequences have the characteristics of maternal inheritance and the offspring will have the
same haplotype of the mitochondrial gene as the mother. Sea turtles are highly loyal to their
birthplace and female adults return to their hatchling beach to lay their eggs. Thus, turtles
from the same birthplace share unique haplotypes of the mitochondrial gene (Bowen et al.,
1992; Nishizawa et al., 2011). Therefore, the mitochondrial gene can be used to identify the
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birthplace of sea turtles, as well as the mother-child relationship between a baby turtle and
an adult female. The combination of microsatellite and mitochondrial DNAmarkers could
be used to rapidly exclude the parentage relationship and also trace the source of illegal
trade or capture in forensic enforcement for the authenticity of artificially bred animals.

In 2019, a turtle farm in southern China claimed that six captive adult green turtles
(four females and two males) had successfully been reproduced and more than 400 baby
turtles hatched between 2015 and 2017. Although the farm has the breeding license, the
success of artificial reproduction could not be verified, since it is not possible to provide
evidence of sea turtle breeding, mating, and egg laying. To verify this, we collected skin
samples from 19 adult turtles, including the above six potential parents, and 16 juvenile
turtles randomly selected. The mitochondrial D-loop gene and two microsatellite loci were
jointly sequenced and analyzed to detect whether a parent–offspring relationship existed
between adult and juvenile turtles and to infer the birthplaces of these turtles.

MATERIALS & METHODS
Sample collection and DNA extraction
Skin samples of sea turtles were collected form their hind limbs and disinfected with
iodophor (LIRCON, Shandong, China) after sampling. The sex of adult individuals was
identified according to the length of the tail (Zhang, Li & Wang, 1995). All samples were
stored in 95% alcohol between 15–25 ◦C. The sample collection in this work has been
approved by the Chinese government, and this work was conducted in strict accordance
with the guidelines of the Animal Research Ethics Committee of Hainan Provincial
Education Centre for Ecology and Environment, Hainan Normal University (HNECEE-
2012-005).

DNA was extracted using a Tiangen Blood/Cell/Tissue Genomic DNA Extraction
Kit (TIANamp Genomic DNA Kit, Beijing, China), following the manufacturer’s
protocol. DNA concentration and quality were tested using a NanoDropTM One/OneC
spectrophotometer (Thermo Fisher, MA, USA).

Amplification and detection of gene loci
The primers LCM15382 (5′-GCTTAACCCTAAAGCATTGG-3′) and H950g (5′-
AGTCTCGGATTTAGGGGTTTG-3′) of the mitochondrial D-loop were used for this
study, and the length of the amplified product was 770 bp (Yang, 2015;Wei, 2016).

The two microsatellite loci B103 and D1 are markers previously developed for green
turtles, and these loci have high genetic diversity and were sufficient to ensure accuracy
of the discrimination results (Table S1; Dutton & Frey, 2010). Using an online tool
(http://www.primer-dimer.com/), we detected that these two pairs of primers did not
dimerize; therefore, different fluorescent dye labels (TAMRA and FAM) were used, and
the two pairs of primers were separately subjected to PCR and multiplex PCR to obtain
two independent replicates.

The PCR amplification mixture (50 µl) contained 2 × Taq mix (RN03001S,
MonAmpTM), 25 µl; template DNA, 2 µl; 10 µM primer dilutions, each 2 µl, amonng
multiplex PCR contains two10 µM primer dilutions (B103 and D1), 2 µl each;
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supplemented with ultrapure water to 50 µl. PCR conditions were as follows: pre-
denaturing at 94 ◦C for 3 min; followed by 35 cycles of denaturing at 94 ◦C for 40 s,
annealing at 55 ◦C for 40 s, extension at 72 ◦C for 30 s; a final extension at 72 ◦C for 4
min; and storage at 4 ◦C. To prevent fluorescence primers from quenching, the samples
were protected from light. Precisely, 5 µl of PCR product was loaded, and a 1% agarose
gel was used for electrophoresis at 120 V/cm for 20 min, with Marker DL2000 (TIANamp,
Beijing, China) as a reference. After the electrophoresis, the agarose gel was placed in
a Molecular Imager R© ChemiDocTM XRS+ Imaging System (BIO-RAD, MA, USA) to
capture images. PCR products were submitted to Guangzhou Qingke Technology Co.,
Ltd. for the first-generation sequencing of D-loop gene fragments and microsatellite loci
typing. Amplicons were purified and sequenced in both directions using BigDye on an
ABI 3730XL sequencing system (Applied Biosystems, Foster City, CA, USA) (Gaillard
et al., 2020). And microsatellite allele sizes were estimated in 2 µL of diluted amplified
DNA, 0.5 µL of GeneScanTM 500 Liz Size standard (Applied Biosystems) and 12.5 µL of
deionized formamide on an ABI 3000 DNA Analyzer (Applied Biosystems), and alleles
assigned using GeneMapper R© software (version 3.7, Applied Biosystems) and GeneScan
500 ROX fluorescent size standard (Applied Biosystems) (Barbanti et al., 2019).

Parentage testing
In this study, we adopted the direct exclusion method of forensic science to distinguish the
authenticity of artificially bred individuals as follows: (1) If the adult female turtle did not
carry the same haplotype as the juvenile turtle on the mitochondrial D-loop segment, it was
excluded as the parent of the juvenile individual; (2) if an adult male or female turtle did
not carry at least one matching allele in each of the microsatellite loci as the juvenile turtle,
it was excluded as the parent of the juvenile individual; (3) adult individuals were paired
using the microsatellite genotypes after the first two steps of screening. If the combination
matched the juvenile individuals’ microsatellite genotypes, then the corresponding male
and female individuals were considered as potential parents.

Mixed-stock analysis
To determine stock contributions for the all turtles in the present study, we used a
Bayesian MSA approach, as described in the program Bayes (Pella & Masuda, 2001). We
ran separate MSA analyses each for the juvenile and adult datasets. We used the same
haplotype frequencies as that of Australasian nesting rookeries, according to Gaillard et
al. (2020). We used both uniform priors (UP) and an informative priors (IP) analysis, as
reported by Dethmers et al. (2010) to determine stock contributions. For each analysis, 30
chains were run with 100,000 MCMC for every chain. For each chain in the UP analysis, a
different stock was given 95% contribution with a burn-in set of 50,000. For each chain in
the IP analysis, each stock’s contribution was based on its estimated population size. The
Gelman and Rubin shrink factor was used to determine convergence for each chain (Pella
& Masuda, 2001). Stock contributions with a shrink factor of >1.2 after 100,000 MCMCs
were considered invalid.
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RESULTS
Sample information and DNA extraction
The dorsal carapace curve length of male individuals was 79.0–88.0 cm and the curve
width was 69.8–81.0 cm. The dorsal carapace curve length of female individuals was
70.0–100.0 cm and the curve width was 64.0–87.9 cm. The dorsal carapace curve length of
juvenile individuals was 32.3–57.0 cm and the curve width was 27.5–50.0 cm; they weighed
7.75–22.15 kg. The quality of DNA extracted from the samples was high, and the DNA
concentration was above 4.8 ng/µl (Table S2).

Amplification and detection results of gene loci
PCR amplification of mitochondrial D-loop gene fragments was successful, and sequencing
results were satisfactory. And PCR amplification of the two microsatellites, D1 and B103,
was also successful and the type scanning results were good.

Themitochondrial D-loop fragment had nine haplotypes in 19 adults and five haplotypes
in 16 juvenile individuals. Microsatellite loci D1 had 11 allele lengths in 19 adults, and nine
allele lengths in 16 juvenile individuals. Loci B103 had seven allele lengths in 19 adults and
nine allele lengths in 16 juvenile individuals (Table S3).

Parentage test results
By testing the parentage of two microsatellite loci, we found that only two of the 16 juvenile
turtles had a possible parent combination. However, the D-loop genotype of the suspected
female parent did not match that of the juvenile turtles. As a result, none of the 16 juvenile
turtles had a matching parent combination of the 19 adult turtles (Table 1). Therefore,
there was no parentage relationship between the 19 adult and 16 juvenile green turtles at
the farm.

Mixed-stock analysis
Among the 19 adult and 16 juvenile green turtles, 11 mitochondrial haplotypes were found.
The CmP57.1 haplotype had the highest frequency, accounting for 34.3%, followed by
CmP20.1, CmP19.1, and CmP49.3, accounting for 11.4%. In addition, a new haplotype
type was found (Table S4).

Both the IP and UP MSA analyses suggested that the majority of stock contribution
comes from the Sulu Sea for all datasets (IP 66.54%; UP 66.45% juveniles; IP 49.15%;
UP 48.37% adults, Tables S5 and S6). Moderate stock contributions were shown to come
from the Marshall Islands for adults but not juveniles (IP 22.10%; UP 21.22% adults; IP
0.21%; UP 0.21% juveniles), and moderate contributions came from the Paracel Islands
for juveniles, but to a lesser extent for adults (IP 19.79%; UP 19.92% juveniles; IP 3.47%;
UP 3.45% adults). Juveniles and adults had similar contributions from Wanan Island
Taiwan (IP 4.97%; UP 4.87% juveniles; IP 4.90%; UP 5.62% adults). However, the 95%
CI for all stock contributions, except for the Sulu Sea, included zero suggesting these
are more of a general estimate than an absolute one (Joseph et al., 2014; Jensen, Pilcher &
Fitzsimmons, 2016). Nonetheless, ∼88% of stock contributions can be attributed to the
Sulu Sea, Marshall Islands, Paracel Islands and Wanan Island. All shrink factors for stock
contributions were less than 1.2.
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Table 1 Parentage identification results using the direct exclusionmethod.

Numbering Females with the same
D-loop genotype

Adult individuals screened by microsatellite loci D1 and B103 Identification results

Males Females Suspected parent
combination

B151 A03(F)/A04(F)/A22(F) \ \ \ Unmatched parent combination
B152 A03(F)/A04(F)/A22(F) \ A20(F)/A14(F)/A04(F) \ Unmatched parent combination
B153 A03(F)/A04(F)/A22(F) \ \ \ Unmatched parent combination
B154 \ \ \ \ Unmatched parent combination
B155 \ \ A21(F) \ Unmatched parent combination
B161 \ \ A13(F) \ Unmatched parent combination
B162 A03(F)/A04(F)/A22(F) A09(M) A21(F)/A14(F)/ A07(F) \ Unmatched parent combination
B163 A03(F)/A04(F)/A22(F) A01(M)/A11(M) \ \ Unmatched parent combination
B164 \ A23(M) A10(F)/A22(F)/A16(F)/A02(F) A23(M)× A10(F)/A02(F) Unmatched parent combination*

B165 \ \ A16(F)/A02(F)/A10(F) \ Unmatched parent combination
B166 A06(F) \ \ \ Unmatched parent combination
B167 A07(F) A23(M) A16(F)/A22(F) \ Unmatched parent combination
B171 A06(F) \ \ \ Unmatched parent combination
B172 A07(F) A01(M)/A11(M) A06(F) A11(M)× A06(F) Unmatched parent combination*

B173 A07(F) \ A16(F)/A02(F) \ Unmatched parent combination
B174 A03(F)/A04(F)/A22(F) A01(M)/A09(M) \ \ Unmatched parent combination

Notes.
*Although there is a suspected parental combination at the microsatellite locus, the D-loop genotype of the suspected parent does not match.
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Figure 1 Map of sea turtles birthplaces, mainly the Sulu Sea, the Marshall Islands, as well as Paracel Is-
lands andWanan Island in the South China Sea.

Full-size DOI: 10.7717/peerj.12410/fig-1

DISCUSSION
Although this turtle farm claimed that the six adult green turtles bred all the 400 juvenile
turtles in captivity, no parentage relationship could be identified between the randomly
selected 16 juvenile turtles and the six adult green turtles, or even to the other 13 adults.
Thus, it is evident that this farm is dishonest, is illegally farming and trading wild sea
turtles, and marketing them as artificially bred turtles. The more surprising fact is that the
farm has a breeding license issued by the local government. The legal license facilitates
the laundering of illegal business in this case, similar to other cases found in China (Lin
et al., 2021). These sea turtles in captivity may have various illegal overseas sources, their
birthplace was mainly the Sulu Sea, followed by the Marshall Islands, as well as Paracel
Islands and Wanan Island in the South China Sea (Fig. 1). Thus, there is a great possibility
that this farm purchased wild turtle eggs or hatchlings from the above birthplaces through
illegal trade chains. Further investigation is warranted to uncover the detailed source and
illegal trade chain by the law enforcement staff.

The huge demand for sea turtles has made China a major market and destination of
illegal trade for a long time, and most traded sea turtles are mainly from fishermen who
captured turtles directly or purchased from dealers in southeast Asian countries (Lam et
al., 2011; Gomez & Krishnasamy, 2019; Lin et al., 2021). Wild sea turtle populations in the
South China Sea and the Coral Triangle area suffer the most, which has been revealed by
mix-stock analysis of sea turtle samples from the Hainan Islands, China (Gaillard et al.,
2020), Brunei Bay and Mantanani, Malaysia (Joseph et al., 2014; Joseph et al., 2016). The
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results of the present study are consistent with their findings and provide further evidence
on the gravity of illegal turtle fishing and trade in these areas. Our data show juveniles
and adults are generally collected from the Sulu Sea, but that hatchlings are more heavily
harvested from the Paracel Islands than in adults. However, adults are being collected from
distant rookeries as the Marshall Islands made up over 20% of their stock contribution. It
could be that adult turtles aremigrating to the feeding grounds in the Sulu Sea and are being
collected there, however, previous analysis of foraging grounds in the Sulu Sea did not find
stock contributions from the Marshall Islands (Jensen, Pilcher & Fitzsimmons, 2016; Joseph
et al., 2016) suggesting these animals were collected from a rookery not found in the Sulu
Sea. Therefore, regarding the current sea turtle illegal trade, stricter and more efficient law
enforcement is crucial (Lin et al., 2021), and simultaneous monitoring of market trends
and trade routes must occur (Lam et al., 2011), multinational cooperation is also required
to properly protect green turtles in the South China Sea.

To the best of our knowledge, the present study is the first attempt to use nuclear
microsatellite gene combined with mitochondrial gene markers for authenticity testing
of artificially bred green turtles in forensic enforcement. The trinucleotide (B103) and
tetranucleotide (D1) microsatellite loci used in this study have high genetic diversity
and are sufficient to ensure the accuracy of the discrimination results, while the D-loop
fragments in mitochondrial DNA are mostly used to identify the origin of sea turtles
(Gaos et al., 2017; Hill et al., 2018). Their combination is reliable to rapidly distinguish the
authenticity of artificial breeding and also accurately trace the source of the illegal trade or
capture of sea turtles. Meanwhile, the testing is fast and cheap, as the samples can be tested
within 48 h and each sample costs about 200 RMB on average. However, due to limited
conditions, only 16 juvenile and 19 adult turtles were sampled in this study, which could be
successfully identified using two microsatellite and one mitochondrial loci. But for testing
a larger number of samples, it is recommended to increase the number of microsatellite
loci and use the multiplex PCR method adopted in this study to ensure the accuracy of
detection. Microsatellite loci, such as A6, B123, C102, Cm3, Cm58, etc. used by Wright
et al. (2012), could be selected to satisfy the identification of more samples. As such, we
believe that this method can serve as a good reference for identifying artificially bred green
turtles in farms or as part of illegal trade and help obtain reliable evidence of turtle origins
in future law enforcement.

CONCLUSIONS AND CONSERVATION IMPLICATIONS
The turtle farm investigated in the present study is illegally trading wild sea turtles and
marketing them as artificially bred turtles. This method provides reliable evidence for this
conclusion and also helps reveal the possible illegal trade chain. As the number of facilities
for artificial breeding of sea turtles is expected to gradually increase with the encouragement
of artificial breeding of sea turtles, this method could help distinguish the authenticity of
artificial breeding in law enforcement and assess its impact on sea turtle populations in
future. Moreover, international cooperation between China and Southeast Asian countries
should be strengthened to combat the illegal trade of sea turtles and protect their wild
populations in the South China Sea and Coral Triangle areas.
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